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ABSTRACT: We present a time-scale analysis for the enzy-
matic hydrolysis of solid cellulosic substrates, based on our
recently developed kinetic model (Zhou et al., 2009a, Bio-
technol Bioeng 104:261–274; Zhou et al., 2009b, Biotechnol
Bioeng 104:275–289) which incorporates both enzymatic
chain fragmentation and hydrolytic time evolution of the
solid substrate morphology. Analytical order-of-magnitude
estimates of the relevant single-layer chain depolymerization
times are first discussed. These time-scale estimates for pure
and mixed enzyme systems can be employed to calculate the
degree of synergy between endo- and exo-acting enzymes in a
mixed enzyme system. By the way of a quasi-steady-state
approximation which allows for a greatly simplified analy-
tical solution of the model, we also explain the origin and
give order-of-magnitude estimates of the two characteristic
hydrolysis time scales which arise in this model when the
solid substrate morphology is taken into account. These
analytically derived time-scale relations explain how the
embedding of cellulose chains in a solid substrate acts as
a crucial rate-limiting factor and results in a substantial
slowing down of the hydrolytic conversion process, com-
pared to a hypothetical substrate of immediately enzyme-
accessible, isolated chains. The analytical time-scale results
are verified by numerical simulations and compared to
experimental observations.
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Introduction

The conversion of cellulosic biomass to biofuel has the
potential to replace a substantial amount of fossil
transportation fuel in the foreseeable future, because of

the availability of the large quantities of plant biomass. To
realize this potential and to advance the development of
cost-effective and energy-efficient biofuel production
process, modeling and process simulation are critical. In
two recent companion articles, referred to as I (Zhou et al.,
2009a) and II (Zhou et al., 2009b), respectively, we have
developed a general framework for realistic modeling of
enzymatic hydrolysis kinetics for solid substrates being
fragmentized and solubilized by free (i.e., non-microbe-
bound) cellulases. Within this general framework, devel-
oped in I, we explicitly account for the hydrolytic evolution
of substrate morphology, which is driven by the solubiliza-
tion and fragmentation of cellulose chains exposed to
enzyme attack on internal and external solid substrate
surfaces. This framework goes beyond the most advanced
previous non-morphologic modeling efforts (Converse and
Optekar, 1993; Fenske et al., 1999; Okazaki andMoo-Young,
1978; Suga et al., 1975; Zhang and Lynd, 2006), which
consider cellulose chains only in complete isolation, without
their collective embedding and mutual obstruction in the
solid. The non-morphologic models can therefore only
describe the very earliest stage of the hydrolytic conversion
process. In II, we have applied our kinetic modeling
framework to a real cellulose hydrolysis experimental system
employing cellulase mixtures of the model cellulolytic
micro-organism Trichoderma reesei on the model cellulosic
substrate Avicel. The numerical simulation results are
consistent with previously reported experiments and can
reproduce some important experimental features, such as
the hydrolysis slow down. These numerical results thus
provide useful information, which can be further experi-
mentally tested, on the mechanism of the interaction
between enzymes and substrate during the hydrolytic
digestion.

In the present work, we carry out a theoretical analysis
based on the ‘‘five-site’’ model developed in II. Specifically,
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our analysis focuses on the time it takes to hydrolyze most or
a substantial fraction of the substrate. From an engineering
point of view, the time to complete solubilization is a critical
process indicator and it usually determines the size and
volume of the corresponding process equipment. We
show that the time scales estimated through our theoretical
analysis and certain analytical approximations to the model
of II are in good agreement with the numerical simulation
results, and the resulting simple formulae reveal critical
parameter dependencies of the process that have been
observed in experiments. We also present an expression for
the degree of synergy (DS) for mixed enzyme systems,
containing both exo- and endo-acting cellulases, based on
time scales only. Mathematical notation and abbreviations
used here are fully consistent with nomenclatures of articles
I and II. New symbols and abbreviations introduced here
are defined first in the context. All symbols and abbrevia-
tions that appear in this article are summarized in the
nomenclature.

Materials and Methods

We consider a substrate of pure cellulose in its solid form.
Other non-cellulosic components, such as lignin, hemi-
cellulose, and pectin, are assumed to have been either
digested, or removed/redistributed, in a separate pre-
treatment process, such that they no longer obstruct the
cellulose hydrolysis (e.g., Avicel, filter paper). These
substrates are characterized by different degrees of poly-
merization (DP) and different fractions ðFaÞ of b(1,4)-
glucosidic bonds surface accessible to cellulase. For instance,
typical Avicel has a DP value around 300 and Fa of 0.006
(Zhang and Lynd, 2004). We also assume initial chain
lengths ‘, that is, an initial DP-value, satisfying the long
chain limit (LCL) assumption, ‘ ¼ DPðoÞ � ‘S, where ‘S is
the minimum insoluble glucan chain length of typically 4–7
monomers (Stalbrand et al., 1998). As in II, we use ‘S ¼ 7 for
all numerical calculations. All calculations reported here are
based on the T. reesei three-enzyme system, comprising two
exoglucanases, cellobiohydrolases CBH1 and CBH2, and an
endoglucanase EG1 (Goyal et al., 1991). Similar enzyme
systems can be found in other aerobic fungi and bacteria,
such as other Trichoderma species and Thermobifida fusca.
All enzyme kinetics and substrate model parameters used
here are the same as given in Table I of II, unless stated
otherwise. Molar concentrations of the ‘‘E1’’ system defined
in II are denoted here by [EG1](o), [CBH1](o), and
[CBH2](o).

The mathematical representation of our general modeling
framework (in both a ‘‘site number’’ and a ‘‘chain number’’
formalism), and its applications to the ‘‘five-site’’ model
are given in the model development section and in the
Supporting Information (SI) Sections A–H of I and in the SI
Sections A–C of II, respectively. Central concepts in this
formalism are (i) the characterization of all b(1,4) glucosidic
bonds along the cellulose chain in terms of a ‘‘site type’’;

(ii) the sub-division of the solid substrate into the so-called
‘‘smallest accessible compartments’’ (SACs); (iii) the sub-
division of SACs into ‘‘layers’’ of successive hydrolytic
ablation; and (iv) the modeling of a heterogeneous substrate
morphology in terms of SAC ‘‘geometry classes,’’ labeled by
a class index s and quantified by continuous time-evolving
SAC size variables, ls(t).

