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ABSTRACT: Numerical simulation results are presented for
a cellulose hydrolysis model which incorporates both the
enzymatic glucan chain fragmentation kinetics and
the hydrolytic substrate morphology evolution within the
general framework of our companion article I. To test
the local Poisson (LP) approximation employed in the site
number formalism of I, we numerically compare it to the
corresponding exact chain number formalism of I. The LP
results agree to very high accuracy with the exact chain
number kinetics, assuming realistic parameters. From simu-
lations of different types of random and non-random model
morphologies, we then show that the details of the random
substrate morphology distribution, and its hydrolytic
time evolution, profoundly affect the hydrolysis kinetics.
Essential, likely very general, experimentally testable
features of such morphology-based hydrolysis models are
(i) the existence of two distinct time scales, associated with
the hydrolysis of the outermost surface-exposed cellulose
chains and, respectively, of the entire substrate; (ii) a
strongly morphology-dependent hydrolysis slow-down
effect, which has also been observed in previous experi-
mental work. Our results also suggest that previously pro-
posed non-morphologic chain fragmentation models can
only be applied to describe the hydrolytic short-time beha-
vior in the low enzyme limit. Further experiments to test our
modeling framework and its potential applications to the
optimization of the hydrolytic conversion process are
discussed.
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Introduction

The utilization of cellulosic biomass for bioenergy applica-
tions hinges upon the efficient conversion of as-grown solid
cellulose substrates into water-soluble, fermentable sugars
such as glucose and cellobiose (Himmel et al., 2007).
Enzymatic cellulose hydrolysis is presently under extensive
investigation as a promising technology to achieve effi-
cient solubilization. The availability of enzyme-accessible
surface area is by now recognized as a critical rate-limiting
factor in the enzymatic conversion process. Thus, in current
engineering-level cellulose solubilization approaches, sig-
nificant effort must be expended, prior to enzymatic
hydrolysis, on various types of physical or chemical biomass
pre-treatments whose primary purpose is to produce
substrate morphologies with substantially increased
enzyme-accessible surface area (Hsu, 1996; Jacobsen and
Wyman, 2000; McMillan, 1994; Weil et al., 1994).

Most of the modeling work done so far describes the
cellulose hydrolysis kinetics at the level of individual
cellulosic glucan chain molecules being hydrolyzed in
isolation. While capturing essential features of the enzymatic
chain fragmentation process at the molecular level, these
‘‘non-interacting chain’’ approaches, by design, cannot
explicitly account for the substrate morphology, that is, for
the collective embedding of glucan chains in a dense solid
substrate, the resulting steric obstruction of enzyme access,
or the hydrolysis-driven evolution of the morphology
(Converse and Optekar, 1993; Fenske et al., 1999; Okazaki
and Moo-Young, 1978; Suga et al., 1975; Zhang and Lynd,
2006). Some work employed into the model a pre-assumed
changing function of the shape and surface area of substrate
along the hydrolysis process (Converse and Grethlein, 1987;
Converse et al., 1988; Gan et al., 2003; Luo et al., 1997;
Movagarnejad et al., 2000; Oh et al., 2001; Philippidis et al.,
1992, 1993; Wald et al., 1984). The construction of the
changing function is based solely on empirical correlation.
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When a substantial fraction of the substrate becomes

solubilized during hydrolytic conversion, the resulting
changes in substrate morphology will profoundly affect
the availability of enzyme-accessible surface area, and hence
the hydrolysis kinetics itself. Non-morphologic chain
fragmentation modeling approaches are therefore limited
to the description of short-time hydrolysis behavior only
(Zhang and Lynd, 2006), on time scales where the internal
solid surface structure of the substrate remains approxi-
mately constant.

In a companion article, hereafter referred to as I
(Zhou et al., 2009), we have now developed a general
theoretical and computational framework for the modeling
of enzymatic cellulose hydrolysis in the presence of a
hydrolytically evolving substrate morphology. This model-
ing formalism combines the fragmentation of surface-
exposed enzyme-accessible glucan chains, due a non-
complexed hydrolase enzyme system, with an explicit rate
equation description of the time-dependent morphology.
The morphology evolution is explicitly driven by the
hydrolytic solubilization of substrate material. We believe
that this new formalism represents a significant step towards
the quantitative modeling of the entire hydrolysis process,
up to near-complete hydrolytic solubilization of the
cellulosic substrate.

In the present article, we will present detailed numerical
simulation results obtained with the foregoing surface layer
ablation modeling formalism. Our main objectives here are
twofold. First, we will carefully test the accuracy of our
proposed approximation procedure employed in the site
number formalism by direct comparison to numerical
results for a corresponding exact chain number fragmenta-
tion model, equivalent to the Zhang–Lynd model (Zhang
and Lynd, 2006). Secondly, we will present model
predictions concerning hydrolytically evolving substrate
morphologies, and their effects on the hydrolysis kinetics,
which can be tested by future experimental observations and
ATable I. Simulation parameters.

Parameter Unit/value

M1 55,000 (g/mol)

M3 65,000 (g/mol)

M2 65,000 (g/mol)

MG1 162 (g/mol)

g1,N/M1 0.40 (mmol bonds/(mg min))

g3,Y/M3 0.08 (mmol bonds/(mg min))

g2,X/M2 0.16 (mmol bonds/(mg min))

L1,N 3.0 (L/mmol)

L3,Y 4.0 (L/mmol)

L2,X 4.0 (L/mmol)

M1u1 0.0036 (g/L)

M3u3 0.0180 (g/L)

M2u2 0.0060 (g/L)

MG1x
ðoÞ
V

10.0 (g/L)

‘s 7

kX, kY 2
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which clearly distinguish our morphology-based models
from non-morphologic kinetics approaches. Along the way,
we will also demonstrate that a random distribution of
evolving substrate morphologies may quite naturally
account for a frequently observed, but presently not well
understood feature of the hydrolytic conversion process: the
phenomenon of hydrolysis slow-down (Lynd et al., 2002).
Please note that symbols appearing first in the companion
article I are not redefined here, and the reader is referred to
the nomenclature of that article. New symbols will first be
defined in the context and then summarized in the
nomenclature of this article.
Materials and Methods

Five-Site Surface Ablation Model

In our numerical simulations, we model a pure cellulose
substrate, such as Avicel, and a non-complexed cellulase
system with kinetics and concentration model parameters
from Zhang and Lynd (2006) summarized in Table I, unless
specified otherwise. Our enzyme concentrations are
derived from the natural composition found in Trichoderma
reesei with mass fractions of 12% EG1, 60% CBH1, and
20% CBH2; and with a remaining 8% of other glycoside
hydrolases which we neglect, following Zhang and
Lynd (2006). Hence, in Table I, we effectively assume a
three-enzyme system with 27.6 mg/L total concentration,
consisting only of EG1, CBH1, and CBH2 in a mass ratio
EG1/CBH1/CBH2¼ 12:60:20. We thus take kX¼ kY ¼ 2, for
the chain-end cutting sites of the cellohydrobiolases CBH2
and CBH1, respectively. We also assume a minimum
insoluble chain length ‘S ¼ 7 > kX þ kY ¼ 4 and fO;s ¼ 0,
that is, a pure cellulose substrate without site types Z and O.
The chain site distribution models given in I (HDC and
CCE) are then equivalent and reduced to a five-site model.
Remarks

