
AST: An Automated Sequence-Sampling Method for
Improving the Taxonomic Diversity of Gene Phylogenetic
Trees
Chan Zhou1¤a, Fenglou Mao1, Yanbin Yin1¤b, Jinling Huang2, Johann Peter Gogarten3, Ying Xu1,4*

1 Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia,

United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Molecular and Cell

Biology, University of Connecticut, Storrs, Connecticut, United States of America, 4 College of Computer Science and Technology, Jilin University, Changchun, China

Abstract

A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to
derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-
oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high
demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer
operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying
phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the
creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for
improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the
taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four
problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal
RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our
results show that the resolution of our computational results is almost as good as that of manual inference by domain
experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is
available at http://csbl.bmb.uga.edu/,zhouchan/AST.php.
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Introduction

Reconstruction of gene trees represents a commonly encoun-

tered problem in evolutionary studies, such as inferring the

evolutionary history of a gene (or a gene family) [1,2], finding the

origin of a gene, discovering the function of a gene [3,4], and

estimating species trees from gene trees [5,6,7,8,9]. Reconstructing

the phylogenetic history of a gene (or gene family) generally

involves three steps: 1) selection of homologous sequences (DNA,

RNA, or protein sequences); 2) multiple sequence alignment

(MSA); and 3) phylogenetic tree reconstruction. Selection of

homologous sequences is one of the key steps [10,11,12,13].

Different strategies of sequence sampling may lead to different

gene trees. The problem of sequence sampling for gene tree

construction has been generally treated in a subjective manner,

although the related problem of taxonomic sampling for deter-

mining species phylogenies has been extensively discussed and

investigated in the past two decades [14,15,16,17,18,19,20,21].

Taxonomic sampling of species trees refers to sampling of taxa

based on some genetic markers of taxa or whole genomes, rather

than sequences of genes or proteins [22,23]. In this work, we study

the sequence sampling problem for gene trees.

One reason for the necessity of sequence sampling is the rapidly

increasing amount of genomic data due to the advancement of

next-generation sequencing techniques. A huge dataset of

homologous genes (e.g. 537,686 sequences of glycosyl transferase

gene family 2 [24]) may prevent biologists from using accuracy-

oriented MSA software tools, such as Muscle [25], Mafft [26],

ClusterW [27], T-Coffee [28], SAT-é [29,30], and PRANK

[31,32,33], and phylogenetic tree estimation methods, such as

PhyML [34], MrBayes [35] and PhyloBayes [36], due to their high

demands for computational resources, including both memory and

time. Even software tools specifically designed for large datasets

have to limit the size of an input dataset. For example, DACTAL

[37] is shown to be useful for datasets up to 28, 000 sequences, but

the accuracy of alignments and associated trees decreases as the

number of sequences increases.

An additional reason for sequence sampling is to facilitate the

detection of horizontal gene transfer (HGT) based on phylogenetic

tree comparisons. This is because many phylogenetic tree-based
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HGT detection approaches will be more applicable and accurate

when smaller gene trees are used [38,39,40].

The problem of homologous sequence sampling for a subset of

sequences with diverse coverage is not trivial owing to the current

biased pool of sequenced genomes [41] i.e. model organisms and

medically (or economically) important species tend to have more

sequences in the current databanks than others. Simple-minded

sampling strategies may lead to sequence datasets that are biased

towards certain families of organisms.

Two general strategies have been adopted in sequence sampling

when calculating gene phylogenies. One is to sample the most

similar sequences (SS) of a query sequence, using either BLAST

[42] or HMM-based methods [43]; another is manual selection

(MS), which samples sequences based on phylogenetic expertise

and knowledge about the evolutionary relationships among

relevant organisms. That knowledge may come from a preliminary

tree with as many homologous sequences as possible, or from

domain experts, who manually sample the tree-associated

sequences based on their expertise and experiences. The use of

SS may generate a tree that lacks important lineages as a result of

the low coverage of some taxonomic branches, while MS,

although perhaps suitable for limited case studies, is not generally

scalable. Here we focus on the question of sequence sampling to

achieve a high taxonomic diversity.

To obtain gene trees with high taxonomic diversity, we

developed an algorithm named as AST to automatically select

representative homologous sequences over taxa. In this study we

show that, for the same number of sampled sequences, AST gives

rise to more diverse taxa as compared to the currently used

methods.