Our time-scale analysis is based on cutting rate factors
GN;s , GX;s , and GY;s , constructed in II, SI Section A,
from enzyme-bond cutting rate coefficients ðgÞ, enzyme–
substrate adsorption coefficients (L), total enzyme concen-
trations (u), and molar concentrations of surface-exposed
bond sites (xM,s), and chain ends (xL,s). GN;s dt, GX;s dt, and
GY;s dt denote the probabilities of a site of type N, X, and Y,
respectively, to be cut during infinitesimal dt, by any enzyme
capable of attacking this site type, for sites exposed on class
s ‘‘smallest accessible compartment’’ (SAC) surfaces. They
thus provide a much more direct indication, compared
to the enzyme cutting rate coefficients, of how fast the
hydrolysis process will take place. For the purpose of
order-of-magnitude estimates, we treat GN, GX, and GY as
time-independent and set each to its initial value at the
start of hydrolysis (t¼ t(o)¼ 0), from Eq. (22) in SI Section
A of II.

Results and Discussion

Depolymerization Time of Decoupled Cellulose Chains

We will first discuss the time scales for hydrolyzing isolated
chains by different types of enzymes and enzyme mixtures
in the absence of solid/morphology effects. Thus, xM ¼ xV.
The geometry class index s is therefore dropped from our
notation in this section.

Pure Endo- and Pure Exo-Acting Enzymes

The single-chain hydrolysis times to depolymerize from an
initial chain length ‘ ¼ DPðoÞ to an average terminal length
scale ‘0 can be estimated from simple ‘‘scaling arguments,’’
as discussed in SI Section A for pure endo-acting enzyme
systems, by

tðnÞ � tðnÞ ‘ ¼ DPðoÞj‘0 ¼ ‘S
2

� �
� 2

GN‘S
(1)

and, as discussed in SI Section B for pure exo-acting enzyme
systems, by

tðxÞ � tðxÞð‘ ¼ DPðoÞj‘0 ¼ kXÞ � DPðoÞ � kX
kXGX þ kYGY

� ðDPðoÞ � kXÞtð1xÞ (2)

From the depolymerization time-scale arguments in SI
Section A, it is easy to see that pure endo fragmentation
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kinetics is essentially independent not only of the initial
chain-length distribution shape but also of DP(o). This is
also demonstrated by the numerical results in Table I,
for several chain length distribution shapes, defined in
Eqs. (35)–(37) of II, SI Section B. Note that indeed the 50%
or 90% conversion times change by <2% when DP(o) is
increased from 400 to 2,000, and by <1% if the initial
distribution shape is changed from delta-function to
Gaussian to Global Poisson (GP). Evidently, in the LCL,
neither the initial DP nor the initial distribution shape
matters. These time-scale estimation results thus provide
a simple explanation for the simulation results shown in
Figure 1 of II. The estimates of tðnÞðDPðoÞj‘0 ¼ ‘S=2Þ are also
quantitatively in good agreement with the 99% conversion
time results obtained from full five-site model numerical
simulations, as shown in Table I.

By contrast, in a pure exo-acting enzyme system, the
depolymerization time is sensitive to both the average initial
chain length, DP(o), and to the shape of the initial chain
length distribution. In the case of the Gaussian and delta-
function initial chain length distributions, most chains have
about (or exactly) the same initial length ‘ � DPðoÞ and they
all complete their ‘‘race to depolymerization’’ in about the
same amount of time. On the other hand, in the case of a GP
distribution of the same DP(o), some chains are initially
already much shorter than the average ‘ (�DP(o)), and just
as many are much longer. As a consequence of the linear ‘-
dependence of tðxÞð‘j‘0Þ, these long chains with ‘ > DPðoÞ

are the ‘‘late runners in the race’’ (i.e., the runners with
the longest distance to go); and the latest runners determine
the overall duration of the race. Hence, the time to achieve,
say, 90% hydrolytic conversion, for the same DP(o), is
significantly longer for the Poisson than for the Gaussian or
delta-function initial distributions, as seen in Table II. For
the same reason, the 90% conversion time for the same
distribution shape varies noticeably with DP(o): it increases
about fourfold between DP(o)¼ 400 and DP(o)¼ 2,000,
roughly consistent with the linear ‘-dependence of tðxÞð‘j‘0Þ.
The estimated values of tðxÞðDPðoÞj‘0 ¼ kXÞ are again in
good agreement with the 99%-conversion time results from

the full five-site model simulations for delta-function and
Gaussian chains length distributions, as seen in Table II.

Mixed Endo–Exo-Acting Enzyme Systems

The foregoing order-of-magnitude depolymerization time
can also be applied to gain a qualitative understanding of
the competition (and cooperation) between endo- and
exo-acting enzymes in a mixed enzyme system. Specifically,
we can develop a ‘‘cross-over’’ criterion for the conditions
under which a mixed endo–exo system will cross-over
from endo-dominated to exo-dominated behavior. There
are then three parameter regions, defined in terms of the
relative magnitudes of the full endo-depolymerization time,
tðnÞðDPðoÞj‘0 ¼ ‘S=2Þ, the full exo-depolymerization time,
tðxÞðDPðoÞj‘0 ¼ kXÞ, and the single exo-cut time scale tð1xÞ:

Region I : tð1xÞ > tðnÞ;

hydrolytic completion time � tðnÞ
(3)

Region II : tðxÞ > tðnÞ � tð1xÞ;

hydrolytic completion time � tðnxÞ
(4)

Region III : tðnÞ � tðxÞ;

hydrolytic completion time � tðxÞ
(5)

where

tðnxÞ � 2

½GNðkXGX þ kYGYÞ�1=2
(6)

In Region I (III), the ‘‘endo-limit’’ (‘‘exo-limit’’), the entire
hydrolytic conversion proceeds essentially as in a pure
endo-system (exo-system). In the intermediate Region II,
however, exo-contribution to depolymerization is initially
small but will gradually increase and finally dominate the

Table I. Depolymerization time-scale estimates t(n) and conversion time

simulation results t(. . .–conv) (in units of 104min) for the SS model and

50%, 90%, and 99% conversion, with pure endo-acting enzyme, [EG1](o)

from E1 enzyme system, and simulations for delta-function, Gaussian, and

GP chain length distributions.