Molar mass of EG1

Molar mass of CBH1

Molar mass of CBH2

Molar mass of Anhydro-glucose G1 (C6H10O5)

Specific enzyme activity (by mass) of EG1 on N, X, and Y sites

Specific enzyme activity (by mass) of CBH1 on Y sites

Specific enzyme activity (by mass) of CBH2 on X sites

Adsorption equilibrium coefficient of EG1 to N, X, and Y sites

Adsorption equilibrium coefficient of CBH1 to Y sites

Adsorption equilibrium coefficient of CBH2 to X sites

Mass concentration of EG1 (E1 enzyme system)

Mass concentration of CBH1 (E1 enzyme system)

Mass concentration of CBH2 (E1 enzyme system)

Mass concentration of initial anhydro-glucose G1 in solid

Minimum length ‘ of insoluble chains G‘

L-end and R-end exo-cutting lengths (producing cellobiose)
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Both the general site number formalism developed in I and
the corresponding general chain number formalism, given
in Supporting Information section G of I, simplify
considerably when applied to the five-site model, as detailed
in Supporting Information sections A and B of the present
article.
A
Testing the Local Poisson (LP) Approximation

In the first part of this investigation, the accuracy of the LP
approximation in the site number formalism is tested by
comparing it to simulation results of the corresponding
full chain number formalism. We mainly consider the
no-morphology case hs � 0, that is, all chains are assumed
to be fully exposed at the surface or, equivalently, all SACs
contain only one single layer, are therefore identical, and
can be described by only a single SAC geometry class
(s ¼ 1 � MMD). This is referred to as the ‘‘Single-layer,
Single-geometry’’ (SS) model hereafter and may be formally
regarded as the infinite-dimensional limit, dA ! 1, of the
morphological (hs 6¼ 0) models, as detailed in Supporting
Information section A. [A test of the LP approximation for
the case of a multi-layer model with substrate morphology,
hs 6¼ 0, is briefly discussed below and detailed in Supporting
Information section D.] As a consequence, xM¼ xV in the SS
model, the overall accessibility fraction Fa ¼ xM=xV � 1,
the xL,s- and xN,s-rate equations in the SS model become
decoupled from ls, and we can ignore the ls-rate equation
altogether. In the site number formalism, we then solve
the coupled rate Equations (8) and (9) in Supporting
Information section A; and in the corresponding chain
number formalism, we solve the rate equation system
Equation (30) in Supporting Information section B for all
chain lengths ‘, with hs � 0 in both. Adopting also the low-
enzyme limit, our SS model chain number formalism then
becomes equivalent to the Zhang–Lynd chain fragmentation
model (Zhang and Lynd, 2006). Two enzyme systems,
a mixed endo–exo EG1-CBH1,2 enzyme system with
naturally occurring enzyme composition and a purely
exo-acting CBH1,2 enzyme system, are used in the
simulations. As explained in Supporting Information
section A, the LP approximation becomes exact for a
purely endo-acting enzyme system and does not require
numerical testing in that case. In the chain number
formalism, the initial chain length distribution has to be
provided as a model input. We consider three such initial
distributions: a Delta shape, a (truncated) Gaussian shape
and a Global Poisson (GP) shape, as detailed in Supporting
Information section B.
Hydrolytic Morphology Evolution by Surface Ablation

In the second part of our investigation, we will consider four
specific substrate models: three surface ablation models
with fully time-dependent morphology, comprising one
‘‘Multiple-layer, Single-geometry’’ (MS) model, and two
uthor Proof
different ‘‘Multiple-layer, Multiple-geometry’’ (MM) mod-
els; and, for contrast and comparison, the above-described
non-morphologic SS model. The construction and para-
meterization of these four models is described in detail in
Supporting Information section C, and will be only briefly
summarized here. The MS model describes a non-random
morphology characterized by only one single SAC geometry
class: MMD ¼ 1. The two MM models, MM82-1 and MM82-
2, describe random substrate morphology distributions,
represented by an SAC size (ls-) population comprising
MMD ¼ 82 SAC geometry classes. Models MM82-1 and
MM82-2 assume, respectively a uniform and a Gaussian
distribution of the initial substrate monomer molar
fractions js

ðoÞ.
Experimentally measured initial (pre-hydrolysis) para-

meter values for a typical pure cellulose material, Avicel, are
employed to constrain our chain fragmentation model and
our four substrate morphology models, respectively: the
degree of polymerization DP(0)¼ 300, and the enzymatic
surface accessibility fraction F

ðoÞ
a ¼ 0:006 (Zhang and Lynd,

2004). All four morphology models are thus parameterized
to represent the same DP(0)¼ 300 and the same
F
ðoÞ
a ¼ 0:006. In the case of the SS model, F

ðoÞ
a is

incorporated as an ad hoc correction factor to account
for reduced EG1 enzyme-chain accessibility of the actual
solid substrate (Zhang and Lynd, 2006). Except for this
accessibility correction in the SS model, all enzyme
adsorption and kinetics parameters are taken from
Table I. In addition to the mixed enzyme system, referred
to as E1 in Table I, a second enzyme system, E200, with 200-
fold increased enzyme concentrations will also be studied.
Results and Discussion

Testing the LP Approximation

Mixed EG1-CBH1,2 Enzyme System

Figure 1 shows the results from model calculations for
the Zhang–Lynd chain model and for the corresponding
site number formalism with the LP approximation (i.e.,
the SS model), for a mixture of EG1, CBH1 and CBH2,
considering different initial DP. It is evident that the
site number formalism with approximate LP closure
provides an excellent approximation to the exact full
chain rate equations when the native (¼initial) degree of
polymerization DP(o) exceeds about 20 monomers.
For DP(o) � 20, the deviations between site number LP
and full chain number results are at the 1%-level or less and
these deviations decrease rapidly with increasing DP(o). This
is exactly what one would expect, based on the long-chain
limit (LCL) arguments discussed in I. We note that
typical cellulosic substrates have DP-values well in excess
of 20 monomers (Zhang and Lynd, 2004).