To illustrate its effectiveness, we applied the AST method to

resolve the following evolutionary questions: (i) can we infer the

evolutionary history of the small ribosomal subunit (SSU) protein

S5 (rpS5), 16 S ribosomal RNA (16 S rRNA) and glycosyl-

transferase gene family 8 (GT8), and can we identify ancient

HGTs from bacteria to eukaryotes.

Materials and Methods

2.1 Sampling algorithm
The AST algorithm samples m sequences from n non-redundant

homologous sequences of a query sequence, based on the NCBI

taxonomic distribution covered by the n sequences. AST ensures

that the sampled sequences will have a high taxonomic diversity

covered by the given pool of n homologous sequences and the most

even distribution across taxa, m,n. Consider a taxon T having G

sub-taxa {T1, T2…, TG}with Ti having ni homologous sequences

(to the query) so
PG

i~1

ni~n, ni$0. Here, the sub- taxa {T1, T2…,

TG}are the children taxa of a taxon T, rather than all its

descendants. The goal is to select mi representatives from the ni

homologs from Ti such that mi will be chosen to be the integer

value that is closest to the average number of sequences (calculated

as m/G9) in each taxon among the G9 taxa, where G9 is the number

of taxa having non-zero n homologs (n.0) of the query. Then all

the {m1, m2, m3,… mG9} values will be the same value or differ by 1

and all the remaining mi: { mG9+1,…, mG} where taxa Ti does not

have homologs (i.e. ni = 0) are set to be zero (see Figure 1b as an

example). Explicitly, if m/G9 does not equal an integer, we sort the

taxa descendingly by number of sequences in each taxon, then

assign mi as int(m/G9)+1 for the first m-G96 int(m/G9) taxa, as

int(m/G9) for the remaining taxa, where int(x) represents the

integral part of x. It is easy to check that
PG

i~1

mi~m.

To maximize the taxonomic diversity, our algorithm searches

exclusively among the hierarchy of NCBI taxa. It recursively solves

this problem as follows. If mi.1 and Ti has children taxa in the

next level, then recursively call the above algorithm by setting n to

ni, m to mi and Ti to the current taxon. If mi.1 and Ti does not

have sub-taxa (i.e., a leaf-taxon), sample mi sequences with the

highest sequence similarity to the query from the ni sequences. The

algorithm iterates until mi = 1 or 0, or Ti becomes a leaf-taxon.

Figure 1a illustrates a workflow of the algorithm (we refer readers

to Figure 1b for an example).

2.2 Simulated data
We used the EvolveAGene [44] program to generate three types

of simulated gene trees: symmetric trees, random trees and

asymmetric trees, as each of these three types may exist in reality.

EvolveAGene [44] can simulate the evolution of DNA sequences

through mimicking mutation and natural selection, and generate

the off-spring sequences, whose ultimate structures will be

symmetric or random trees based on specified parameters. Here

we take each simulated DNA sequence in each generation as the

whole genome of an organism, with each node of the simulated

trees as a taxon. The relationships among the taxa (nodes) are

available from the output of EvolveAGene.

To generate the simulated trees for this study, we randomly

chose the xisC gene of bacterium Nostoc sp. PCC 7120 (GenBank

accession: U08014) as the initial root sequence and generated

1,024 simulated sequences using the program, where 1,024 is used

because it is a power of 2 as required for generating a symmetric

tree, and this size is comparable to the order of magnitude of the

number of currently sequenced genomes [45].

EvolveAGene provides an option for generating random trees

without any specified tree topology. When using this program, we

set the average branch length at 0.3 and the number of leaf taxa as

1,024 with all the other parameters set at their default values.

To generate asymmetric trees, we first generated a symmetric

tree with 2,048 leafs, and then select 1,024 leafs to construct an

asymmetric tree using the following procedure. We randomly

chose x percentage of the selected 1,024 leafs from the left branch

of the symmetric tree and (1.02x) percentage of 1,024 leafs from

the right branch. Here we used x values equal to 0.1, 0.2, 0.3, and

0.4 to generate the trees.

2.3 Biological data
Amino acid sequences of the rpS5 proteins from 816 bacteria

and 68 archaea were downloaded from the NCBI curated Protein

Cluster DB (Oct, 2010) (http://www.ncbi.nlm.nih.gov/

proteinclusters). They were identified as non-redundant homologs

of the Escherichia coli rpS5 protein using pBLAST with an E-value

,0.01. The rank of the similarity scores between these homolo-

gous proteins were based on the BLAST bitscore.