DP(o)¼ 100 DP(o)¼ 400 DP(o)¼ 2,000

Delta, t(0.50–conv) 0.78 0.81 0.82

Delta, t(0.90–conv) 1.13 1.16 1.17

Delta, t(0.99–conv) 1.20 1.23 1.24

Gauss, t(0.50–conv) 0.78 0.81 0.82

Gauss, t(0.90–conv) 1.13 1.16 1.17

Gauss, t(0.99–conv) 1.20 1.23 1.24

GP, t(0.50–conv) 0.78 0.81 0.83

GP, t(0.90–conv) 1.12 1.16 1.18

GP, t(0.99–conv) 1.20 1.23 1.25

t(n) (DP(o)j3.5) 1.22 1.23 1.23

Table II. Depolymerization time-scale estimates t(x) and conversion time

simulation results t(. . .–conv) (in units of 104min) for the SS model and

50%, 90%, and 99% conversion, with pure exo-acting enzyme combination,

[CBH1,2](o) from E1 ensyme system, and simulations for delta-function,

Gaussian, and GP chain length distributions.

DP(o)¼ 100 DP(o)¼ 400 DP(o)¼ 2,000

Delta, t(0.50–conv) 0.93 1.68 5.85

Delta, t(0.90–conv) 1.60 3.03 10.53

Delta, t(0.99–conv) 1.80 3.44 11.74

Gauss, t(0.50–conv) 0.90 1.69 5.86

Gauss, t(0.90–conv) 1.63 3.17 11.20

Gauss, t(0.99–conv) 1.90 3.92 11.43

GP, t(0.50–conv) 0.93 1.97 7.41

GP, t(0.90–conv) 2.10 5.38 22.59

GP, t(0.99–conv) 2.94 8.87 40.76

t(x) (DP(o)j2) 1.70 3.32 11.67
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hydrolysis. Thus, we can define a characteristic ‘‘cross-over’’
chain length ‘nx when the exo-cutting rate matches the endo-
cutting rate, from which tðnxÞ is then constructed, as shown
in SI Section C.

In Table III, we summarize time-scale and cross-over
length estimates, and the simulation results for different
mixed enzyme systems, with delta-function initial chain-
length distribution. The E1 mixed enzyme system is in the
intermediate Region II. The time-scale estimates tðnxÞ are in
order-of-magnitude agreement with the simulation results
for the 99%-conversion times �6,000min. With the other
enzyme systems in Table III, the parameter region changes
from Region III to II to I, as the ratio between endo- and exo-
enzyme concentrations, and DP(o) changes. The cross-over
length decreases as DP(o) increases or as the endo/exo-
enzyme concentration ratio decreases. This can be easily
understood: increasing DP(o) reduces the initial concentra-
tion of chain ends. Thus, it takes longer for endo-enzymes to
produce enough new chains ends for the exo-enzymes to
attack, which leads to a larger ‘nx. The same reasoning
applies when the relative concentration of endo-enzyme is
decreased.

Synergy of Endo–Exo-Acting Enzyme Mixtures

In neither Region I nor III of the mixed enzyme systems will
there be any significant synergy between endo- and exo-
activity (Zhang and Lynd, 2006), since either one or the
other is completely negligible in terms of producing new
chain ends and/or soluble chain fragments. In Region II, the
cooperative endo–exo hydrolysis kinetics is dominated by
endo-activity during the initial stage, until the average chain
length has been reduced to ‘nx; during the final stage
thereafter, the kinetics is dominated by exo-activity. One
important feature of this two-stage kinetics is the fact that

during either stage the dominant, that is, the fastest, of
the two enzymatic activities determines the duration
of that stage, since both enzyme activities are of course
working ‘‘in parallel’’ during either stage. Hence, the total
cooperative hydrolysis time tðnxÞ can be significantly less
than the hydrolysis times one would obtain with either pure
endo- or pure exo-hydrolysis acting in isolation. This, in
essence, is the origin of the hydrolysis ‘‘synergy.’’

As derived in SI Section D, the degree of synergy (DS) can
be roughly estimated by

DS ¼ 1=tðnxÞ

1=tðnÞ þ 1=tðxÞ
(7)

From Table IV, we can see that the estimated DS, for a given
enzyme mixture, is in good agreement with the simulation
result for the maximum DS that can be attained by this
enzyme system along the hydrolytic conversion up to near-
completion. The five-site model numerical simulation
results of DS(t) are based on the original definition, Eq.
(18) in SI Section D. The time-scale-estimated (TSE) results
from Table IV are also consistent with experimentally
observed maximumDS values between 1.7 and 3.5 for Avicel
substrates, using cellulases from Trichoderma species (Baker
et al., 1998; Beldman et al., 1988; Hoshino et al., 1997; Kim
et al., 1992; Medve et al., 1998; Woodward et al., 1988a).
A detailed comparison with real experimental reports is
provided in a later section.

Cellulose Hydrolysis in Solid Substrates:
Initial Outermost Layer

The foregoing time-scale analysis of decoupled cellulose
chains should be applicable in describing the short-time
chain fragmentation kinetics at the initially enzyme-
accessible outermost SAC layer, for any morphological
model of the solid substrate, since there is no obstruction of
access to the outermost layer. In Table V, we have estimated
the initial outermost layer depolymerization times, and
compared to numerical simulations, for theMSmorphology
model, defined in II. The simulation result, t(outer), is
defined as the time to complete the initial solubilization of a
fraction x

ðoÞ
M ¼ F

ðoÞ
a x

ðoÞ
V of the initial total solid monomer

Table III. Depolymerization time-scale estimates t(. . .) (TSE) and

conversion time simulation results t(. . .–conv) (in units of 104min) for the

SS model with mixed enzymes, using original (A) and variants of (B and C)

E1 enzyme concentrations, and simulation for delta-function initial chain

length distribution.