Remarkably, this level of accuracy is achieved by the LP
approximation for all observable quantities that are relevant
Zhou et al.: Cellulose Hydrolysis in Evolving Substrate Morphologies 3

Biotechnology and Bioengineering



Author Proof

A
0 1000 2000 3000 4000 5000 6000 7000

0

10

20

30

40

50

60

70

time (min)

x V
 (

m
m

ol
/L

)
Chain Delta 

Chain Gaussian 

Chain GP (=Site GP) 

Site LP 

DP0=10 

DP0=60 

DP0=1000 

DP0=20 

DP0=400 

A 

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

time (min)

co
nc

en
tr

at
io

n 
of

 G
1 

(m
m

ol
/L

)

DP0=10 DP0=20 DP0=60 

DP0=400 

DP0=1000 

B 

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

time (min)

co
nc

en
tr

at
io

n 
of

 G
2 

(m
m

ol
/L

)

DP0=10 

DP0=20 

DP0=60 

DP0=400 

DP0=1000

C 

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

time (min)

x L
 (

m
m

ol
/L

)

DP0=10 

DP0=20 

DP0=400 
DP0=60 

DP0=1000 

D 

E 

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

chain length (l)

lo
g(

G
(l)

)

t=10min,     
conv.=7e(−4) 

t=1080min,
conv.=0.1 

t=3720min,
conv.=0.5 

t=5640min,
conv.=0.9 

igure 1. Comparison of the SS model results from chain number formalism (Zhang–Lynd Model) and site number formalism, with different initial chain length distributions,

s detailed in Supporting Information section B, for the case of a GP-shaped initial chain length distribution, the results of site formalism ‘‘Site GP’’ and the chain formalism ‘‘Chain

P’’ are identical.) for the mixed EG1-CBH1,2 enzyme system. In panels A–D, full lines, dot-dashed lines and circles are for the chain number formalism with delta-, Gaussian- and

lobal-Poisson-(GP-) shaped initial chain length distributions; diamonds are for the corresponding local Poisson (LP) approximation in the site number formalism. A: total monomer

oncentration xV(t) in solid versus time t; (B) concentration of G1 in solution, xS(1, t), versus time t; (C) concentrations of G2 in solution, xS(2, t)/2, versus time t; (D) concentration of

on-reducing chain ends, xL(t), versus time t; (E) typical log chain length distribution, log Gð‘; tÞ, versus chain length ‘ at several times t, from SS model chain number formalism

ith delta-shaped initial distribution from Equation (35) with ‘Wid ! 0 and ‘Avg¼ 100.
F
(a

G

g

c

n

w

4 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009



A
to hydrolysis, including the total remaining solid substrate
monomer concentration xV(¼xM) in Figure 1A; the soluble
oligomeric monomer concentrations xS(k, t), shown in
Figure 1B for oligomer length k¼ 1 (¼glucose) and in
Figure 1C for k¼ 2 (¼cellobiose); and the total chain (end)
concentration xL(t) shown in Figure 1D. Note that xL and xM

determine the hydrolytically evolving DP of surface exposed
chains by DP¼ xM/xL.

For comparison, we are also showing results for
DP(o) ¼ 10. Here the LCL conditions discussed in I, for
example, the condition DP(o)� ‘C, are not really satisfied,
since ‘c ¼ 8. As expected, the deviations between site
number LP and chain number formalism become quite
noticeable here as hydrolysis progresses.

In comparing the full chain results for these three
different chain length distribution shapes, we notice that all
three give almost identical results at least for DP(o) � 60.
This is again fully consistent with the general discussion of
A0 1 2 3 4 5 6 7

x 104

x 104

0

10

20

30

40

50

60

70

time (min)

x V
 (

m
m

ol
/L

)

DP
0
=20 

DP
0
=20 

DP
0
=60 

DP
0
=60 

DP
0
=400 DP

0
=1000 

DP0=400

DP
0
=1000

Chain Delta 

Chain Gaussian 

Chain GP (=Site GP) 

Site LP 

A 

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

time (min)

co
nc

en
tr

at
io

n 
of

 G
6 

(m
m

ol
/L

)

C D

Figure 2. Comparison of the SS model results from chain number formalism (Zhang–Ly

the pure CBH1,2 enzyme system. In all panels A–D, abbreviations, full lines, dot-dashed lines

(B) concentration of G2 in solution, xS(2, t)/2, versus time t; (C) concentrations of G6 in so
uthor Proof
the LCL in I: as long as the initial chain length distribution
satisfies the LCL conditions, the hydrolysis kinetics is
very insensitive to the actual initial chain length distribution
shape. The only parameter that matters under LCL con-
ditions is the initial average chain length, that is, the DP(o)-
value; other details of the distribution shape become
essentially irrelevant.
Pure CBH1,2 Enzyme System

Figure 2 shows the comparison between the site number
formalism with LP approximation and the chain number
results for pure CBH1,2 enzymes. All model parameters are
from Table I, except that the total EG1 concentration is set
to u1 ¼ 0. As seen in Figures 2A–C, respectively, for initial
DP-values DP(o) � 60 the site number LP approximation is
again remarkably accurate in reproducing chain number
results for total insoluble substrate monomer, xV(¼xM), and
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for dissolved monomer concentrations xS(k) in soluble
oligomers. As expected, the dominant dissolved oligomer
species is k¼ 2 (cellobiose), since both CBH2 and
CBH1 can cut off only oligomers lengths kX ¼ kY¼ 2 from
the non-reducing and reducing ends, respectively. In
addition, a small amount of k¼ 5 (cellopentose) and
k¼ 6 (cellohexose) oligomers can be produced in the exact
full chain calculations, as seen in Figure 2C.

In the limit of a pure CBH1,2 enzyme system, u1¼ 0 and
hence GN;s ¼ 0. This implies that the xL,s-term in Equation
(11) does not contribute to the production of short-chains
Gsð‘Þ with ‘ � ‘D. There is then essentially no source of
production of short chains and the LP approximation gives
zero short-chain concentrations Gsð‘Þ for the entire
duration of the hydrolysis process. As a consequence, the
(very small) fraction of k¼ 5 and k¼ 6 oligomers is
simply approximated by zero. However, in terms of the
overall oligomer distribution, LP is actually a very good
approximation to the exact full chain results for delta- or
Gaussian-shaped initial distribution for realistic chain
lengths DP(0)� 60, since it reproduces the dominant
k¼ 2 oligomer very accurately for realistic DP(o).

In addition, the LP approach will then give a zero rate RL,s

for the production of chains or chain ends from
chain fragmentation processes. In the single-layer limit
(hsðlÞ ¼ 0), the chain concentration xL,s thus becomes
t-independent in the LP approximation. As shown in
Figure 2D, this result agrees poorly with the chain number
results in the case of short chains with DP(o) < 60. However,
under LCL conditions, that is, for larger DP(o)-values, the
full chain model with delta- or Gaussian initial distribution
shape also predicts approximately t-independent xL for
most of the hydrolysis time: in comparing Figure 2A and
D for DP(o) � 60, we note that the full chain xL remains
approximately constant until about 80–95% of the substrate
has been converted, which is then followed by a very quick
downturn of xL. Hence, the rather simple approximate LP
result for xL agrees, for most of the hydrolysis time with the
full chain number result.

