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Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch
cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase
typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used
both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocel-
lum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial
for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did not substantially change cello-
biose fermentation. Instead pyruvate formation is likely to proceed via a malate shunt with GDP-linked PEP carboxykinase,
NADH-linked malate dehydrogenase, and NADP-linked malic enzyme. High activities of these enzymes were detected in extracts
of cellobiose-grown cells. Our results thus show that GTP is consumed while both GTP and ATP are produced in glycolysis of C.
thermocellum. The requirement for PPi in this pathway can be satisfied only to a small extent by biosynthetic reactions, in con-
trast to what is generally assumed for a PPi-dependent glycolysis in anaerobic heterotrophs. Metabolic network analysis showed
that most of the required PPi must be generated via ATP or GTP hydrolysis exclusive of that which happens during biosynthesis.
Experimental proof for the necessity of an alternative mechanism of PPi generation was obtained by studying the glycolysis in
washed-cell suspensions in which biosynthesis was absent. Under these conditions, cells still fermented cellobiose to ethanol.

The ultimate low-cost configuration for conversion of cellulose
to biofuels is via consolidated bioprocessing (CBP) (1). Clos-

tridium thermocellum is a candidate for CBP because of its ability
to rapidly solubilize cellulose and produce ethanol (2). Currently
its commercial potential is limited by low alcohol yields. Although
tools for genetic modification in C. thermocellum have been devel-
oped (3, 4) and applied to the problem of increasing ethanol yield
by eliminating organic acid production (5–7), further improve-
ment in yield is desired (6). In order to develop rational metabolic
engineering strategies for improving ethanol yield, it is important
to understand the basic metabolic pathways of C. thermocellum.
Unlike those of model organisms such as Escherichia coli and Sac-
charomyces cerevisiae, the central metabolic pathways of C. ther-
mocellum have been less well studied (8, 9).

Some features of cellobiose fermentation in C. thermocellum
are generally agreed upon. Cellobiose transport in C. thermocel-
lum is mediated by an ATP-binding cassette transporter instead of
the phosphotransferase system (10, 11). Cellobiose is then phos-
phorylated to glucose-1-phosphate and glucose by cellobiose
phosphorylase (11). There is a broad consensus that glycolysis is
the predominant pathway for conversion of intracellular glucose
and glucose-1-phosphate to pyruvate. Based on analysis of the
genome, all of the genes in the glycolysis pathway except pyruvate
kinase have been reported to exist in C. thermocellum (12, 13). A
variety of key glycolytic enzymes have been detected in cell ex-
tracts (8, 11). Furthermore,14C-glucose tracer experiments have
demonstrated high flux through glycolysis and low or no flux
through the pentose phosphate pathway or the Entner-Doudoroff
pathway (8). Despite this, there are conflicting claims about a
number of enzyme activities in glycolysis.

Glucokinase mediates phosphorylation of glucose to glucose-
6-phosphate. Gene clo1313_0489 has been annotated as a glucoki-
nase and shown to be both transcribed (14) and translated (15).
There have been several reports showing the absence or very low

activity of ATP-dependent glucokinase in C. thermocellum (10, 11,
16) and one account showing high activity of glucokinase (9). Ng
and Zeikus showed that glucokinase activity is induced during
growth on glucose but was not detected during growth on cello-
biose (11). They were able to detect the production of glucose-6-
phosphate from cellobiose using 14C labeling, although they did
not discover the enzyme responsible. Thus, it is not clear at this
time what enzyme is responsible for conversion of glucose to glu-
cose-6-phosphate in cellobiose-grown cells.

Phosphofructokinase (PFK) mediates the phosphorylation of
fructose-6-phosphate to fructose-1,6-bisphosphate. Two genes
have been annotated as potential phosphofructokinases,
clo1313_0997 and clo1313_1876 (12). Both genes have been shown
to be transcribed (14) and translated (15). There have been two
reports describing ATP-linked phosphofructokinase activity (9,
17). Rydzak et al. (15) annotated different cofactor specificities for
the two genes, with cthe_1261 (homologous to clo1313_0997) be-
ing ATP linked (EC 2.7.1.11) and cthe_0347 (homologous to
clo1313_1876) being PPi linked (EC 2.1.7.90). They found higher
expression of cthe_0347 compared with cthe_1261 (15). The pres-
ence of two types of PFK enzyme has also been reported for Enta-
moeba histolytica (18) and Propionibacterium shermanii (19). It is
not known whether this is the case for C. thermocellum as well.

For conversion of phosphoenolpyruvate (PEP) to pyruvate,
three possibilities exist: pyruvate kinase (PK) (EC 2.7.1.40), phos-
phoenolpyruvate synthase (PEPS) (EC 2.7.9.2), and pyruvate
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phosphate dikinase (PPDK) (EC 2.7.9.1). Of these three, the evi-
dence for pyruvate kinase is the weakest. Although no standard
pyruvate kinase has been found (15, 20), in one study, where the
presence of a pyruvate kinase gene was presumed, a nonstandard
pyruvate kinase was identified (13). PPDK has been shown to
allow PEP-to-pyruvate conversion in Thermoproteus tenax (21)
and E. histolytica (22). C. thermocellum has a gene annotated as
ppdk (clo1313_0949), and it has been shown to be expressed at
high levels in both transcriptomic and proteomic data (14, 15).
The gene thought to confer PEPS activity (clo1313_1005) shows a
low expression level and thus seems unlikely to play a major role in
glycolysis (14, 15).