The 918 GT8 protein sequences and their pair-wise similarity

scores were provided by the authors of [1].

2.4 Phylogenetic analyses
To construct the phylogeny for rpS5 of E. coli and other related

organisms, we performed multiple sequence alignments using

MAFFT (version 6.603) [46], employing the L-INS-I model,

which adopts local pair-wise alignments by the Smith-Waterman

algorithm and is considered to be one of the most accurate

multiple sequence alignment methods currently available [47,48].

Then a phylogenetic tree was constructed using the FastTree

program (version 2.1.3) [49], which implements a superfast but

fairly accurate approximate maximum likelihood method [49].

Sequence-Sampling Method for Gene Trees
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To study the phylogeny and horizontal gene transfer in the

class-I of glycosyl-transferase gene family 8 (GT8), we adopted a

rigorous PhyML [50] analysis as used in previous analyses of GT8

[1]. For the PhyML analyses, trees were built with the JTT

substitution model [51] along with the following parameters:

estimated proportion of invariable sites, four rate categories,

estimated gamma distribution, and optimized starting BIONJ tree

[52]. Bootstrapping was performed using 100 replications.

MrBayes [53] analyses were used with a mixed amino acid model

estimated in the run, an estimated proportion of invariable sites,

an estimated gamma distribution parameter, and one million of

generations.

2.5 AST software package
Currently, two versions of the AST program are provided at

http://csbl.bmb.uga.edu/,zhouchan/AST.php a basic version, and a

more advanced version. The basic AST suite consists of the core

method of AST and deals with a user pre-prepared input file with

the following information: a list of IDs of non-redundant

homologous sequences, their taxon IDs and similarity scores.

The advanced suite does not require a prepared list of IDs of

homologs. Instead, it only needs the BLAST report (in xml format,

-m7 output) and will generate the input file based on the BLAST

report automatically. The program has a set of default parameters,

such as the BLAST bitscore and E-value cutoffs, but users can

adjust these values if needed (see the README file of the program

package for details).

Results

We assessed the performance of AST on both simulated and

real biological data, and compared the results of AST with those

by SS, random sampling (RS) methods and MS (that is, if results

were available in the literatures [1,24] using the MS method).

Here, the SS method samples m non-redundant homologous

sequences that are most similar to the query, while the RS

method randomly samples m non-redundant homologous sequences.

In this study we show that the trees generated by AST indeed have

more taxonomic diversities than those by SS and RS, and are

comparable with the taxonomic diversity of the whole gene trees

that are generated with all available homologs.

3.1 Comparative analyses of tree construction on
simulated data

We compared the taxonomic coverage of sequences sampled by

AST, SS, and RS on three types of simulated trees: symmetric,

random, and asymmetric trees. One hundred trees were generated

for random trees and for each of the asymmetric trees with a bias

index x = 0.1, 0.2, 0.3, 0.4, respectively (see Materials and

Methods for details). Only one symmetric tree is generated since

such trees always have the same topology.

Figure 1. AST algorithm. (a) Workflow of the AST algorithm. (b) An example of the sampling procedure of AST. Each circle represents one taxon: C-
all Cellular Organism; A-Archaea; B-Bacteria; A1 is an archaeal taxon labeled as A1, similar for A2, A3, B1, and B2. The number listed on the left shoulder
of the circle (outside the rectangle) is the number of sequences from the taxon labeled in the circle, and the number listed on the right shoulder of
each circle is the number of sampled sequences by AST from the taxon in the circle. In this example there are a total of 11 homologous sequences in
all cellular organisms, among which 8 belong to archaea, 3 from bacteria and none from eukaryotes.
doi:10.1371/journal.pone.0098844.g001

Sequence-Sampling Method for Gene Trees
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The following summarizes the performance of the three

methods on asymmetric trees in terms of the taxonomic coverage

at each taxonomic level when sampling with m = 50, 100, 200,

300, 400, 500 from n = 1,024 sequences which are the simulated

non-redundant homologs of the root-sequence (see Materials and

Methods for details). Here taxonomic level refers to the level (the

relative position) in a taxonomic hierarchy with the root taxon

being at level 1, the direct children taxa being at level 2 and so on.