Both the site LP approximation and the exact full chain
results for delta- or Gaussian-shaped initial distribution
deviate noticeably in Figure 2 from the exact full chain
results for the GP-shaped initial distribution. Compared to
the other distributions, the GP distribution shows a slower
loss of substrate monomers, as seen in Figure 2A, and, at the
same time, a faster loss in the total number of chains in
Figure 2D. This can be understood by noting that the GP
distribution contains a larger fraction of its monomers in
longer chains with ‘ > DPðoÞ, but larger fraction of its chains
(and chain ends) at in shorter chains with ‘ � DPðoÞ. Recall
here that both the site LP approximation and the full chain
delta- and Gaussian-shaped initial distributions assume
that there are initially negligible short chains, whereas GP
assumes that the shortest chains have the largest concentra-
tions right from the start. In the mixed endo–exo-acting
enzyme system shown in Figure 1, this difference in the
initial chain length distribution does not affect the
6 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009
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hydrolysis rate significantly, since endo-cutting processes
are very efficient (see Fig. 1E) in quickly producing a large
population of short chains, even if short chains are initially
absent. However, in the purely exo-acting enzyme system,
the difference in the initial chain length distribution has a
much more pronounced effect on the hydrolysis and chain
loss rate, since it takes comparatively a much longer time for
exo-cuts alone to produce short chains from long ones.

The primary pathology of the LP approximation which
manifests itself in Figure 2D is that, for purely exo-acting
enzyme systems (and only for those!), the LP site number
formalism fails to eventually remove the chain ends (xL)
from the substrate (i.e., xL is constant), even after all
substrate monomers (xM) have been completely dissolved.
The persistence of these ‘‘phantom chains’’ in the LP
approximation would be of no consequence if single-layer
substrates are considered, as shown in Figure 2D. However,
in the case of a full multi-layer surface ablation model with
hydrolytically evolving substrate morphology and a purely
exo-acting enzyme system, this pathology currently still
limits the applicability of the site number formalism. Thus
in LP-based site number simulations for surface ablation
models with purely exo-acting enzyme systems, we must
restrict ourselves to a short-time limit where only a few SAC
surface layers are solubilized so that the accumulation of
surface phantom chain ends remains a negligible artifact.
Chain Length Distributions

Figure 1E shows a typical chain length distribution evolution
from the full chain model result, in common logarithm, with
mixed EG1-CBH1,2 enzymes, and Delta shape initial chain
distribution and DP(o) ¼ 100. The different time points for
the plots were selected to cover most of the hydrolysis time
from almost zero up to 90% hydrolytic conversion. The
crucial point to note in Figure 1E is that log½Gð‘; tÞ� is an
almost perfectly linear function of ‘, at least for short chain
lengths up to ‘ � 80 � 90, for all times t shown. That is
precisely the ‘-dependence assumed in our LP extrapola-
tion. We have verified that such short-chain Poisson
behavior is indeed almost universally realized for mixed
EG1-CBH1,2 as well as for pure EG1 systems, under
widely varying parameter conditions, including different
rate and adsorption coefficients, different initial chain
length distributions Q(‘) and initial DP (within LCL:
DPðoÞ � ‘S), and different enzyme concentrations and
mixing ratios. For the purely exo-acting CBH1,2 enzyme
system, a non-Poissonian initial distribution shape Q(‘) will
generally not evolve towards a Poisson shape, while a global
Poissonian initial shape leads to exactly preserved Poisson
shape thereafter, for any enzyme composition, as proven in
Supporting Information section H of I.

In the presence of non-negligible amounts of endo-
activity, a population of insoluble chains of all fragment
chain lengths ‘ < ‘Max, down to short chains with ‘ � ‘S,
gets produced immediately by the endo-cuts and this
population very quickly evolves a Poisson distribution
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shape, regardless of the initial distribution shape Q(‘).
Hence, in LCL the fragmentation kinetics becomes
‘‘universal,’’ that is, independent of initial distribution
shape, since a Poisson distribution shape is established,
especially at short chain lengths, long before even a
small fraction of the substrate has been hydrolyzed. This
also explains why the mixed enzyme system is much less
sensitive to both initial DP in the LCL regime and to initial
chain length distribution shape than the pure exo-enzyme
system.
Hydrolysis Controlled by Morphology

While all results discussed below are based on the LP
approximation in the site number formalism, we have also
carried out calculations of the hydrolysis kinetics, with
surface morphology term hs> 0, in the exact chain number
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formalism and compared to the corresponding site number
LP results, for the case of the MS model. The results,
discussed in Supporting Information section D, show again
excellent agreement between the LP-based site formalism
and the exact chain formalism.

Figure 3 shows results of three surface ablation
models (i.e., MS, MM82-1, and MM82-2) and the SS
model with F

ðoÞ
a ¼ 0:006 applied, for the complete hydro-

lytic conversion process, using the low-concentration
enzyme system E1. As illustrated in Figure 3A by the total
monomer concentration xV in solid substrate, the overall
hydrolytic conversion in the three surface ablation models is
significantly slower than in the pure chain fragmentation
single-layer model SS. Furthermore, there are significant
differences in hydrolytic conversion times between the three
surface ablation models: MS, representing a zero-width
Gaussian, hydrolyzes faster than MM82-2 with a finite-
width Gaussian initial-SAC-size distribution; and MM82-2
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in turn, is faster than MM82-1 representing the much wider
uniform initial-SAC-size distribution: the hydrolytic con-
version time increases with the width of the initial SAC size
(lðoÞs ) distribution.

The crucial point to emphasize here is that, in all four
models, we have assumed the same chain fragmenta-
tion mechanism, with the same kinetic rate coefficient
and enzyme parameters, and the same macroscopic
substrate parameters, that is, the same initial molar
amount of substrate xV(t(o)), the initial degree of poly-
merization DP(o) and the same initial enzyme surface
accessibility fraction, F

ðoÞ
a , respectively. Clearly, the hydro-

lysis kinetics is very substantially dependent upon ‘‘other’’
factors, beyond the rate coefficient, enzyme adsorption or
macroscopic substrate (DP(o) and F

ðoÞ
a ) parameters used

in single-layer chain fragmentation models (Okazaki and
Moo-Young, 1978; Zhang and Lynd, 2006). The substrate
morphology is one such critically important factor
determining the overall hydrolytic conversion time.

It is evident from Figure 3 that the simulation results
within the morphologic surface ablation models (MS and
MM) are similar to each other, but quite different from the
non-morphologic SS model. From the inset of Figure 3B and
C, we can see for very short hydrolysis times (up to
�180 min) the behavior of the three morphologic surface
ablation models is almost identical. As explained later, this
characteristic time scale of �180 min corresponds to the
hydrolytic fragmentation of the initially accessible fraction
of substrate material, residing in the outermost SAC layers.
While the three morphologic models diverge from each
other thereafter, this divergence is much less pronounced
than their profound differences from the non-morphologic
SS model at longer time scales. In particular, the non-
morphologic model predicts a much higher solubilization
rate, which can be understood as a consequence of the
fundamental neglect of the obstruction of enzyme access to
the chain ends.