Thus, the following questions remain about central metabolism in
C. thermocellum. (i) How does glucose enter glycolysis? (ii) Since two
genes are annotated for PFK in the genome, what is the nature of the
phosphofructokinase? (iii) How is PEP converted to pyruvate?

Here, we attempted to answer these questions using enzyme
assays and targeted gene deletion. In the course of pursuing these
questions, we discovered that glycolysis was different from the
standard model with respect to cofactors of several key enzymes.

MATERIALS AND METHODS
Organism, medium, and growth. Clostridium thermocellum DSM1313
was obtained from the DSMZ culture collection. Thermoanaerobacterium
saccharolyticum JW/SL-YS485 (23) was kindly provided by Juergen Wie-
gel. Strains were grown anaerobically at 55°C in modified MTC medium
(24, 25) in 125-ml glass bottles with a working volume of 50 ml with
shaking at 250 rpm. Fermentations were allowed to proceed for 72 h, at
which point the cells had reached stationary phase and samples were col-
lected for analysis.

Medium composition and preparation. Modified MTC medium
contained 5 g/liter cellobiose, 9.25 g/liter MOPS (morpholinepropanesul-
fonic acid) sodium salt, 2 g/liter urea, 2 g/liter potassium citrate monohy-
drate, 1.25 g/liter citric acid monohydrate, 1 g/liter Na2SO4, 1 g/liter
KH2PO4, 2.5 g/liter NaHCO3, 2 g/liter urea, 1 g/liter MgCl2 · 6H2O, 0.2
g/liter CaCl2 · H2O, 0.1 g/liter FeCl2 · 6H2O,1 g/liter L-cysteine HCl mono-
hydrate, 0.02 g/liter pyridoxamine HCl, 0.004 g/liter p-aminobenzoic acid
(PABA), 0.004 g/liter D-biotin, 0.002 g/liter vitamin B12, 0.005 g/liter
MnCl2 · 4H2O, 0.005 g/liter CoCl2 · 6H2O, 0.002 g/liter ZnCl2, 0.001
g/liter CuCl2 · 2H2O, 0.001 g/liter H3BO3, 0.001 g/liter Na2MoO4 · 2H2O,
and 0.001 g/liter NiCl2 · 6H2O. It was prepared by combining six sterile
solutions under a nitrogen atmosphere. All of the six solutions were ster-
ilized through a 0.22-�m-pore-size filter (product number 430517; Corn-
ing). A solution, concentrated 2.5-fold, contained cellobiose, MOPS so-
dium salt, and distilled water. B solution, concentrated 25-fold, contained
potassium citrate monohydrate, citric acid monohydrate, Na2SO4,
KH2PO4, NaHCO3, and distilled water. C solution, concentrated 50-fold,
contained urea and distilled water. D solution, concentrated 50-fold, con-
tained MgCl2 · 6H2O, CaCl2 · H2O, FeCl2 · 6H2O, L-cysteine HCl mono-
hydrate, and distilled water. E solution, concentrated 50-fold, contained
pyridoxamine HCl, p-aminobenzoic acid (PABA), D-biotin, vitamin B12,
and distilled water. F solution, concentrated 1,000-fold, contained MnCl2
· 4H2O, CoCl2 · 6H2O, ZnCl2, CuCl2 · 2H2O, H3BO3, Na2MoO4 · 2H2O,
NiCl2 · 6H2O, and distilled water. All chemicals mentioned above were
reagent grade and obtained from Sigma.

Plate reader growth experiments. Growth rates were determined as
previously described (26). Briefly, strains were grown anaerobically at
55°C in 200 �l modified MTC medium in a 96-well plate. At 3-min inter-
vals the plate was shaken for 30 s, followed by measuring the optical
density at 600 nm (OD600).

Deletion of pyruvate phosphate dikinase (ppdk) gene. Strain M1631
(�hpt �ppdk) was derived from strain M1354 (6) by deletion of the pyru-
vate phosphate dikinase (ppdk) gene (clo1313_0949) using plasmid
pMU2051 (GenBank accession number KC146550). This plasmid has

three regions of homology to the ppdk gene region corresponding to a
522-bp region upstream of ppdk amplified by the following two primers:
5=-CGGCCGCGGTACCCGGGGATCCTCTAGAGTCGACCTGCA
GAAGCCATGCAACCTGGACGT-3= and 5=-TAGTGAAGGCAATGCf
ATCAATGAGAGACCTGCTTGGAGGAGTATCATGCTCTCCGTTC
CG-3=, a 520-bp region downstream of ppdk amplified by the following
primers: 5=-CAAGCCTTGCAATCGGCACACGGAACGGAGAGCATG
ATACTCCTCCAAGCAGGTCTCTCA-3= and 5=-CTATATTGCTATAA
AGAATGAGGAGGGAACTAGTTGAAGCTGCTTGCGATCCTAAGTC
TT-3=, and a 549-bp region internal to ppdk amplified by the following
primers: 5=-ACTCTTTAGAATCTTTTCCTCTCTTTCGGAAAAGAAA
TACACTCCATATCCTGCATATCT-3= and 5=-AGCAAGGTGTAGAAA
GTGCCATGAAGTCCCGCGGACTTAATCAGCGATGTTGTCATG
GAG-3=.