Here we use the asymmetric trees with bias index x = 0.1 as an

example. Table 1 summarizes the taxonomic coverage for sub-

trees as well as the whole tree at the 8th taxonomic level by the

three methods. The sub-trees sampled by AST cover significantly

more taxa than those sampled by RS (P-value = 0.025) and SS (P-

value = 0.0017), respectively, across all the m values defined above

(Table 1), as determined using Mann-Whitney tests. In addition,

when the number of sampled sequences is larger than 200, the

sub-trees sampled by AST cover all the taxa (,116) at the 8th

taxonomic level of the whole tree whereas the RS and SS miss

large numbers of taxonomic lineages (Table 1). Similar compar-

ative results were obtained at all the other taxonomic levels, except

for the 1st and 2nd levels where all the three methods sampled all

the taxa. Highly similar comparative performances were observed

on asymmetric trees generated using bias index x = 0.2, 0.3 and

0.4.

On the symmetric and random trees, we also obtained highly

comparative performance results (see Table S1 and S2): in all cases

the sub-trees sampled by AST cover more taxa than those sampled

by SS and RS.

3.2 Inference of the evolutionary history of a gene or
gene family

Inference of the evolutionary history for a gene (or gene family)

can help to derive its detailed functions (e.g. orthologs vs paralogs),

as well as its possible origin. In the following, we show that the

global phylogenies of the E. coli rpS5 and 16 S bacterial ribosomal

RNAs inferred based on the sub-tree sampled with AST are very

similar to that inferred by the tree built on all homologs,

highlighting the ability of our method to preserve the key

evolutionary information of the whole phylogeny in a smaller

tree. We also did a similar analysis on cell wall synthesis-related

glycosyl-transferase family 8 (GT8), and the same level of high-

quality phylogeny was obtained.

3.2.1 Comparative analyses of the rpS5 trees by three

methods. A total of 884 rpS5 proteins (i.e. 816 and 68 of

bacterial and archaeal origin, respectively) were identified as non-

redundant homologs of the E. coli rpS5 protein (see Materials and

Methods). To demonstrate that AST generates a pool of more

taxonomically diverse representatives than the other two methods,

we compared the trees with sequences sampled by AST, SS and

RS, with the whole tree based on all 884 sequences.

We note that the sub-trees sampled by AST reflect the whole

tree much better than the sub-trees sampled by RS and SS.

Specifically, the sub-trees built on sequences sampled using AST

contain all the 19 phyla represented in the whole tree (Figure 2

and Table S3) when m ranges from 50 to 400. In contrast, the sub-

trees sampled by RS contain 10 out of 19 phyla and the sub-tree

sampled by SS only covers one of 19 phyla at m = 50.

It is worth noting that the advantage of AST becomes more

obvious when measuring the coverage at the higher taxonomic

levels (e.g. phylum (Figure 2a), class (Figure 2b) and order levels).

Regardless of the number of sequences sampled, AST always gives

rise to higher taxa coverage than the other two methods (Table

S3).

Additionally, we evaluated the performances of AST on a

published large empirical benchmark datasets for phylogeny

estimation [54], which includes 38,905 16 S rRNA sequences of

34,917 bacteria. The results of the 16 S rRNA sampling (see

Figure S1 and Table S4) are similar to that of the rpS5 protein.

3.2.2 Inferring the evolution of the GT8 gene family. The

GT8 family is a large gene family with extensive gene duplications

[55]. It has been shown to fall into three well-delineated functional

classes, which have cyanobacterial sequences mixed with eukary-

otic sequences [1]. Here we applied AST to do the phylogenetic

analysis of the same set consisting of 918 GT8 protein sequences as

in [1] to examine if the same result can be achieved using this

simple procedure.

Figure 3 shows three phylogenetic trees based on AST, SS and

RS sampling for m = 300 out of the 918 sequences. We can see that

the AST tree (Figure 3a) is very similar to the Figure 2 published in

[1]. Specifically, the AST tree classifies GT8 proteins into three

well-delineated functional classes and class-I has the cyanobacter-

ial sequences mixed with eukaryote ones, while the SS and RS

trees exhibit large discrepancies with the trees in [1] (not shown

here). Specifically, the SS tree (Figure 3b) has four rather than

three classes. It consists of only homologs in plant (in red) and

Table 1. The coverage over taxa at taxonomic level 8 for asymmetric trees with sequences sampled by AST, RS and SS using bias
index = 0.1.