The corresponding results for the E200 enzyme system
shown in Figure 4 are qualitatively very similar to results
from the E1 system: the three morphologic surface ablation
models have much longer hydrolytic conversion time than
the SS model. There are also significant differences in
hydrolytic conversion times between the three surface
ablation models. Due to the 200-fold increase in enzyme
concentration, the reaction rates are scaled up, and the
overall times scales are scaled down, by a factor of order 100.
From the inset of Figure 4B and C, it can be seen that, even
on very short hydrolysis time scales, the non-morphologic
SS model is not a good approximation to the morphologic
surface ablation models for the E200 enzyme system.

Hence, the hydrolytic conversion of cellulose substrate is
crucially impacted by the substrate morphology. The above
results also demonstrate very clearly that non-morphologic
models can only be relied upon for the low-enzyme limit
regime and only for very short time scales, up to the
hydrolysis of the initial accessible fraction of substrate
material. On time scales required to achieve substantial or
8 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009
near-complete hydrolytic conversion, or at higher enzyme
loading, non-morphologic models are likely to fail.
uthor ProofTwo-Time Scale Behavior

Figure 3B shows the conversion rate jdxV=dtj as a function of
hydrolysis time for the E1 enzyme system. All four models
show a very rapid rise in their initial conversion rate at very
early times. However, in the SS model, this rise continues
unabated until about t� 6,600 min where a maximum rate
is reached, followed by a decline on a similar time scale,
through completion of hydrolysis until about 11,000 min.
By contrast, in the three surface ablation models, the early
rapid rise is abruptly arrested and a much lower maximum
rate is reached already at a much earlier time, t� 180 min,
followed by a very slow drop-off for about 25,000–
60,000 min, consistent with the overall much longer
conversion times in the surface layer ablation models.
These results strongly suggest that the hydrolysis kinetics in
the surface layer ablation models exhibits two quite distinct
characteristic time scales: the very short, early arrest time
scale, and the much longer hydrolysis completion time scale,
indicated, for example, by the 90%-conversion times.

This two-time scale behavior is also clearly seen in
Figure 4B, for the E200 enzyme system, in all three
morphologic surface ablation models, indicating that this is
a common feature of the morphologic models, regardless
of enzyme concentrations. The result in Figure 4B is
qualitatively very similar to that of Figure 3B, with
approximately 100-fold reduction in time, as mentioned
before. The early arrest of the reaction rate in the surface
ablation models occurs at �1.7 min.

In the surface layer ablation models, the steric obstruction
of enzyme accessibility is not ‘‘mimicked’’ by the ad hoc
correction factor as was done in previous modeling studies
(Okazaki and Moo-Young, 1978; Zhang and Lynd, 2006).
Rather, reduced accessibility results naturally from the
actual substrate morphology, that is, from the fact that only
surface-exposed sites are available for enzyme adsorption.
Inspection of the early arrest and downturn of the ablation
rate, near �180 min for the E1 enzyme system and �1.7 min
for the E200 enzyme system, in simulation results
Figures 3B and 4B of the three surface ablation models
reveals that this time corresponds to a 0.6% conversion of
total substrate, for both enzyme systems; and this 0.6%-
fraction is exactly equal to the initial fraction Fa ¼ 0:006 of
substrate material exposed in the outermost SACs layers at
the start of hydrolysis. Hence, the early arrest time scale, for
both enzyme systems is clearly associated with the hydrolytic
chain fragmentation and ablation of the outermost SAC
layer.

Up to this ‘‘outermost layer ablation time,’’ enzymatic
cuts of endo-acting EG1 generates a large number of new
chain ends, compared to initially existing native chain ends,
which stimulates the activities of exo-acting CBH1 and
CBH2. This cooperative work between endo–exo-enzymes
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causes the rapid increase in the production rate of soluble
oligomers seen at early times in the insets of
Figures 3B and 4B. This is also clearly shown in
Figure 4E, where xM and xN decrease monotonically, and
xL shows a rapid rise during the early hydrolytic stage, with a
time scale equal to that of the early arrest time scale seen in
jdxV=dtj. After that early arrest time, the steric obstruction
by only partially ablated overlaying material affects and
persists for all subsequent layers being ablated and hence
controls the ablation rate for the entire remaining hydrolytic
conversion time. Consequently, the rate of new surface
exposure, that is the �RshsðlsÞgN;sðlsÞ-term in Support-
ing Information Equation (8), not the enzymatic chain
fragmentation, is the rate limiting factor for most of the
remaining hydrolytic conversion time. This result clearly has
technological implications: to substantially improve the
performance of hydrolytic conversion, one may have to
consider not only a re-engineering of the available enzyme
systems, but also a re-engineering of the substrate
morphology.

For ablation of the outermost SAC layer, only the total
surface area, or surface site concentration, and the total
ablation rate from all SACs of all geometry classes combined
are relevant. Consequently, the MM and MS models of
identical initial Fa-, xV-, and DP-values should exhibit the
same early arrest short-time behavior arising from the
outermost layer ablation. However, on the much longer
overall hydrolysis time scales the three surface ablation
models are evidently very different from each other, since
the replenishment rate of digested substrate material at the
SAC surfaces in these models is quite different because of the
effects of the different morphology distributions and their
evolution under hydrolysis. As shown in Figures 3A and B,
the overall hydrolysis time scales show several fold
differences between the three morphologic surface ablation
models. This can be easily understood since the overall
conversion time is controlled by hydrolysis of the large-size
SACs. Hence, even though the initial accessible surface xM

and Fa, is the same in all three models, the uniform MM82-1
model contains a larger fraction of its substrate in large SACs
than the Gaussian MM82-2 and the (Delta-function!) MS
model.
A

Hydrolysis Slow-Down and Morphology Evolution

Rapid decline in cellulose hydrolysis rate, and in the
corresponding production rate of soluble glucose equiva-
lent, as shown in Figures 3B and 4B, is a feature that has been
frequently observed in real hydrolysis experiments, and is
generally referred to as hydrolysis slow-down (Desai and
Converse, 1997; Hong et al., 2007; Lynd et al., 2002; Yang
et al., 2006; Zhang and Lynd, 2004). Some part of this effect
found in real substrates has been attributed to a loss of
enzyme activity, either due to enzyme degradation/
inactivation or due to enzyme inhibition by the hydro-
lysis-generated soluble monomer and oligomer products.
10 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009
uthor Proof
However, experiments, in which neither enzyme degrada-
tion/inactivation nor product inhibition appears operative,
suggest that a significant part of the effect could in fact be
due to hydrolysis-induced changes in the substrate itself that
can not be explained by loss of enzymatic activity or product
inhibition (Valjamae et al., 1998; Zhang et al., 1999). Zhang
et al. (1999) explained the slow-down effect by declining
substrate reactivity caused by substrate heterogeneity,
whereby more easily degradable substrate was depleted at
a faster rate early during hydrolysis. Valjamae et al. (1998)
tried to explain the rate decline in terms of steric hindrance
due to nonproductive cellulase adsorption, as well as surface
erosion after extended hydrolysis. In some studies (Desai
and Converse, 1997; Yang et al., 2006), however, partially
hydrolyzed substrate was found to be as reactive as in its pre-
hydrolysis state, implying that changes in substrate reactivity
is not the cause of the slow-down in hydrolysis. Therefore,
the cause of hydrolysis slow-down is uncertain, and whether
or not there is a change in substrate reactivity is still very
much under debate.