DP(o)¼ 100 DP(o)¼ 400 DP(o)¼ 2,000

(A) [EG1](o), [CBH1,2](o)

t(0.99–conv) 0.61 0.63 0.64

TSE tðnxÞ ¼ 0.56 tðnxÞ ¼ 0.38 tðnxÞ ¼ 0.32

‘nx 15.4 22.6 27.1

Region II II II

(B) 1% [EG1](o), [CBH1,2](o)

t(0.99–conv) 1.75 2.92 3.65

TSE tðxÞ ¼ 1.70 tðxÞ ¼ 3.32/tðnxÞ ¼ 3.81 tðnxÞ ¼ 3.18

‘nx 153.6 225.9 271.3

Region III III/II II

(C) [EG1](o), 1% [CBH1,2](o)

t(0.99–conv) 1.19 1.21 1.24

TSE tðnÞ ¼ 1.21 tðnÞ ¼ 1.22 tðnÞ ¼ 1.23

‘nx 4.8 7.1 8.6

Region I I I

Table IV. Degree of synergy DS from time-scale estimates (DSTSE) [SI Eq. 7]

and from simulation results, DS(t) at t¼ 3,000min and at time of maximal

DS, tDS-max, [SI Eq. 18], for the SS model, with simulation for delta-function

initial chain length distribution, DP(o)¼ 300, using original and variants of

the E1 enzyme concentrations.

[EG1](o),

[CBH1,2](o)
50% [EG1](o),

[CBH1,2](o)
[EG1](o),

50% [CBH1,2](o)

DSTSE 2.36 2.63 1.92

DS (3,000min) 1.86 1.97 1.57

DS (tDS-max) 1.96 2.26 1.60

tDS–max 6,000min 8,520min 7,800min
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concentration x
ðoÞ
V . This is also in close agreement with the

time of arrest in the initial rise of jdxV=dtj, as shown for both
MS and MM models in II. For the E1 system, the MS
model is endo-limited (Region I) and its estimated endo-
depolymerization time is tðnÞ � 139min, which agrees with,
and explains, the very short initial depolymerization time in
the MS model simulation, tðouterÞ � 180min. Table V also
shows that the time-scale estimates for a wide range of
enzyme concentrations are quite consistent with the MS
model simulation results for the outermost layer depoly-
merization times. We have also verified that, consistent with
II, MS and MM models will give rise to the same outermost
layer depolymerization time, for identical enzyme para-
meters and initial values F

ðoÞ
a , x

ðoÞ
V , and DP(o).

Quasi-Steady-State Approximation for Long
Time Scales

A crucial feature of the morphology-based surface ablation
models (MS and MM) is the fact that the overall hydrolytic
conversion time scale, denoted by t(s) below, can be orders
of magnitude longer than the initial outermost layer
depolymerization time scale (t(n) or t(nx)). The latter, as
discussed, is adequately described by the non-morphological
isolated chain picture. However, to understand the much
longer hydrolysis time scale t(s), we have to take into account
the effects of steric obstruction in the solid substrate
morphology. As described in detail in SI Section E, the
order-of-magnitude separation of time scales, tðsÞ � tðnÞ;
tðnxÞ, can be exploited by treating the long-time behavior in a
quasi-steady-state (QSS) approximation.

One important QSS result is a simple approximate
relation between relative hydrolysis rate Grel � ð1=xVÞj
dxV=dtj, and (geometry-averaged) accessibility fraction Fa:

Grel ffi 1

tðlÞ
Fa (8)

which holds regardless of morphology details. Here t(l) is an
effective ‘‘single-layer ablation time’’ scale, which is of the
same order as t(n) and given by Eq. (27) of SI Section E.

This result is easy to understand. The ablation process
happens at the SAC surfaces and, all other things being
equal, its total rate must be proportional to the total surface

area. Hence, its relative hydrolysis rate must be proportional
to the relative surface area which is, by definition, Fa. This
provides a simple explanation for the close correlation
between Grel and Fa, as demonstrated already in the
simulation results Figure 3C and D of II: the Grel-curves
in Figure 3C should track Fa in Figure 3D, with an
approximately constant ratio Grel=Fa ¼ 1=tðlÞ that is
independent of time and independent of the underlying
shape of the SAC size morphology distributionJðlðoÞs Þ. This
is of course only approximately obeyed by the full model
simulation results, due to the approximations in the QSS
approach and due to the neglect of the (weak) time-
dependence of t(l). However, the general trends in the
simulation results are correctly reproduced by Eq. (8).

QSS Time-Scale Analysis for the MS Model

Applying the general QSS solution in SI Section E to the MS
model (with index s ¼ 1 � MMD suppressed here), we can
solve SI Eq. (28) for the hydrolytic conversion time tðsÞ

where a fraction 1� e of the substrate has been solubilized:

tðsÞ ffi tðlÞlðoÞð1� "1=dAÞ ffi tðlÞ
dAð1� "1=dAÞ

F
ðoÞ
a

(9)

here, lðoÞ ffi dA=F
ðoÞ
a and F

ðoÞ
a denotes the initial accessibility

fraction. Using F
ðoÞ
a ¼ 0:006 and dA¼ 2, we get tðsÞ �

12; 100min for 50% conversion (e¼ 0.5) and tðsÞ �
37; 100min for 99% conversion (e¼ 0.01). This agrees
quite well with the 50% and 99% conversion times of 10,700
and 28,000min, respectively, obtained from the full MS
model simulation, as shown in Table VI. From the table,
one can see that the time-scale estimations agree with the
simulations over a wide range of enzyme concentrations.
Quantitatively, Eq. (9) is likely an overestimate of the
hydrolysis time because it neglects the fact that GN, GX, and
GY are (weakly) increasing with time during hydrolysis.