Washed-cell experiments. Cells for washed-cell experiments were
harvested at exponential phase and centrifuged at 12,000 relative centrif-
ugal force (RCF) units for 2 min. The supernatant was discarded, and cells
were resuspended in 50 ml of medium (MTC medium without cellobiose
and without urea—i.e., both carbon and nitrogen limited). This washing
procedure was repeated one additional time. Washing was performed in a
COY anaerobic chamber (COY Laboratory Products, MI) with an atmo-
sphere of 85% nitrogen, 10% carbon dioxide, 5% hydrogen, and �5 ppm
oxygen. Cells were then resuspended in one of three modified MTC me-
dium recipes (10 ml each)—MTC medium, MTC medium without cello-
biose and urea, or MTC medium without urea—and incubated anaero-
bically at 55°C. Over the course of 72 h, several 1-ml aliquots were
removed for further analysis. At each time point, the optical density of the
culture at 600 nm was measured and after centrifugation (5 min, 12,000
RCF units), the supernatant was analyzed by high-pressure liquid chro-
matography (HPLC) (described below).

Analytical techniques. Fermentation products (cellobiose, glucose,
acetate, lactate, and ethanol) were analyzed by a Waters HPLC system
with an Aminex HPX-87H column operated at 60°C. Sample collection
and processing were as reported previously (27).

Preparation of cell extracts for enzyme assays. All manipulations
were performed under anaerobic conditions in a COY anaerobic cham-
ber. Cells used for enzymatic activities were harvested at the exponential
phase of growth and washed twice with a buffer containing 50 mM Tris-
HCl (pH 8.0) and 5 mM dithiothreitol (DTT). To prepare cell extracts,
cells were centrifuged and suspended in 50 mM potassium phosphate
buffer (pH 7.0 at 55°C) containing 5 mM dithiothreitol. The cells were
disrupted by sonic oscillation (Misonex) for 2 min (30 s for disrupting and
30 s for cooling per cycle, 4 cycles total) at 4°C. The cell extracts were
obtained after centrifugation (5 min, 12,000 RCF units). The total amount
of protein in the extracts was determined by Bradford assay, using bovine
serum albumin as the standard (28). In all cases, the final protein concen-
tration was between 2.5 and 5.4 mg/ml. Cell extracts were stored at �20°C
and used within 1 week of preparation.

Assays of enzyme activities. Enzymes were assayed by measuring
changes in absorbance at 340 nm with reactions coupled to NADP reduc-
tion or NADH oxidation. An Agilent 8453 spectrophotometer was used
for these measurements with a Peltier temperature control module (part
number 89090A) to maintain a temperature of 55°C during the assay. The
reaction volume was 1 ml, in reduced-volume quartz cuvettes (part number
29MES10; Precision Cells Inc., NY) with a 1.0-cm path length. Assays were
performed in a COY anaerobic chamber. All enzyme activities are expressed
as �mol of product · min�1 · (mg of cell extract protein)�1. For each enzyme
assay, at least two concentrations of cell extract were used to confirm that
specific activity was proportional to the amount of extract added.

All biochemicals except for ADP-glucose were obtained from Sigma.
ADP-glucose was obtained from Santa Cruz Biotechnology. All chemicals
and coupling enzymes were prepared fresh monthly and stored in �80°C
in water except NADH, which was prepared in 1 M Tris buffer (pH 9.0).
The following coupling enzymes (also from Sigma, with catalog numbers)
were used: glucose-6-phosphate dehydrogenase (recombinant, expressed
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in E. coli from Leuconostoc mesenteroides, G2921), phosphoglucomutase
(from rabbit muscle, P3397), aldolase (from rabbit muscle, A2714),
�-glycerophosphate dehydrogenase (from rabbit muscle, G6880), triose-
phosphate isomerase (from S. cerevisiae, T2507), glyceraldehyde-3-phos-
phate dehydrogenase (from S. cerevisiae, G5537), pyruvate kinase (from
Bacillus stearothermophilus, P1903), and lactate dehydrogenase (recombi-
nant from E. coli, 59747).

Glucokinase (EC 2.7.1.2) was assayed based on the formation of glu-
cose-6-phosphate (29).The assay mix contained 5 mM MgCl2, 2 mM glu-
cose, 2 mM NADP, 2 U of glucose-6-phosphate dehydrogenase (yeast) per
ml, and 20 �l cell extract in 50 mM Tris-HCl buffer (pH 7.0). To achieve
the maximum activity, 60 mM KCl was added into the reaction mix. The
reactions were started by the addition of 2 mM phosphoryl donor, ATP,
GTP, and PPi, respectively.

Phosphoglucomutase (EC 5.4.2.2) was assayed by the method of Ye et
al. (30) with minor modifications. The assay mixture contained 50 mM
Tris-HCl (pH 7.0), 5 mM MgCl2, 2 mM NADP, 2 mM glucose-1-phos-
phate, 2 U of glucose-6-phosphate dehydrogenase (yeast) per ml, and 20
�l cell extract. The reaction was started by adding glucose-1-phosphate.