Zhang and Lynd (2004) stated that ‘‘It is widely observed
that the heterogeneous structure of cellulose gives rise to a
rapid decrease in rate as hydrolysis proceeds, . . . ,’’ and
‘‘. . . it would seem logical to expect that the declining
reactivity of residual cellulose during enzymatic hydrolysis is
a result of factors such as less surface area and fewer
accessible chain ends . . . ’’. Indeed, our present simulation
results of morphology-evolving surface ablation models
confirms these expectations. As shown in Figure 4E, both xM

(which is a measure of exposed accessible surface area) and
xL decrease as hydrolysis proceeds (after the short initial rise
during the outermost surface ablation time). Please note
that in our simulation, neither enzyme degradation/
inactivation nor product inhibition are present (i.e.,
intentionally ignored for purpose of isolating the substrate
effects), thus substrate effects contribute to hydrolysis slow-
down, as shown by the results of our model.

The heterogeneous structure arising naturally from the
solidity of cellulose, that is, steric obstruction of access to the
inner, below-surface chains in the solid, is one of the main
causes of the slow-down. From the Equations (6) and (5),
the rate of solubilization jdxV;sðlsÞ=dtj for SACs of size ls is
roughly proportional to their surface area, xM;sðlsÞ. The
exposed surface of every individual SAC will shrink as the
hydrolysis proceeds. Thus the total solubilization rate
jdxV=dtj, will begin to decrease very early on, as soon as
the outermost surface layer, but long before any sizeable
fraction (<1%) of substrate, has been hydrolyzed. By
contrast, the SS model lacks the steric obstruction of a solid
substrate and its jdxV=dtj in Figures 3B and 4B continues to
increase until well over 80% of the substrate has been
hydrolyzed.

However, the foregoing ‘‘solid structural heterogeneity’’
effect alone can not explain the whole picture. As we can see
from Figures 3B and 4B, the extent of the hydrolysis slow-
down is quite different among the three morphology
models. The MM82-1 model exhibits the deepest depression
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while the MS model exhibits the least amount of hydrolysis
slow-down. As discussed before, the MS and MM82-1
models represent two limiting cases of the Gaussian
MM model, namely the ‘‘zero-width’’ limit and the
‘‘infinite-width’’ limit respectively. A real morphology size
distribution would likely fall in between these two extremes.
In the MS model, all SAC units of the substrate shrink at the
same rate and thus are and remain of equal size at all times
during the hydrolysis. By contrast, in the MM models,
smaller SACs are fully hydrolyzed at earlier times than bigger
ones, and this apparently causes the relatively steeper decline
in cellulose hydrolysis rate in the MM82-1 model. We will
refer to this as the ‘‘morphological heterogeneity’’ effect in
the following.

To further analyze these differences between the three
multi-layer surface ablation models, we have plotted in
Figures 3C and 4C the relative substrate hydrolysis rate Grel,
for E1 and E200 enzyme system respectively,

Grel � � 1

xV

dxV
dt

: (1)

In Figures 3C and 4C, the early rapid rise is again arrested
in all three substrate ablation models at the outermost layer
ablation time. Beyond that point, Grel in the MM82-1 model
drops noticeably below its early arrest value; Grel in the MS
models continues to rise, albeit with a markedly slower
growth rate; and Grel in the MM82-2 model falls between MS
and MM82-1.

The decline of Grel seems to indicate a decrease in the
effective substrate reactivity for the uniform initial-l
distribution model MM82-1: the hydrolysis rate jxV=dtj
declines faster than the remaining substrate concentration
xV itself. This is the model with the widest, distribution of
initial SAC sizes lðoÞs , extending with uniform weight from
lðoÞ1 ¼ 20 to lðoÞ82 ¼ 1640. By contrast, in the MS and MM82-2
model, where all SAC units of the substrate have either the
same initial size or a narrower, Gaussian size distribution,
there is no, or only a very weak Grel depression.

In Figures 3D and 4D, we show the hydrolytic evolution
of the overall accessibility fraction Fa, for E1 and E200
enzyme system respectively. For the zero-width distribution
MS model, Fa increases monotonically; for the finite-width
Gaussian distribution MM82-2 model, Fa at first declines
very slightly for a short time and then increases; and for the
widest uniform distribution MM82-1 model, Fa declines
most strongly and it has the longest duration of decline.
Hence, the depression of Fa increases with increasing width
of the morphology distribution. The proportionality of
solubilization rate and surface area also implies, by
Equation (1), that the relative hydrolysis rate Grel is
proportional to the accessibility fraction Fa. Hence, a
decline of Fa during early hydrolysis implies a correspond-
ing decline in Grel.

To understand why MM82-1 and MM82-2 models
exhibit a decline in the accessibility fraction Fa and thus
uthor Proof
a depression in the relative hydrolysis rate Grel, we show, for
the E200 enzyme system, time evolution of the weighted
SAC size (ls)-density distributions: (see Supporting
Information section C for their definitions) PxM(l, t) in
Figures 5A and C, DxV(l, t) in Figures 5B and D, for the
models MM82-1 and MM82-2 respectively. The analogous
results for the E1 system are very similar and therefore not
shown here. Please note that at t¼ t(o) both models have the
same total number of monomers per SAC volume x

ðoÞ
V ; and

the same total surface area x
ðoÞ
M .

In the uniform model MM82-1, a large fraction of the
initial surface area xM,s resides on very small SACs, say at
l< 200, while most of the volume xV,s is contained in SACs
of very large sizes, with l> 200. This is seen in Figure 5A and
B, respectively. Consequently, most of the early hydrolysis
rate will result from the dissolution of small SACs, since
those are the ones carrying most of the surface: the large
SACs, carrying much smaller surface area will initially be
hydrolyzed at a slower rate than the small ones, as seen
in Figure 5B. The early fast hydrolysis of small SACs causes
a large initial loss of surface area per volume: the initial
relative surface area loss in Figure 5A is greater than the
corresponding relative volume loss in Figure 5B, since, as a
fraction of total, the small SACs contain far more
surface than volume. Consequently, the surface-to-volume
ratio, that is, the accessibility fraction Fa, will initially
decline in the uniform model, as is indeed seen in
Figures 3D and 4D. On the other hand, in the MM82-2
model a substantially larger fraction of initial surface area
resides on intermediate-size SACs, say with 200< l< 600;
and that is also where most of the SAC volume resides.
Hence, early fast hydrolysis of small SACs, with a monomer
fraction much less than that of the MM82-1 model, leads to
a much smaller decline in Fa.