If we compare the overall hydrolysis time-scale t(s) to the
MS model chain depolymerization time, estimated, for
example, by t(n), we get from Eqs. (1) and (9) for e! 0:

tðsÞ

tðnÞ
� dA

F
ðoÞ
a

ffi lðoÞ (10)

Table V. Initial outermost layer depolymerization time simulation results t(outer) (estimated from early

arrest in rise of jdxV/dtj) for MS/MM model, and time-scale estimates (TSE) t(. . .) (in units of 102min), with

simulation for delta-function initial chain length distribution, DP(o)¼ 300, F
ðoÞ
a ¼ 0:006, using original and

variants of E1 enzyme concentrations.

[EG1](o),

[CBH1,2](o)
1% [EG1](o),

[CBH1,2](o)
10% [EG1](o),

[CBH1,2](o)
[EG1](o),

10% [CBH1,2](o)
[EG1](o),

1% [CBH1,2](o)

t(outer) 1.76 25.02 7.69 1.90 1.94

TSE t(n)¼ 1.39 t(nx)¼ 31.92 t(nx)¼ 10.14 t(n)¼ 1.39 t(n)¼ 1.39

‘nx 3.1 30.5 9.6 0.9 0.3

Region I II II I I
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since t(l) and t(n) are of the same order of magnitude, that is,
tðlÞ=tðnÞ � Oð1Þ, by Eqs. (1) and (27). This makes it explicit
that the order-of-magnitude separation of the two funda-
mental time scales in surface layer ablation models is
primarily controlled by just one single substrate parameter:
the accessibility fraction F

ðoÞ
a , or equivalently, by the number

of layers lðoÞ per SAC. Given that FðoÞ
a typically never exceeds

values of 10%, even in the ‘‘most accessible’’ substrate
materials (Zhang and Lynd, 2004), we must conclude that in
most cellulosic substrates, t(s) and t(n) are separated by at
least one order of magnitude, regardless of the precise values
of the enzymatic kinetics parameters. Crucially, by Eq. (9), it
is both substrate morphology, via l(o), and enzyme kinetics,
via t(l), which jointly determine the hydrolytic conversion
time.

QSS Time-Scale Analysis and Hydrolysis Slow Down in
MM Models

Hydrolysis slow down is commonly observed in enzymatic
conversion of solid cellulose, often after very short
conversion times (Yang et al., 2006; Zhang et al., 1999).
However, as noted in II and explained by the QSS analysis in
SI Section F, the relative hydrolysis rate GrelðtÞ always
increases during hydrolysis in the MS model where all SACs
are assumed to be of the same size lðtÞ. A significant
hydrolysis slow down, with decreasing GrelðtÞ, can only
be observed in MM models with very broad SAC size
morphology distributions.

To investigate this further within the QSS framework,
we consider here first the simplest possible MM model:
a bi-modal morphology distribution, comprising only
two distinct SAC sizes, that is, s ¼ 1; 2 � MMD. While
‘‘two-substrate models’’ have previously been invoked on
phenomenological grounds to explain the hydrolysis slow
down (Gonzalez et al., 1989; Nidetzky and Steiner, 1993;
Scheiding et al., 1984), the bi-modal model provides an
explicit realization of the ‘‘two substrates’’ in terms of a
mesoscopic characterization of substrate morphology. As
shown in SI Section F, SI Figure 1, hydrolysis slow-down
behavior is found in this model if we assume sufficiently
disparate initial SAC sizes, l

ðoÞ
1 � l

ðoÞ
2 , with comparable

initial molar monomer contents, x
ðoÞ
V;1 and x

ðoÞ
V;2, for the two

SAC types s¼ 1, 2. (This is also verified by solving the full
surface layer ablation model without QSS for the bi-modal
distribution.) It can also be easily seen that the SAC size
morphology distributions will substantially affect the time
scale over which Grel exhibits decline and consequently
the extent of the hydrolysis slow down. Qualitatively, the
same behavior can be found for MM models with, for
example, a uniform continuous initial SAC size distribution,
over some lðoÞs -range from L

ðoÞ
0 and L

ðoÞ
1 . For L

ðoÞ
0 � L

ðoÞ
1

the MM model does indeed exhibit hydrolysis slow down:
an initial decline, followed by a minimum, in GrelðtÞ. On
the other hand, for L

ðoÞ
0 ! L

ðoÞ
1 , or for a narrow Gaussian

initial SAC size distribution, the morphology distribution
approaches a delta-function, that is, an MS model; the
hydrolysis slow down is suppressed; and GrelðtÞ rises
monotonically, as in the MS model. This is illustrated by
the results in SI Figure 2, discussed further in SI Section G.
The foregoing comparative MM model results further
support the notion that hydrolysis slow down may be
partially attributed to substrate morphology heterogeneity,
that is, to a sufficiently wide SAC size morphology
distribution, as proposed in II.

General QSS results for the MM model kinetics are given
in SI Section G, using either Eqs. (30) and (31) or Eqs. (38)
and (39). For the special case of the uniform distribution
model, an analytic solution can be achieved and is provided.
For a fast and effective estimation of general MM model
time scales, we can replace the MM model by a
corresponding MS model, using Eq. (9) with a lðoÞðMSÞ
equal to the mean lðoÞs , weighted with the MM model
morphology distribution JðlðoÞs Þ=MJ, as defined in SI
Section E. In Table VII, such approximate MS-based time-
scale estimates are compared to full MM model simulation
results for uniform and Gaussian SAC size morphology
distributions. For the MM model with uniform SAC size
morphology distribution, its approximating MS model
has lðoÞðMSÞ ¼ 830 and F

ðoÞ
a ðMSÞ ¼ 0:0024; and for the

Gaussian SAC size morphology distribution, lðoÞðMSÞ ¼
458 and F

ðoÞ
a ðMSÞ ¼ 0:0044; whereas F

ðoÞ
a ðMMÞ ¼ 0:006 in

bothMMmodels. TheMS t(s)-results in Table VII agree very
well with the MM simulation results for a wide range of
enzyme concentrations. Hence, Eq. (9) is more generally
valid, even for MM models, if l(o) is replaced by an
appropriately weighted mean of the initial SAC sizes lðoÞs .