Phosphofructokinase (EC 2.7.1.11 or EC 2.7.1.90) was assayed by the
method of de Jong-Gubbels et al. (31) with minor modifications. The assay
mixture contained 50 mM Tris-HCl (pH 7.0), 5 mM MgCl2, 0.15 mM
NADH, 1 mM fructose-6-phosphate, 4 U/ml aldolase, 4 U/ml �-glycero-
phosphate dehydrogenase, 4 U/ml triosephosphate isomerase, and 20 �l cell
extract. The assay was started with 2 mM phosphoryl donor, ATP, or PPi.

Phosphoglycerate kinase (EC 2.7.2.3) was assayed from the formation
of 1,3-diphosphoglycerate according to the method of van Hoek et al. (32)
with minor modifications. The assay mixture contained 50 mM Tris-HCl
(pH 7.0), 5 mM MgCl2, 3-phosphoglycerate 2 mM, 2 mM EDTA, 0.15
mM NADH, and 2 U/ml glyceraldehyde-3-phosphate dehydrogenase.
The assay was started by the addition of phosphoryl donors.

Pyruvate kinase (EC 2.7.1.40) in extracts from both C. thermocellum and
T. saccharolyticum was assayed by coupling pyruvate production to NADH
oxidation using the lactate dehydrogenase enzyme according to the protocol
of de Jong-Gubbels et al. (31) with minor modifications. The assay mixture
contained 50 mM Tris-HCl (pH 7.0), 2 mM PEP, 0.15 mM NADH, 5 mM
MgCl2, 4 U/ml lactate dehydrogenase, and 50 �l cell extract. The reaction was
started by the addition of 2 mM ADP, 1 mM fructose-1,6-biphosphate. Ri-
bose-5-phosphate and glucose-6-phosphate were added into the mixture and
tested as potential activators of pyruvate kinase activity.

Pyruvate phosphate dikinase (EC 2.7.9.1) was assayed in the same way
as pyruvate kinase. However, the reaction was started by adding 2 mM
AMP and 2 mM PPi instead of ADP.

PEP synthase (EC 2.7.9.2) was assayed in the same way as pyruvate
kinase. However, the mixture contained 50 mM potassium phosphate
buffer (pH 7.0) instead of Tris-HCl buffer. The reaction was started by
adding 2 mM AMP instead of ADP.

PEP carboxykinase (EC 4.1.1.32 or EC 4.1.1.38 or EC 4.1.1.49, de-
pending on cofactor specificity) was assayed by the formation of oxalo-
acetate (OAA) from PEP, following the protocol from Jabalquinto et al.
(33) with minor modifications. The assay mix contained 50 mM Tris-HCl
(pH 7.0), 50 mM NaHCO3, 5 mM MgCl2, 2 mM PEP, 0.15 mM NADH, 6
U/ml malate dehydrogenase, and 20 �l cell extract. The reaction was ini-
tiated by adding 2 mM GDP or 20 mM Pi.

Malate dehydrogenase (EC 1.1.1.37) was assayed by measuring the
decrease of NADH with conversion of OAA to malate following the pro-
tocol of Rokosh et al. (34) with minor modifications. The assay mix con-
tained 50 mM Tris-HCl (pH 7.0), 0.15 mM NADH, 5 mM DTT, and 20 �l
cell extract. The assay was started by adding 2 mM OAA.

Malic enzyme (EC 1.1.1.40) was assayed by measuring the reduction of
NADP following the protocol of Lamed and Zeikus (35) with minor mod-
ifications. The assay mix contained 50 mM Tris-HCl (pH 7.0), 5 mM
DTT, 5 mM NH4Cl, 0.15 mM NADP�, and 20 �l cell extract. The assay
was initiated by adding 2 mM malate.

Calculation of PPi. The calculation of the amount of pyrophosphate
generated in the biosynthesis of cell components was performed with the
metabolic network model of Taymaz-Nikerel et al. (36).

RESULTS
Activities of glycolytic enzymes. Enzymes in the glycolysis path-
way were tested for cofactor specificity (Table 1, Fig. 1). Glucoki-
nase was found to be GTP linked, with activity 50-fold higher
using GTP compared to ATP. Phosphofructokinase was found to
be PPi linked. Phosphoglycerate kinase was found to be equally
active with either ADP or GDP. No activity was found for pyruvate
kinase, pyruvate phosphate dikinase, or PEP synthase. Activity of
PEP carboxykinase was detected with the presence of GDP and
was 15-fold higher than that with ADP. No activity was found
when GDP was replaced by inorganic phosphate (Pi), indicating
that PEP carboxytransphosphorylase (PEP � PiN OAA � PPi)
(EC 4.1.1.38) is absent. Cell extracts also contained high activities
of NADH-linked malate dehydrogenase and NADP-linked malic
enzyme. Therefore, the sequence of reactions catalyzed by PEP
carboxykinase, malate dehydrogenase, and malic enzyme can
compensate for the absence of pyruvate kinase in the generation of
pyruvate from PEP (Fig. 1).