m AST a RS b SS c All-seq d

50 49.9860.14 37.8462.26 460 116.462.29

100 96.5561.51 59.2363.42 7.3260.47

200 116.462.29 78.763.20 14.3060.46

300 116.462.29 88.2263.30 21.2660.46

400 116.462.29 94.2463.45 28.2360.44

500 116.462.29 99.5563.13 35.1460.40

aAST: automated sampling homologs over taxa.
bSS: sampling homologs most similar to the query by a custom script.
cRS: random sampling by a custom script.
dAll-seq: all the 1024 homologous sequences without sampling.
The first column m represents the number of sampled sequences and the remaining value represents the mean6std of the number of covered taxa by each method
when sampling m sequences. The last column indicates the average along with standard deviations of the number of taxa covered by the number of all homolgous
sequences for 100 asymmetric trees.
doi:10.1371/journal.pone.0098844.t001
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bacteria (excluding cyanobacteria in sienna), but misses consider-

able amount of information from other taxonomic lineages such as

fungi (in green), virus (in yellow), metazoa (in purple) and

cyanobacteria (in sienna). The RS tree covers more lineages

(Figure 3c) than the SS tree, but it does not always include

cyanobacteria in class-I. This is because each random sampling

procedure gave rise to different RS trees and some RS trees may

group cyanobateria in the class I while others may not include any

cyanobateria.

We note that the tree structure with sequences sampled by AST

is highly stable for m. = 50. The AST trees with m = 50, 100, 200

and 400 are given in Figures S2–S5.

3.3 Detection and rigorous testing of ancient HGT events
Ancient HGTs cannot be easily detected using a phylogenetic

method due to lack of high-quality datasets. Here we applied the

AST method to the detection of an ancient HGT from the

ancestor of cyanobacteria to the ancestor of plants [1] to show that

the AST method can reliably detect HGT events and provide a

rigorous test through comparing the obtained results to those that

were manually derived by domain experts.

When inferring the evolutionary history of GT8, our AST tree

(Figure 3a) already shows that three cyanobacterial GT8

sequences appear among eukaryotic GT8 sequences. The

cyanobacterial sequences in class-I are basal to sequences from

plants and some other eukaryotic GT8 proteins. This observation

suggests that either there is an ancient HGT from cyanobacteria to

Figure 2. Taxonomic distributions at the phylum (a) and class level (b) for sub-trees of the rpS5 sequences sampled by AST, SS, and
RS, respectively. The y-axis gives the number of phyla/classes covered by the sampled sequences, and the x-axis represents the number of sampled
sequences m. The original non-redundant set covers 19 phyla and 33 classes (see Section 3.2.1 for details).
doi:10.1371/journal.pone.0098844.g002
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eukaryote or cyanobacteria acquired their homolog from a

eukaryote. To test these two hypotheses, a previous publication

[1] manually selected 15 representative sequences based on the

authors’ prior knowledge, then constructed the phylogenetic trees

of these 15 sequences through a computational procedure

consisting of bootstrap and Bayesian analyses using PhyML [50]

and MrBayes [53]. They found that in these well resolved

phylogenetic trees the cyanobacterial sequence is indeed mixed

with eukaryotes in class-I and groups the base of the plant

homologs [1].

We directly applied AST to sample 15 sequences from all 268

sequences in class-I without any prior knowledge and complex

computational procedure, and then used PhyML and MrBayes to

perform bootstrap and Bayesian analyses with the same criteria as

in [1]. The two phylogenetic trees, each generated by PhyML or

MrBayes, are quite similar, although branch lengths and the

statistical supports of some nodes are different (Figure 4a). The

AST-based tree clusters all three cyanobacterial GT8 proteins (in

sienna) and clusters them with the other class-I proteins from

plants (in red) and other eukaryotes (in mignonette), except for

some metazoan proteins (in purple), with strong statistical support

values. This result is consistent with the results given in [1]. With

regard to the RS- and SS-based trees (Figure 4b and 4c), no

information about a possible HGT from cyanobacteria can be

derived from either of them. AST is able to help rigorous HGT

detection since the small trees sampled by AST will cover more

taxa branches and hence will also cover the divergent recipients of

HGT events, e.g. cyanobacteria in Figures 3 and 4.