Table VI. Conversion time-scale estimates t(s) and simulation results t(. . .–conv) (in units of 104min) for

50% and 99% conversion in the MS model, with simulation for delta-function initial chain length

distribution, DP(o)¼ 300, F
ðoÞ
a ¼ 0:006, using original and variants of E1 enzyme concentrations.

[EG1](o),

[CBH1,2](o)
10% [EG1](o),

[CBH1,2](o)
[EG1](o),

10% [CBH1,2](o)
[EG1](o),

1% [CBH1,2](o)

t(0.50–conv) 1.07 5.33 1.27 1.30

t(s) (0.50–conv) 1.21 4.58 1.44 1.47

t(0.99–conv) 2.80 14.50 3.27 3.33

t(s) (0.99–conv) 3.71 14.08 4.43 4.50

t(l) 0.012 0.047 0.015 0.015

Zhou et al.: Cellulose Hydrolysis in Evolving Substrate Morphologies 229

Biotechnology and Bioengineering



Comparisons With Experiments

In this section, we compare our time-scale analysis for
conversion times and DS with real experimental data from
the literature. Our cellulose hydrolysis model parameters
(in Table I of II) were originally extracted (Zhang and Lynd,
2006) from experiments by Beldman et al. (1987), Steiner
et al. (1988), and Tomme et al. (1988). For a meaningful
comparison, we have thus selected experiments that
measured conversion time and DS under experimental
settings, and in particular with enzymatic parameters, that
are similar to the foregoing ‘‘parameterization’’ experi-
ments. The selected experiments, included in Figure 1 and
Table VIII, used cell-free cellulases (i.e., endoglucanases
and exoglucanases) from T. reesei (or Trichoderma viride),
either naturally mixed or purified using protein assays, to
hydrolyze model microcrystalline cellulose Avicel in 50mM
sodium acetate buffer (pH 4.8) at 508C, unless stated
otherwise. If a cellulase enzyme mixture was used in the
experiment, we assumed typical weight fractions of 0.6,
0.2, and 0.12 for CBH1, CBH2, and EG1, respectively.
Commonly used Avicel models include Avicel PH105,
PH101, and PH102. Despite their major difference in the
average particle size, that is, 20, 50, and 100mm, respectively,
their cellulose content, DP, crystallinity index, enzyme
adsorption, and surface accessible area are almost same
(Sangseethong et al., 1998). Although there are some dif-
ferences in their performance of hydrolysis (Fig. 1 of
Sangseethong et al., 1998), we treat them as the same and use
DP¼ 300 and Fa ¼ 0:006 to represent their characteristics.
Since we do not know the SAC distributions within these
real cellulosic substrates, we compare to conversion time-
scale estimates using both the Gaussian (narrow) and
the uniform (wide) SAC distributions described in II.

Conversion Time-Scale Estimates for Experiments in
Yang et al. (2006)

Avicel PH101 20 g/L (Sigma, St. Louis, MO) and T. reesei
cellulase system Spezyme CP 4.1 g/L (60 FPU/g cellulose;

Genencor, Palo Alto, CA) were used in 40mL solution.
Hydrolysis conversion experimental results are extracted
from Table I of the article. As shown in Figure 1A,
conversion time-scale estimates from both Gaussian and
uniform SAC distributions are in good agreement with the
experiments in the short hydrolysis phase (i.e., <4 h).The
large discrepancy between estimates and experimental data
at longer times (i.e., 15 h) may be caused by the fact that
the study did not use b-glucosidases which hydrolyze
soluble oligomer sugars (such as cellobiose, a well-known
inhibitor of cellulase enzymes) into glucose, thus reduce
the inhibitory factor, while in our current modeling and
estimation, the product inhibition is ignored.

Conversion Time-Scale Estimates for Experiments in
Hong et al. (2007)

Avicel PH105 10 g/L (FMC Corp., Philadephia, PA) and
cellulase Spezyme CP 0.51 g/L (15 FPU cellulase/g Avicel;
Genencor, Palo Alto), together with 30 IU cellobiase/g
Avicel, were used in 400mL of 50mM citrate buffer (pH 4.8)
at 508C. Hydrolysis conversion experimental results are
extracted from Figure 4 of the article. The differences
between estimates and experiment at long times, as shown in
Figure 1B, are much less than those in Figure 1A, likely
because b-glucosidases were used in this study.

Conversion Time-Scale Estimates for Experiments
in Bommarius et al. (2008)

Avicel PH101 100 g/L (Fluka, St. Louis, MO) and cellulase
0.27 g/L (1.5U/8mL) from T. reesei ATCC 26921
(Celluclasts C2730; Sigma), together with 30U/8mL b-
glucosidase from almonds (G0395; Sigma), were used in
8mL of 50mM sodium acetate buffer (pH 5.0) at 508C.
Hydrolysis conversion experimental results are extracted
from Figure 11 of the article and compared to our estimates
in Figure 1C. In this study, the authors actually first tested
the amount of b-glucosidase needed to maximally reduce

Table VII. Conversion time-scale QSS estimates t(s) and simulation results t(. . .–conv) (in units of 104min) for 50% and 99% conversion.

[EG1](o), [CBH1,2](o) 10% [EG1](o), [CBH1,2](o) [EG1](o), 10% [CBH1,2](o) [EG1](o), 1% [CBH1,2](o)

(A) MM82-1 uniform morphology (SAC size) distribution

t(0.50–conv) 1.62 8.57 1.89 1.92

t(s) (0.50–conv) 2.18 9.97 2.48 2.51

t(0.99–conv) 8.29 46.01 9.37 9.50

t(s)(0.99–conv) 6.72 30.64 7.63 7.74

t(l) 0.009 0.041 0.011 0.011

(B) MM82-2 Gaussian morphology (SAC size) distribution

t(0.50–conv) 1.20 6.08 1.42 1.46

t(s)(0.50–conv) 1.46 5.98 1.70 1.73

t(0.99–conv) 4.57 24.60 5.25 5.33

t(s)(0.99–conv) 4.48 18.38 5.24 5.33

t(l) 0.011 0.044 0.013 0.013

Simulations are for MMmodel with uniform (A) or Gaussian (B) SAC size distributionJðlÞ, delta-function initial chain length distribution, DP(o)¼ 300,
F
ðoÞ
a ¼ 0:006, using original and variants of E1 enzyme concentrations. Time-scale estimates are for MS model with same parameters as corresponding MM

model, but with l(o)(MS) set to MM model mean of lðoÞs , weighted with JðlðoÞs Þ=MJ (see context for details).
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A

C

B

Figure 1. Estimates of conversion time-scale (t(s)) for real experiments in Yang et al. (2006), Hong et al. (2007), and Bommarius et al. (2008). ^ represents the experimental

results (averages if there are replicates).& represents the estimates of conversion time scale using the Gaussian SAC distribution.& represents the estimates of conversion time

scale using the Uniform SAC distribution.