Deletion of ppdk gene. As mentioned in the previous para-
graph, both pyruvate kinase and ppdk were not detectable in cel-
lobiose-grown cells of C. thermocellum. Pyruvate kinase was, how-
ever, readily detectable in extracts of T. saccharolyticum (data not
shown), but we did not possess a suitable reference assay for the
ppdk reaction. To further investigate a possible role of this enzyme
in the generation of pyruvate from PEP in C. thermocellum, we
studied the properties of a ppdk deletion mutant and compared it
to the wild type and the parent strain (strain M1354, which has
only the hpt deletion). All three strains grew readily on cellobiose.
There was a slight decrease in growth rate between the wild type
and the parent strain (0.47 versus 0.38), which is likely due to the
effect of the hpt deletion. There was no significant difference be-
tween the growth rates of the parent (M1354) and ppdk deletion
(M1631) strains. Furthermore, all strains showed similar final cul-
ture densities (as measured by absorbance at 600 nm) (Table 2).

TABLE 1 Activity of phosphorylating enzymes in glycolysis of
Clostridium thermocellum

Enzyme EC number Cofactor
Sp act (U/mg
of protein)

Glucokinase EC 2.7.1.2 ATP 0.03 � 0.01
GTP 2.16 � 0.14
PPi �0.01

Phosphoglucomutase EC 5.4.2.2 N/Aa 0.42 � 0.01
Phosphofructokinase EC 2.7.1.11 ATP �0.01

EC 2.7.1.90 PPi 0.98 � 0.04
Phosphoglycerate kinase EC 2.7.2.3 ADP 6.52 � 0.06

EC 2.7.2.10 GDP 6.35 � 0.01
Pi �0.01

Pyruvate kinase EC 2.7.1.40 ADP �0.01
PEP carboxykinase EC 4.1.1.49 ADP 0.31 � 0.08

EC 4.1.1.32 GDP 4.14 � 0.43b

EC 4.1.1.38 Pi �0.01
Malate dehydrogenase EC 1.1.1.37 NADH 1.67 � 0.11b

Malic Enzyme EC 1.1.1.40 NADP 1.97 � 0.25b

a N/A, not applicable.
b Data are from Deng et al. (7).
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The final concentrations and ratio of the main fermentation prod-
ucts, acetate and ethanol, were similar. There were slight differ-
ences in lactate and glucose production (Fig. 2).

Stoichiometry of pyrophosphate turnover in cellobiose me-
tabolism. In the literature on PPi-dependent glycolysis, it is usu-

ally assumed that biosynthetic reactions are the exclusive source of
pyrophosphate (37–39). Indeed, metabolic network analysis re-
veals that substantial amounts of PPi are generated in the biosyn-
thesis of protein, RNA and DNA, lipids, and glycogen (Table 3).
However, this amount is by far not enough to satisfy the PPi re-
quirement in glycolysis. Using a representative bacterial biomass
composition presented in Table 3, the elemental composition cor-
responding to this biomass composition, and a biomass yield of
0.1 g cells/g glucose, a simple flux diagram can be constructed (Fig.
3). Approximately 11 mmol PPi is generated during the formation
of 1 g biomass (Table 3). Sufficient PPi is generated in the produc-
tion of cellular polymers to provide for the PPi used in the associ-
ated assimilation processes; however, there is not much left over
for dissimilation reactions. In order to reach a biomass yield of 100

FIG 1 Aberrant glycolysis and glycogen cycle in C. thermocellum. Numbers in circles indicate enzymes as follows: 1, ABC transporter; 2, cellobiose phosphorylase
(EC 2.4.1.20); 3, glucokinase (EC 2.7.1.2); 4, phosphofructokinase (EC 2.7.1.90); 5, phosphoglycerate kinase (EC 2.7.2.3); 6, PEP carboxykinase (EC 4.1.1.32); 7,
malate dehydrogenase (EC 1.1.1.37); 8, malic enzyme (EC 1.1.1.40); 9, OAA decarboxylase (EC 4.1.1.3); 10, phosphoglucomutase (EC 5.4.2.2); 11, membrane-
bound pyrophosphatase (EC 3.6.1.1); 12, ATP-energized proton pump; 13, ADP-glucose synthase (EC 2.7.7.27); 14, NDP-kinase (EC 2.7.4.6). The abbreviations
represent metabolites as follows: G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; G3P, glyceraldehyde 3-phosphate; DHAP,
dihydroxyacetone phosphate; 1,3 DPG, 1,3-biphosphoglycerate; 3 PG, 3-phosphoglycerate; 2 PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate. Gray ques-
tion marks represent possible sources for pyrophosphate in glycolysis.

TABLE 2 Growth rate and maximum optical density of strainsa

Strain
Maximum specific
growth rate (h�1)

Maximum
OD

600
(AU)

Wild type 0. 47 � 0.02 1.17 � 0.02
M1354 (�hpt) 0.38 � 0.02 1.08 � 0.04
M1631(�hpt �ppdk) 0.39 � 0.01 1.14 � 0.04
a Error is one standard deviation; n � 3.
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g cells/1,000 g glucose (� 5,555 mmol glucose), the total amount
of PPi required is 5,555 mmol PPi, assuming that all glucose fluxes
via the PFK reaction. Thus, in growing cells, biosynthetic reactions
can only provide approximately 1,097/5,555 	 20% of the pyro-
phosphate required to sustain the total glycolytic flux. Expressed
relative to the dissimilative part of the glycolytic flux, the contri-
bution is only 364/4,822 	 8% (Fig. 3). It can therefore be con-
cluded that anaerobic bacteria that possess a PPi-dependent gly-
colysis must possess alternative mechanisms to generate PPi. Note
that the amount of additional pyrophosphate generated by bio-
synthesis is an order of magnitude lower than what would be re-
quired if biosynthesis were the sole source of pyrophosphate, and
thus this conclusion is robust even when somewhat different val-
ues of biomass yield and composition are used.