Discussions

In addition to the aforementioned examples, AST can also be

applied to infer local phylogenies of gene trees and detect recent

HGTs. For the former analyses AST requires a well-prepared file

as input: a list of IDs of homologs, which should be limited within

the local taxonomic lineage under consideration. For example, if

one would like to study the evolution of a gene across eukaryotes, it

would be reasonable to prepare a list of IDs of homologous

sequences mainly from eukaryotic lineages, then AST will sample

Figure 3. Phylogeny of 300 GT8 sequences sampled by (a) AST, (b) Similarity Sampling (SS) and (c) Random Sampling (RS)
approaches, respectively. Three major functional classes are identified in (a), which is consistent with a previous publication [1]. In (b), the
phylogenetic tree is composed of four classes, which are incorrect. In (c), cyanobacterial sequences (in sienna, GenBank gi: 254421706, 254423034,
and 81299339) are incorrectly grouped with the out-group (in black). Color definitions: red for plants, green for fungi, purple for metazoa, olive-green
for other eukaryotes, cyan for archaea, blue for other bacteria, sienna for cyanobacteria, orange for viruses and black for others.
doi:10.1371/journal.pone.0098844.g003

Sequence-Sampling Method for Gene Trees
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Figure 4. Phylogeny of 15 representative amino acid sequences from the GT8 class-I. To determine the roots of trees, we randomly
selected a non-GT8 sequence (GI: 15611887) as an outgroup (in black). The sequences were sampled by (a) AST; (b) Random Sampling; and (c)
Similarity Sampling approaches. The Bayesian posterior probability in grouping the 3 cyanobacterial sequences with metazoa and plants in (a) is 0.99

Sequence-Sampling Method for Gene Trees
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most sequences from eukaryotic and a few sequences from bacteria

and/or archaea as out-groups if few (e.g. 1 or 2) of bacterial or

archaeal sequences are included in the list of homologs. The

detection of recent HGTs does not require sampling of homologs

over all taxa. In a similar fashion as for the local gene phylogenies,

AST requires a list of IDs of homologs within the concerned

taxonomic group. For example, to infer recent HGTs within the

proteobacteria group, only the homologs from the proteobacteria

group are included in the input file. To detect ancient HGTs

between distant organisms, which indeed requires sampling

sequences over extensive taxa, the input file (a list of IDs of the

homologs) should include homologs from all domains; otherwise

the gene trees could not include branches from distant organisms

which may have conflicts with their corresponding species tree,

hence indicating a putative HGT.

If studying a gene family with many domain rearrangements,

we suggest using the domain as a query to determine the

homologous sequences instead of the entire gene sequence, and

then apply the AST software to the homologous pool defined by

that domain.

AST is designed to maximize taxonomic diversity, treating each

branch equally and considering the topology of gene trees. In

contrast, phylogenic diversity evaluates the quality of both branch

length and topology [56]. If branch length is incorporated into the

sampling procedure, then maximizing taxonomic diversity will

also maximizing phylogenetic diversity [56,57] of gene trees. To

expand applications of the AST software, we plan to introduce

weights and branch lengths (as parameters) into the sampling

procedure in a future upgrade, and will also take the uneven

distribution of available sequences across different taxa into

consideration. Last but not the least, while AST ensures a high

taxonomic diversity, it still requires strong methods for multiple

sequence alignment and tree estimation for reliable gene

phylogenetic inference.

Supporting Information

Figure S1 Taxonomic distributions at the phylum (a) and class

level (b) for sub-trees of 16 s ribosomal RNA sequences sampled

by AST, SS, and RS, respectively. The y-axis gives the number of

phyla/classes covered by the sampled sequences, and the x-axis

represents the number of sampled sequences m. There are 26

phyla and 37 classes covered by the original non-redundant set
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all 37 classes.
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Figure S2 Phylogenetic trees of 50 GT8 sequences sampled by

AST, SS, and RS respectively. See the legend of Figure 3 for

further details.
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Figure S3 Phylogenetic trees of 100 GT8 sequences sampled by

AST, SS, and RS respectively. See the legend of Figure 3 for

further details.

(PDF)

Figure S4 Phylogenetic trees of 200 GT8 sequences sampled by

AST, SS and RS respectively. See the legend of Figure 3 for

further details.

(PDF)

Figure S5 Phylogenetic trees of 400 GT8 sequences sampled by

AST, SS and RS respectively. See the legend of Figure 3 for

further details.

(PDF)

Table S1 Taxonomic distributions for symmetric trees when

sequences were sampled by AST, SS and RS, respectively.

(XLSX)

Table S2 Taxonomic distributions for random trees when

sequences were sampled by AST, SS and RS, respectively.
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Table S3 Taxonomic distributions for rpS5 proteins with

sequences sampled by AST, SS and RS at the super-phylum,
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with sequences sampled by AST, SS and RS at the super-phylum,

order, family, genus, and species levels.

(XLSX)
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