Smaller SACs always present more accessible surface
area compared to larger SACs, given the same amount
of substrate volume contained. As a result, the hydrolysis
rate, which is roughly proportional to accessible surface
area as we discussed before, of smaller SACs is higher
than that of larger SACs. In other words, smaller SACs
are easier to be hydrolyzed. The above analysis suggests
that the early fast hydrolysis of easily solubilizable
small SACs leads to the decline in the overall accessi-
bility fraction, and is thus likely the main cause for an
additional morphology-dependent decline in cellulose
hydrolysis rate (in addition to that caused by steric
accessibility obstruction of inner cellulose material). The
random morphology SAC size distribution essentially
determines the existence and fraction of these small
SACs, and thus the extent of this further hydrolysis rate
decline.

It has been proposed in previous studies that cellulose
material contains two types of cellulose fractions that differ
distinctly in their susceptibility to cellulase enzymatic attack.
The basic idea here is that some types of, for example,
amorphous, cellulose are easier to hydrolyze and other types,
of, say, highly crystalline cellulose, are harder to hydrolyze
Zhou et al.: Cellulose Hydrolysis in Evolving Substrate Morphologies 11
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A(Gonzalez et al., 1989; Nidetzky and Steiner, 1993; Scheiding
et al., 1984). Thus, if a (hypothetical) material contains
both a substantial ‘‘fast-hydrolyzing’’ and a substantial
‘‘slow-hydrolyzing’’ substrate fraction, the fast early hydro-
lysis of the ‘‘fast’’ substrate results in the decline in
hydrolysis rate at later times when only the ‘‘slow’’ substrate
fraction remains. This ‘‘two-substrate’’ hypothesis attributes
the difference of substrate reactivity specifically to the
differences in the crystallinity of the two hypothesized
fractions (Gonzalez et al., 1989; Nidetzky and Steiner, 1993;
Scheiding et al., 1984). However, this picture has not yet
been experimentally supported (Lynd et al., 2002). Although
the existence of two (or multiple) substrate fractions of
different reactivity within real pre-hydrolysis materials is
presently uncertain, our simulation results imply that there
do exist different hydrolysis rates among different substrate
fractions, which are differentiated simply by volume, surface
size and surface-to-volume ratios of their respective
accessible substrate compartments. The fact that most of
12 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009
the substrate surface in real cellulosic materials is indeed
comprised by internal surfaces (Zhang and Lynd, 2004),
strongly suggests that this proposed ‘‘fractionation of
substrate reactivity by geometry’’ may in fact be a ubiquitous
feature of these materials.
Enzyme Concentration Scale-Up

The E1 enzyme set used above corresponds to a low-enzyme
limit. It is speculated that the amount of cellulase required to
achieve reasonable hydrolysis rate for real applications can
be substantial (Lynd et al., 2002). Specifically, Mandels
(1985) estimated that for T. Reesei cellulase system, 3% by
mass of the initial amount of cellulose is required. Here, we
have examined the cellulose enzymatic hydrolysis process in
a mimic industrial environment by using the E200 enzyme
set, with a 200-fold increase in concentrations in relative to
the E1 set.
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The corresponding results for the E200 enzyme system

shown in Figure 4 are qualitatively very similar to those
shown in Figure 3, except for the overall, approximately
100-fold reduction in time scales already discussed. Note
that the reaction speeds should scale exactly linearly with
enzyme concentrations as long as the enzyme-substrate
system remains in the low-enzyme limit. However, the E200
system is already in the intermediate-to-high enzyme regime
where the enzymes compete for available substrate sites,
rather than substrate sites competing for enzymes. Con-
sequently, the scale up in the reaction speed in going from E1
to E200 is neither exactly linear nor is it the same in all the
four model on all time scales.

An analysis of the initial enzyme adsorption equilibrium
shows that the free N and L site concentrations decrease
from 99% in E1 to around 50% in E200, that is, almost
twofold, relative to the total N and L site concentrations. On
the other hand, the adsorbed enzyme fractions do not
change much for the exo-acting enzymes, CBH1 and CBH2,
and decrease from 53% in E1 to 37% in E200 for the endo-
acting EG1. As a result, the initial concentration of ES
complex, and hence the initial enzymatic cutting rates, show
a 200-fold scale-up for CBH1,2 and a 139-fold scale-up for
EG1 in E200 in relative to in E1, provided that the reaction
rate coefficients remain unchanged.

The depression of Grel in the MM82-1 model is somewhat
more pronounced in the E200 system. A weak and brief Grel-
depression is now also seen in the Gaussian-distributed
MM82-2 model in Figure 4C. Both of these results suggests
that higher enzyme concentrations tend to favor hydrolysis
slow-down behavior. This is probably due to greater
cooperativity between endo- and exo-enzymes under high
enzyme concentrations, consistent with experimental
studies (Nidetzky et al., 1994; Woodward et al., 1988). As
we can see, both the absolute and relative hydrolysis rate are
much higher in the E200 system after the initial rapid rise,
compared to the E1 system, as shown in Figures 4B and C
and 3B and C. Thus, a much faster consumption of the
relatively smaller sized SACs can be expected in the E200
system. This leads to a steeper decline in the supply of
accessible substrate sites during the initial high-rate
hydrolysis stage, and consequently the deeper decline in
the hydrolysis rate.

For industrial applications, there is of course always a
trade-off between the cost of enzyme added and the benefit
from better performance of the operation using more
enzymes. To explore possible performance optimizing
applications of our modeling approach, we have also
simulated, in addition to the E1 and E200 systems, an
enzyme system, labeled E200/50, where only EG1 is
increased 200-fold, but CBH1,2 are increased only 50-fold.
The 90% conversion time in this E200/50 system differs
by less than 1% from that in the E200 system. Thus
from an economic point of view, one should never use
the E200 enzyme system in an industrial application,
since lower enzyme usage in E200/50 gives the same
performance.
uthor Proof
While the E200/50 system’s enzyme composition deviates

from the naturally occurring composition found in living
microbial cells, this does not necessarily mean that the
natural composition is not at optimum under in vivo
conditions. It is possible that the enzymatic activities
exhibited in vivo are different from technologically relevant
in vitro environments, and that they may be subject to
regulation by the cells. Thus, it is quite possible that
substantial improvements of hydrolysis cost/performance
under technologically relevant in vitro conditions can be
achieved by our modeling approach, even for enzyme
systems that have already been optimized, by nature, for in
vivo performance. If process operation and economic
parameters are available our modeling framework can
provide a useful tool for a more detailed process opti-
mization and design, by allowing us to perform systematic
computational searches of parameter space for optimal
processes and enzyme utilization. This will be the focus of
future work.
Conclusions

We have simulated the enzymatic hydrolysis of solid
cellulosic biomass within a general functional-based
modeling framework which incorporates both the hydro-
lytic evolution of the substrate morphology and the effect
of the morphology on the hydrolysis kinetics into a
consistent surface layer ablation rate equation formalism.
This surface layer ablation approach explicitly describes
the interplay between hydrolysis kinetics and substrate
morphology by treating kinetics and morphology on an
equal footing.