Cellobiose fermentation by washed-cell suspensions. In ad-
dition to metabolic network analysis, it can be shown experimen-
tally that biosynthetic processes cannot be the sole source of PPi. If
biosynthesis of cellular polymers were the exclusive source of PPi,
fermentation of cellobiose by nongrowing cells would be impos-

sible. To determine the extent to which biosynthesis is required for
metabolism, washed cells were reinoculated into three variants of
MTC medium: unmodified, MTC lacking urea (nitrogen source),
and MTC lacking both cellobiose (carbon source) and urea (ni-
trogen source). Cells inoculated into the unmodified medium
(Fig. 4A) showed an increase in OD600 from 0.68 to 2.85 and then
a gradual decrease to 1.44. All of the 15.5 mM cellobiose initially

FIG 2 Analysis of fermentation products of the wild-type and �ppdk strains. Error bars represent one standard deviation of duplicate fermentations.

TABLE 3 Amount of pyrophosphate produced in the synthesis of cell
components

Component

Pyrophosphate liberated (mmol/g cells)

% of
biomassa

Precursor
biosynthesis Polymerization Total

Protein 65.4 1.259 6.409 7.668
RNA and DNA 15.1 0.659 0.502 1.160
Lipids and

lipopolysaccharide
11.9 2.110 2.110

Glycogen 0.5 0.032 0.032
Other 0.7
Ash 6.4

Total 100 10.970
a Data are from Taymaz-Nikerel et al., Table 4, for E. coli cells growing anaerobically at
a dilution of 0.3 h�1 (36).

FIG 3 Example of calculation of the fluxes of pyrophosphate in microbial
anaerobic heterotrophic sugar metabolism with a PPi-dependent phospho-
fructokinase. Blue arrows represent the pyrophosphate flux in C. thermocel-
lum. For this calculation the following biomass compositions (as weight per-
centages) were used: protein, 65.4; RNA, 13.1; DNA, 1.98; lipids, 11.2;
lipopolysaccharides, 0.65; polysaccharide (glycogen), 0.48; peptidoglycan
(murein), 0.48; putrescine, 0.22; spermidine, 0.07; ash, 6.43 (36). Biomass with
this composition can be represented as CH1.64N0.27O0.37S0.007P0.012. This is
based on measurement of E. coli grown anaerobically. The evidence would still
be robust even if the composition were to change. A biomass yield of 0.1 g/g
hexose is assumed (represented in mmol). The molecular weight of the bio-
mass is 100 including ash. Biomass formation is associated with a net carbon
loss of approximately 10% resulting from decarboxylation reactions. For sim-
plicity it is assumed that all carbon required for the biosynthesis of cells (733
mmol) passes the PFK reaction. Although the biosynthesis of biomass is self-
supporting with respect to PPi supply, a large amount of pyrophosphate is
required to sustain the catabolic flux. The additional PPi required for dissim-
ilation (4,458 mmol) must be obtained via ATP hydrolysis with a membrane-
bound pyrophosphatase or glycogen cycling (Fig. 1).
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present was consumed, and 23.1 mM ethanol and 17.3 mM acetate
were produced. Cells were inoculated into MTC lacking urea but
containing cellobiose (Fig. 4B). The optical density of cells in this
medium remained relatively constant, showing a slight increase
from 0.65 to 0.80 and then a decrease to 0.51. Of the 15.6 mM
cellobiose that was originally present, 13.0 mM was consumed,
and 23.8 mM ethanol, 3.2 mM acetate, and 5.0 mM glucose were
produced. Cells were also inoculated into MTC without cellobiose
or urea (Fig. 4C). Cells under this condition showed a decrease in
OD600 from 0.64 to 0.29, and 9.9 mM ethanol was produced. This
small amount of ethanol probably arises from reserve carbohy-
drates, such as glycogen, that are present in the cells. Surprisingly,
in the absence of nitrogen, the ethanol-to-acetate ratio increased
to 7.5:1 from the typical value of 1:1.

The data presented in Fig. 4 thus show that cellobiose fermen-
tation in nongrowing cells, albeit slower than in growing cells, is
not obligately dependent on biosynthesis of cell material.