Table VIII. Estimates of DS (DSTSE) for real experiments in Kim et al. (1994), Medve et al. (1998), and Woodward et al. (1988b).

Kim et al. (1994)

EndoI:ExoII 2:1 1:1 1:2

Exp. results 1.33 1.48 1.46

DSTSE 1 1.34 1.74

EndoII:ExoII 2:1 1:1 1:2

Exp. results 1.47 1.49 1.34

DSTSE 0.7 1.1 1.34

Medve et al. (1998)

CBHI:EGII 1:1

Exp. results 1.43

DSTSE 1.34

Woodward et al. (1988b)

EGII, CBHI, II 120, 75, 75mg/mL 64, 40, 40 5, 10, 5

Exp. results 1.2 1.37 2.03

DSTSE 1.31 1.35 1.86

CBHI¼ 140 EGII¼ 5 EGII¼ 10 EGII¼ 20 EGII¼ 40 EGII¼ 80 EGII¼ 140

Exp. results 1.28 1.2 1.42 1.18 1.1 0.92

DSTSE 2.25 2.28 2.04 1.66 1.27 1

Details are given in the context.
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the inhibition of soluble oligomers, mainly cellobiose. They
found that the total activity of b-glucosidase in the reaction
volume must be 20 times higher than that of cellulase (Fig. 5
of the article), which was then applied in all experiments.
As expected, our conversion time-scale estimation performs
the best with this experimental data set, showing good
agreement up to 60% conversion (see Fig. 1C).

There are of course many other factors, besides product
inhibition, that could slow down the cellulose hydrolysis,
such as enzyme degradation, inactive binding, and jamming
effects (Bommarius et al., 2008), which has not yet been
taken into account in our modeling, and thus estimation.
However, the general trends seen across Figure 1A–C
strongly suggest that our time-scale estimation works well
under the conditions for which it was constructed, that is, as
long as the underlying enzyme system remains fully intact
and operational, undegraded and uninhibited. As such, it is
notable that the predictions and estimations of the current
model are limited in capturing the full degree of hydrolysis
rate slow down that has been observed in experiments. This
limitation is due to the incomplete consideration of known
hydrolysis slow down causes in our model and other
possible unknown mechanisms that has not been discovered
or well characterized. The full understanding of the
hydrolysis slow down in a systematic way and solutions
to diminish such effects in the cellulose hydrolysis process
are certainly worth more research efforts.

DS Estimates for Experiments in Kim et al. (1994),
Medve et al. (1998), and Woodward et al. (1988b)

Kim et al. (1994) used Avicel PH101 10 g/L (FMC Corp.)
and Endo I, II, and Exo II, total 0.3mg/mL, isolated from a
commercial cellulase Meicelase TP60 from Trichoderrna
viride with molecular weight 52K, 60K, and 62K, respec-
tively, in 5mL solution. The specific enzyme activity for
Endo II is assumed here to be twice that of Endo I in our
estimation, as suggested by the experimental data in this
study. DS experimental results are extracted from Figure 5 of
the article, where the experimental data were measured after
24 h hydrolysis. Medve et al. (1998) used Avicel M2331 10 g/
L (Merck, Darmstadt, Germany) and CBH I and EG II, each
0.16mmol/g Avicel, purified from a commercial cellulase
Celluclast from T. reesei (Novo Nordisk, Bagsvaerd,
Denmark) in 2mL solution. DS experimental results are
extracted from Figure 3 of the article, and the average DS
over the time course of 50 h is used to represent the DS of
the reaction system. Woodward et al. (1988b) used
Avicel PH105 10 g/L (FMC Corp.) and CBH I, II, and EG
II (mg/mL), purified from T. reesei (Genencor, San
Francisco, CA), together with b-glucosidase from
Aspergillus niger (Sigma), in 5mL solution. DS experimental
results are extracted from Figures 2 and 4 of the article, and
the average DS over the time course of 7 h is used to
represent the DS of the reaction system. As shown in
Table VIII, our DS estimates are in reasonable agreement
with, and reproduce the general trends with enzyme mixing

ratios in, experimental results over a wide range of
concentrations. Notably, however, in less endo-acting
systems, the estimated DS values are systematically higher
than in the experiments. This is probably due to the fact
that again we did not consider such effects as enzyme
deactivation/degradation. Thus, the enzymes in our model
are at all times as fresh and active as new ones, whereas in the
real experiments, they are not. As a result, the endo–exo
synergy mainly caused, as suspected, by the promotion of
cellulose-ends generation through endo-acting enzymes is
more over-counted in our model prediction after the
enzyme deactivation/degradation effects start taking place in
less endo-acting systems. Inclusion of such model refine-
ments will be the target of future work.

Conclusion

In conclusion, we have presented detailed time-scale
analyses for the enzyme-catalyzed hydrolytic conversion
of solid cellulosic substrates. These analyses are developed
here within the context of both non-morphological and
solid-morphology-based enzymatic chain fragmentation
kinetics models. They cover free enzyme activity comprising
both endo- and exo-acting components of, in principle, any
compositional complexity.

The first one of these analyses applies specifically to non-
morphological enzymatic chain cutting models (Okazaki
and Moo-Young, 1978; Suga et al., 1975; Zhang and Lynd,
2006). These models treat individual chains effectively
in isolation and do not account for the mutual steric
obstruction arising in dense assemblies of chains embedded
in a solid substrate. A central result from this non-
morphological analysis is the identification of depolymer-
ization time scales in three distinct kinetic parameter
regimes, including endo- and exo-dominated regions; and
an intervening intermediate region, characterized by highly
cooperative, synergistic endo–exo chain fragmentation
activity with a significant degree of synergy.