An essential feature of the surface layer ablation
formalism is its ability to capture the effect of random
spatial inhomogeneity in the substrate morphology, which is
invariably present in all as-grown or pre-treated cellulosic
substrates. Substrate randomness includes, but is not limited
to, random distributions of enzyme-accessible internal
surface areas associated with randomly sized SACs in the
substrate morphology; random spatial distributions of non-
cellulosic contaminants within SACs; and/or random spatial
distributions of the glucan chain degree of polymerization;
random spatial distributions of the degree of chain ordering;
and random distributions of hydrolysis time scales resulting
from all the foregoing random spatial inhomogeneities of
the substrate. In the present work, we have limited ourselves
to an exploratory study of random geometry distributions
and, specifically, random distributions of the initial (pre-
hydrolysis) SAC sizes. Other types random-substrate effects
can readily be incorporated into the surface layer ablation
model.

The surface layer ablation model makes several robust,
experimentally testable predictions for the hydrolysis
kinetics. First, in all surface ablation models there exist
two distinct hydrolysis time scales: the short single-
Zhou et al.: Cellulose Hydrolysis in Evolving Substrate Morphologies 13
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outermost-layer ablation time and the much longer overall
hydrolysis time, required to achieve near-complete hydro-
lytic conversion. The short single-layer ablation time scale
should be observable during the early stages of hydrolytic
conversion: jdxV=dtj is predicted to exhibit an initial rapid
rise which is suddenly arrested when the outermost SAC
layer has been ablated. The existence of a much longer
hydrolytic conversion time scale is a direct, inevitable
consequence of the fact that the cellulosic substrate is a solid.
Thus access to the interior is obstructed by overlaying
material at the surface. At any given time, only a small
fraction of all chains, namely those exposed at the SAC
surfaces, are accessible. As a result, the full hydrolytic
conversion process cannot be described by single-layer chain
fragmentation models.

A second experimentally testable prediction of the surface
layer ablation models is a strong dependence of the overall
hydrolysis on the random substrate morphology. We have
shown that changes in the width and shape of a random
substrate morphology distribution will quantitatively and
qualitatively alter the overall hydrolysis kinetics. Two
substrates, with the same specific accessible internal surface
area and the same degree of polymerization, subjected to
the same hydrolytic enzyme system with the same rate
coefficients, can exhibit vastly different hydrolytic conver-
sion times, depending upon the widths and shapes of their
respective morphology distributions. Cellulosic substrates
are differentiated, and should therefore be classified, not
only according to their ‘‘average’’ macroscopic substrate
parameters, such as internal surface area, enzyme accessi-
bility fraction and degree of polymerization (Zhang and
Lynd, 2004); but also, and equally importantly, according to
their random morphology distribution characteristics.
We have proposed here that substrate morphology
heterogeneity (i.e., a sufficiently wide SAC size distribution)
can contribute, in addition to substrate solid structural
heterogeneity (i.e., steric obstruction of enzyme accessi-
bility), to a hydrolysis slow-down. In real substrates, these
substrate effects could be operational in combination with
others, such as product- and/or substrate-induced enzyme
deactivation, in bringing about the observed hydrolysis
slow-down phenomena.

There are several experimental approaches which
could both provide a more detailed quantitative validation
of our proposed morphology-based hydrolysis modeling
approach; and help correlate observed hydrolysis kinetics
with mesoscopic substrate morphology. Firstly, it would be
of considerable interest to perform systematic experiments
to measure the hydrolytic evolution of critical substrate
and hydrolysis parameters, such as the accessibility fraction
Fa and the surfaces-exposed (or, failing that, sample-
averaged) degree of polymerization, as functions of time on
well-characterized cellulosic substrates, while the substrate is
undergoing hydrolytic conversion. Such time-dependent
results for the accessibility fraction Fa and DP could
be directly compared to model predictions, such as those
shown in Figures 3 and 4, and they would provide a more
14 Biotechnology and Bioengineering, Vol. xxx, No. xxx, 2009
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stringent test of the model, as well as further constraints on
the model parameterization.

Secondly, as discussed in our companion article I,
the kinetically relevant morphology characteristics of
cellulosic substrates, the SAC sizes, are defined on
mesoscopic, that is, 10–1,000 nm length scales. Yet, little
is presently known experimentally about the mesoscopic
structure of these materials. It would therefore be of
considerable interest to actually image and map out the SAC
surfaces whose existence we have postulated here on
geometrical grounds. As explained in I (in the sub-section
on Substrate Morphology and Enzyme Accessibility), this
might be achieved by decorating SAC surfaces or SAC-
bounding SAVs, with a microscopically detectable marker
(including, for example, gold-conjugated cellulases for
electron microscopy; or fluorescently tagged cellulase
carbon-binding domains or cellulase-sized fluorescent
nanodots for confocal microscopy). If such decoration
imaging experiments could be performed on substrate
samples extracted at different stages of hydrolytic conver-
sion, they would allow us to track and relate the morphology
evolution to the macroscopically observed hydrolysis
kinetics.

We cannot assess the technical feasibility of such
a decoration imaging approach at the present time.
However, if feasible, such experiments, in combination
with morphology-based modeling would result in a more
detailed understanding of the hydrolytic conversion process
at mesoscopic length scales.
Nomenclature
BV,s
 molar volume prefactor, � CscV;s
DxV
 ls-density distribution function of xV,s
Gsð‘Þ
 concentration of G‘ exposed on class-s SAC surfaces, mM,

� CsHsð‘Þ

PxM
 ls-density distribution function of xM,s/xM
Rn,s
 production rate of type-n site, mM/min, � CsVn;s
Rs
 negative rate of monomer loss (Rs < 0) into solution, mM/min
xS;s
 concentration of dissolved G1 monomers from class-s SACs, mM
xSðkÞ
 concentration of dissolved G1 monomers contained in dissolved

oligomer Gk from all class SACs, mM
Greek Symbols
Gm,s
 enzyme cutting rate factors defined by Equations (19)–(21)
Grel
 relative hydrolysis rate, � �dxV=dt=xV
Abbreviations
MM
 ‘‘Multiple-layer, Multiple-geometry’’ model
MM82-1
 the MM model with uniform distribution of monomer

concentration per geometry class, (i.e., js
ðoÞ ¼ 1=82 8 s)
MM82-2
 the MM model with Gaussian distribution of monomer

concentration per geometry class through Equation (40)



MS
 ‘‘Multiple-layer, Single-geometry’’ model
SS
 ‘‘Single-layer, Single-geometry’’ model
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