DISCUSSION
Early literature on the biochemistry of glycolysis in C. thermo-
cellum. Although the enzyme assay data from Patni and Alexander

(9) are frequently cited in the literature, this work is at the heart of
a number of issues concerning the biochemistry of glycolysis in C.
thermocellum. They report high activity of ATP-linked glucoki-
nase on cellobiose-grown cells, but we found glucokinase activity
to be mainly GTP linked in cellobiose-grown cells (Table 1). Fur-
thermore, Ng and Zeikus specifically note that ATP-linked glu-
cokinase activity was absent in cellobiose-grown cells (11). Patni
and Alexander report activities for glucose-6-phosphate dehydro-
genase and 6-phosphogluconate dehydrogenase, but this is the
only report of these activities in C. thermocellum, and genes coding
for these activities are conspicuously absent from the genome an-
notation (12, 15). The presence of these activities would suggest a
complete oxidative pentose phosphate pathway, which is contra-
dicted by 14C tracer experiment results presented by Lamed and
Zeikus (8). Patni and Alexander reported ATP-linked phospho-
fructokinase activity, which contradicts our data that phospho-
fructokinase is primarily PPi linked with small amounts of GTP-
linked activity. Finally, Patni and Alexander reported pyruvate
kinase activity, which again contradicts our results. One possible
explanation for these disparities is that the activities they found are
specific to strain 651. This strain was originally isolated by McBee
(40) and is distinct from strain DSM 1313, ATCC 27405, or any
other strain of C. thermocellum currently available in commercial
culture collections. In fact, as of 1986 the strain was reported to
have been lost (16). Therefore, the results of Patni and Alexander
do not seem representative of the enzyme activities of the strains of
C. thermocellum currently in use. In this respect, the purity of the
strain used by Patni and Alexander also must be considered. C.
thermocellum strains are generally isolated from nature in a mix-
ture with saccharolytic organisms such as Thermoanaerobacter
spp., which are known to contain the enzyme activities associated
with the issues discussed here. Culture purity checks are especially
required in research with C. thermocellum strains (41).

Absence of pyruvate kinase. We were unable to detect pyru-
vate kinase (Table 1), though the enzyme was readily detectable in
extracts of T. saccharolyticum. This is at variance with the pro-
posed annotation of clo1313_2626 by Roberts et al. (13) as a pos-
sible pyruvate kinase. Roberts et al. (13) found the pyruvate kinase
based on their reverse blast search against all the proteins anno-
tated by UniProt as pyruvate kinase, and they selected a candidate
gene that is most likely to have the function of pyruvate kinase.
However, they did not further confirm the function of this gene
experimentally, and it does not have the PK or PK_C Pfam do-
mains typically found in pyruvate kinase enzymes (42). We there-
fore conclude that C. thermocellum strain DSM1313 does not pos-
sess a pyruvate kinase, and we see no evidence that pyruvate kinase
is present in other strains of C. thermocellum.

Options for PEP-to-pyruvate conversion. In the absence of
PK, there are three apparent options for the conversion of PEP to
pyruvate: pyruvate phosphate dikinase, PEP synthase, and car-
boxylation of PEP to oxaloacetate (Fig. 1). As ppdk deletion strain
M1631 proceeded with only a slightly diminished rate, we con-
clude that this enzyme is not important for glycolysis in C. ther-
mocellum. PEP synthase seems to be an unlikely candidate for
PEP-to-pyruvate conversion due to its low expression at the tran-
script (14) and protein level (15). The remaining option is con-
version via PEPCK, which was present at a high level of activity,
and we suspect that the majority of PEP is converted to OAA via
this enzyme (7).

OAA can be converted directly to pyruvate via the OAA decar-

FIG 4 Results of washed-cell experiments in MTC medium (A), MTC me-
dium without urea (B), and MTC medium without cellobiose and without
urea (C). Concentrations of cellobiose (red circle), glucose (green diamond),
acetate (black square), ethanol (blue triangle), lactate (pink triangle), and for-
mate (dark blue triangle) and the OD (*) were determined as indicated in
Materials and Methods.
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boxylase activity of malic enzyme (EC 1.1.1.40) (Fig. 1). It was not
reported by Lamed and Zeikus (35) whether OAA can also serve as
a substrate for the unusual C. thermocellum malic enzyme, as de-
scribed for some other malic enzymes. OAA can also be converted
directly to pyruvate by the membrane-bound, proton-translocat-
ing OAA decarboxylase (EC 4.1.1.3) (clo1313_1523); however, its
activity was not assayed because of the high rate of (nonenzy-
matic) chemical decomposition of OAA. It can be converted to
pyruvate indirectly via malate with the activities of malate dehy-
drogenase and malic enzyme, both of which have high activity in
vitro. This so-called malate shunt is believed to function in Enta-
moeba histolytica (37) and Tritrichomonas foetus (43), which also
lack pyruvate kinase in glycolysis.

Stoichiometry of pyrophosphate turnover. The calculations
presented in Table 3 and Fig. 3 show that the amount of PPi gen-
erated in biosynthetic reactions is only a fraction of the total
amount of PPi required for the anaerobic metabolism of sugars via
PPi-linked PFK. Although this calculation was performed for only
one specific cell composition, it is evident that the shortage of PPi

holds for any cell composition, even when precursors for cell poly-
mers are provided in the growth medium as yeast extract. This
consequence of a PPi-dependent glycolysis is entirely neglected in
the literature. It is even frequently stated that the use of a PPi-
dependent PFK increases the ATP yield from glycolysis (37, 39,
44). However, our findings are confirmed by other authors. Hei-
nonen (38), in his book on the biological role of inorganic pyro-
phosphate, reported that the amount of PPi is only a fraction of the
total amount of ATP generated. Klemme (45) calculated that the
amount of PPi produced in biosynthesis is 10 mmol/g biomass,
comparable to our value of 11. It must be stressed that the value of
10 to 11 mmol PPi applies only to calculations for glycolysis with
an ATP-linked PFK. The results of our metabolic network analysis
presented in Fig. 3 show that the net formation of PPi in the overall
synthesis of biomass from sugars is much smaller than 10 mmol/g
cells when cell constituents are synthesized via a PPi-dependent
PFK. In this case, only a very small fraction of the PPi generated in
biosynthesis remains available for dissimilation of sugars to fer-
mentation products (Fig. 3). Therefore, an increased ATP yield
from glycolysis does not appear to be operative in C. thermocellum
when the PFK reaction is PPi dependent (37, 39, 44). Most of the
PPi required does arise as a by-product from biosynthesis but
must be synthesized from ATP or GTP by a separate mechanism.