These non-morphological results are then integrated
into the analysis of a more realistic fully morphological
hydrolysis kinetics modeling framework which incorpo-
rates: enzymatic chain fragmentation; mutual steric
obstruction; chain exposure by hydrolytic surface ablation;
and, in turn, hydrolytic evolution of the underlying solid
substrate morphology. This analysis explains not only the
existence but also the quantitative magnitudes of two very
distinct characteristic time scales that had been identified
previously, in numerical simulations of morphology-
controlled hydrolytic surface ablation kinetics, described
in II. Specifically, the numerically observed early rapid rise
and arrest in the hydrolysis rate can be identified with a very
short ‘‘single-layer ablation time’’ t(l) that is basically
identical with the non-morphological depolymerization
time scale. Themuch longer time scale t(s) for near-complete
hydrolytic conversion of the entire substrate is then
naturally explained by the way of a QSS analysis. The
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QSS analysis shows that t(s) is essentially the product of
a purely non-morphological enzymatic factor, the ‘‘single-
layer ablation time’’ t(l); and of a purely morphological
factor, the number of such ‘‘ablation layers’’ l(o) comprised
in a typical smallest enzyme-accessible substrate
compartment.

While explaining in mathematically simple and physically
transparent terms the fundamental time scales in morphol-
ogy-controlled hydrolytic surface ablation kinetics, the
foregoing analyses also provide a potentially very useful
algebraic estimation tool to relate engineering-relevant
systems variables to basic enzyme kinetics and morphology
parameters, without having to solve extensive systems of
coupled kinetics ODEs. As demonstrated here by detailed
comparisons to highly accurate numerical ODE solutions,
our approximate time-scale analysis generate reasonable
estimates, for example, for hydrolytic conversion times, to
within 30% of the quasi-exact numerical values, or better;
and they do so over a wide range of enzymatic and substrate
parameters. The time-scale analyses therefore afford us
with a fast, convenient semi-quantitative framework for
the calculation of systems variables such as single-layer
depolymerization and hydrolytic conversion times; macro-
scopic kinetics variables such as absolute and relative
conversion rates; and hydrolytically evolving morphology
variables such as SAC sizes and surface accessibility
fractions. Our conversion time and degree of synergy
estimates based on time-scale analysis are in reasonable
agreement with observed magnitudes and general trends
with enzyme mixing ratios, as seen in experimental data
under experimental settings most closely matching our
modeling assumptions. Future refinements will address
effects currently not included in the model, such as enzyme
degradation and product inhibition.

Nomenclature

[CBH1](o) CBH1 concentration in the ‘‘E1’’ enzyme system of II

[CBH2](o) CBH2 concentration in the ‘‘E1’’ enzyme system of II

dA,s ablation dimension for class-s SACs

[EG1](o) EG1 concentration in the ‘‘E1’’ enzyme system of II

Fa,s fraction of accessible G1 for class-s SACs (� nM;s=nV;s)

Fa overall accessibility fraction of accessible G1 (� nM=nV)

kX (kY) site position from L-end (R-end) where exo-L (exo-R) act at

‘ number of G1-monomers in an insoluble glucan chain G‘

‘nx endo–exo ‘‘cross-over’’ chain length

‘S minimum insoluble chain length

Lk,m adsorption coefficient for (k, m) ES complex (1/mM)

MMD population size of SAC geometries

uk total type-k enzyme concentration (mM)

vk free type-k enzyme concentration (mM)

xM total concentration of G1 exposed on surfaces (mM)

xM,s concentration of G1 exposed on class-s SAC surfaces (mM)

xv total concentration of G1 in solid substrate (mM)

xV,s concentration of G1 contained in class-s SACs (mM)

xm,s concentration of type-n site exposed on class-s SAC surfaces

(mM, � Csnn;s)

ym,s concentration of free type-m sites on class-s SAC surfaces

(mM)

Greek Symbols

gk,m cutting rate coefficient (cuts per time per (k, m) ES complex)

Gm;s enzyme cutting rate factors defined by Eqs. (19)–(21) of II SI

Grel relative hydrolysis rate (� �dxV=dt=xV)

e fraction of unconverted solid substrate (� xVðtÞ=xVðtðoÞÞ)
k index of enzyme types, k¼ 1, 2, or 3 represent the endo-, exo-L-,

and exo-R-acting glucanase, respectively

ls layer number variable of class-s SACs

L
ðoÞ
0 minimum of from l

ðoÞ
1 to l

ðoÞ
MMD

L
ðoÞ
1 maximum of from l

ðoÞ
1 to l

ðoÞ
MMD

n, m index of site types, N, L, R, X, Y, Z, or o

JðlÞ morphology distribution of initial SAC sizes lðoÞs

s index of SAC classes

t(n) time-scale estimate for pure endo-acting enzyme system

t(nx) time-scale estimate for mixed endo-exo-acting enzyme system

t(x) time-scale estimate for pure exo-acting enzyme system

t(1x) time-scale estimate for a single exo-cut

t(s) time-scale estimate for 1� e conversion of solid-morphology

substrate

t(l) effective single-layer ablation time-scale estimate

MJ MJ ¼ PMMD
s¼1 JðlðoÞs Þ

Abbreviations

I companion article I, Zhou et al. (2009a)

II companion article II, Zhou et al. (2009b)

DP degree of polymerization

DS degree of synergy

GP global Poisson

LCL long chain limit

MM ‘‘Multiple-layer, Multiple-geometry’’ model

MM82-1 the MM model with uniform distribution of monomer

concentration over SAC size, SI Section E, Eq. (32)

MM82-2 the MM model with Gaussian distribution of monomer

concentration over SAC size, SI Section E, Eq. (33)

MS ‘‘Multiple-layer, Single-geometry’’ model

QSS quasi-steady state

SAC smallest accessible compartment

SS ‘‘Single-layer, Single-geometry’’ model

TSE time-scale estimate
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