The assumption that biosynthesis can be a sole source of pyro-
phosphate is also falsified by the results of washed-cell experi-
ments. Nongrowing cells are still capable of carrying out a PPi-
dependent glycolysis (Fig. 4). The reduced rate of glycolysis in
such cells is likely due to a limitation by the rate of ATP dissipa-
tion. ATP cannot anymore be used for biosynthesis, and the ATP
(or GTP) generated in glycolysis must be dissipated in futile cycles.

Alternative sources of pyrophosphate in metabolism. As bio-
synthetic reactions yield insufficient PPi for sugar catabolism in a
PPi-dependent glycolysis, other mechanisms must exist to supply
the PPi needed for glycolysis in C. thermocellum. Various possibil-
ities exist in this respect.

(i) ATP-pyrophosphatase (ATPNAMP � PPi) (EC 3.6.1.8) as
present in Spirochaeta thermophila (46).

(ii) PPi yielding reactions in the conversion of pyruvate to fer-
mentation products such as PPi-dependent acetate kinase (acetyl-
phosphate � Pi N acetate � PPi) (EC 2.7.2.12) as occurs in E.
histolytica (47) or PPi-linked PEP carboxykinase (PEP � Pi � CO2

NOAA � PPi) (EC 4.1.1.38) as occurs in P. shermanii (48) and E.
histolytica (49). In C. thermocellum, however, acetate kinase has
been shown to be ATP dependent (50) and Pi could not replace
GDP in the PEP carboxykinase reaction (Table 1).

(iii) Reversed reaction of a membrane-bound ion-pumping
inorganic pyrophosphatase (2 PiN PPi � H2O). It is well known
that this enzyme can generate PPi in Rhodospirillum rubrum and
plants (38, 51). In the C. thermocellum genome, a gene encoding a
potential proton pumping PPi-ase, clo1313_0823, is present, and it
is highly expressed at the transcription level (52) but not at the
translation level (15).

(iv) ADP-glucose synthase (ATP � glucose-1-PN ADP-glu-
cose � PPi). Simultaneous formation and degradation of glycogen
has been observed in various cellulolytic bacteria such as Fibrobac-
ter succinogenes (53), Ruminococcus albus (54) and Clostridium
cellulolyticum (55). A key enzyme in this process is ADP-glucose
synthase (glucose-1-phosphate � ATP N ADP-glucose � PPi).
This enzyme is annotated in the genomes of these bacteria and is
also present in the C. thermocellum genome. In saccharolytic ther-
mophiles, such as Thermoanaerobacter spp., polysaccharide syn-
thesis proceeds via UDP-glucose but not ADP-glucose (12).

The mechanisms for PPi generation in C. thermocellum metab-
olism remain to be investigated. Glycogen cycling deserves special
attention in this respect, as a variety of cellulolytic bacteria such as
C. cellulolyticum, F. succinogenes, and R. albus exhibit this peculiar
phenomenon (53–55). ADP-glucose synthase activity was present
in cellobiose-grown C. thermocellum (Table 1) and the C. thermo-
cellum genome also contains the other genes required for cycling
of glycogen. It may well be that the primary function of glycogen
cycling in bacteria is the supply of pyrophosphate for glycolysis, as
has been suggested for the PPi-dependent glycolysis in the noncel-
lulolytic Actinomyces naeslundii (29).

ATP yield of glycolysis in C. thermocellum. Our study shows
that published schemes on pyrophosphate-dependent glycolysis
in anaerobic heterotrophic bacteria are not valid. This holds in
particular for C. thermocellum. Not only ATP but also GTP is
generated, and inorganic pyrophosphate is consumed (Table 1
and Fig. 1). Entrance of cellobiose into the cell by an ABC trans-
porter may require between one and two ATP (56). It has, how-
ever, been calculated from biomass yields that oligosaccharide
transport by this mechanism probably requires one ATP equiva-
lent in both C. thermocellum (57) and E. coli (58). The relative
amounts of GTP and ATP are dependent on the in vivo cofactor
specificities of an ABC transporter for ATP or GTP (59) and of the
phosphoglycerate kinase reaction (Table 1). Pyrophosphate must
be generated directly or indirectly via ATP or GTP hydrolysis (Fig.
3). Assuming that both cellobiose transport and pyrophosphate
synthesis require one ATP equivalent, and in the (unlikely) event
that pyruvate formation proceeds exclusively via the malate shunt,
without direct decarboxylation of OAA, the equation for glycoly-
sis in cellobiose-grown C. thermocellum can be written as 1 cello-
biose � 4 NADP � 4 NDPN 4 pyruvate � 4 NADPH � 4 NTP.
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