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Abstract The Clostridium genus of bacteria contains the
most widely studied biofuel-producing organisms such as
Clostridium thermocellum and also some human pathogens,
plus a few less characterized strains. Here, we present a
comparative genomic analysis of 40 fully sequenced clostrid-
ial genomes, paying a particular attention to the biomass
degradation ones. Our analysis indicates that some of the
Clostridium botulinum strains may have been incorrectly clas-
sified in the current taxonomy and hence should be renamed
according to the 16S ribosomal RNA (rRNA) phylogeny. A
core-genome analysis suggests that only 169 orthologous

gene groups are shared by all the strains, and the strain-
specific gene pool consists of 22,668 genes, which is consis-
tent with the fact that these bacteria live in very diverse
environments and have evolved a very large number of
strain-specific genes to adapt to different environments.
Across the 40 genomes, 1.4–5.8 % of genes fall into the
carbohydrate active enzyme (CAZyme) families, and 20 out
of the 40 genomes may encode cellulosomes with each ge-
nome having 1 to 76 genes bearing the cellulosome-related
modules such as dockerins and cohesins. A phylogenetic
footprinting analysis identified cis-regulatory motifs that are
enriched in the promoters of the CAZyme genes, giving rise to
32 statistically significant motif candidates.
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Introduction

Clostridium is a bacterial genus in the National Center for
Biotechnology Information (NCBI)’s taxonomy database.
Forty genomes of this genus have been fully sequenced as
of April 2012. These bacteria, all being anaerobic Firmicutes,
live in very different environments using diverse substrates
and produce diverse metabolites [1]. Thirty-four of the 40
strains are either pathogens or biomass degraders, highlighting
the economic importance of these strains, while the remaining
six are less functionally characterized.

We are mainly interested in the biomass degraders among
the 40 genomes since some of these bacteria are among the
most promising microbes that can be used to produce the
second generation biofuels with plant lignocellulosic biomass
as the feedstock [2]. For example, Clostridium thermocellum
(C. thermocellum) is a keymodel organism used for bioenergy
research. It is a cellulolytic, thermophilic anaerobic bacterium
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that encodes a large number of cellulases and hemicellulases
[3]. Its genome also encodes cellulosomes, each being a large
protein complex containing a long characteristic scaffold in
protein that is bound by multiple glycolsyl hydrolases [4]. A
systematic transcriptomic analysis of C. thermocellum has
shown how the organism changes its gene expressions and
reduces the growth rates under low substrate availability
[5].As of today, only one study has been reported on a com-
parative analysis of 11 cellulosome-producing Clostridia [6].
Currently, 40 complete clostridial genomes have been se-
quenced and are publicly available, of which 13 (33 %) and
21 (53 %) have been reported to be biomass degraders [2,
7–11] and pathogens [12–18], respectively.

Here, we report the genomic differences among these 40
Clostridia, particularly between the biomass degrader group
and the pathogen group derived through a comparative geno-
mic analysis, including a pan-genome analysis [19]. The
concept of pan-genome was originally defined as the set of
all the (orthologous) genes encoded in any strain of a single
species [20], while the core genome is defined as the gene set
shared by all the stains of the species. Pan- and core-genome
analyses have been found to be informative for understanding
the big-picture evolutionary issues [20]. Here, we generalized
the definition to the genus level in our comparative study. Our
comparative genome analysis also addressed: (a) how are the
40 genomes phylogenetically related, (b) do biomass de-
graders share any common genomic features and how are they
different from the other clostridial genomes, (c) do biomass
degraders encode more biomass-related genes such as carbo-
hydrate active enzymes (CAZymes), and (d) do they share any
conserved regulatory motifs in their promoter regions? An-
swers to these questions can help to better understand the
molecular mechanisms of biomass degradation and possibly
guide the development of more efficient bacterial strains for
bioenergy production.

Methods and Materials

Data

We retrieved 40 sequenced clostridial genomes from NCBI
(http://www.ncbi.nlm.nih.gov/genome/browse/) as of April
2012, shown in Table 1, each given a unique ID, with
biomass degraders numbered between 1 and 13, pathogens
numbered between 14 and 34, and the remaining six
numbered from 35 to 40. The operon information of the
genomes needed for orthologous gene prediction is retrieved
from the DOOR database [21, 22], which is needed for
orthologous gene predictions. The annotated ribosomal RNA
(rRNA) information is retrieved from NCBI, which is used in
our phylogeny analysis.

Genomic Information and Annotations of Clostridial
Genomes

As part of our comparative genome analyses, the membrane
proteins are identified using TMHMM [39], and the signal
peptides are predicted using signal P [40], which is used for
secretory protein prediction. CAZyme genes are predicted
using dbCAN [41], and the CAZy database [42] is used as a
benchmark to evaluate the dbCAN program.

Pan-Genome Analysis

In order to determine if a gene is present in more than one
genome, we need to identify the orthologous gene groups
across the genomes. Overall the 40 genomes encode
141,710 protein genes. Orthologous gene groups are predicted
across these genes using our own tool GOST [43] along with a
Markovian clustering algorithm MCL [44]. We did a pan-
genome analysis following Tellelin’s method [45], based on
the predicted orthologous groups. The method requires to
randomly select n genomes from the 40 and to estimate the
size of the pan-genome based on the selected n genomes and
to do this repeatedly using a different combination of n ge-
nomes each time to calculate the average of the estimated size.
Then, do this for a different n between 1 and 40 to get
distributions for the pan-genome size as functions of n.

Specifically, we go through all (n
40) combinations, the num-

ber of different combinations in selecting n genomes out of 40,
for each n between 1 and 40, to calculate the average size as
outlined above. For cases where (n

40) is too large, we used
50,000 as the upper bound instead. Basically for each n
genome combination, we calculated the size of the estimated
pan-genome. The average sizes were then calculated across all
selected n genome combinations for each n. Then, we derive
an analytical function using a generic exponential function by
fitting the averaged sizes across different n’s to derive size
distribution functions of n, for the pan-genome. Based on
whether the function value has a finite upper bound or not as
n increases, we predict the pan-genome is open or not.

We have done a similar analysis to estimate the core-
genome size of the 40 Clostridia to check if the size function
converges to zero or not as n increases.

Cis-Regulatory Motif Prediction and Analysis for CAZyme
Genes

For each orthologous group of the CAZyme genes, we have
retrieved their promoter sequences of up to 300 bps long in
their original genomes on which we did de novo motif finding
using BoBro [46] with parameters set at (k-3, c-1.00, o-10, l-
14, u-0.70, e-3, w-2.00, b-0.95, and N-6), a tool that our lab
developed. We then clustered all the predicted motifs into 32
groups, representing 32 motifs, based on their sequence

Bioenerg. Res.

http://www.ncbi.nlm.nih.gov/genome/browse/


similarities, using a similarity score cutoff =0.55 [47]. To scan
amotif across the 40 clostridial genomes for finding additional
motif instances, we used the motif scanning tool BBS, which
is part of the BoBro package [47] with parameters (t-0.95, s-5,
e-1, c-0, u-0.95, and n-0.50). Specifically, consider a set of

promoter sequences P for motif scanning in a genome G. We
calculated (i) the p value for each predicted motif using a null
hypothesis that it appears in P by chance (so the smaller a p
value, the less likely it is found by chance). Specifically, a
motif is considered statistically significant if its p value <3.3e–

Table 1 Forty clostridial strains with their unique IDs and isolation information

Species Isolation

1 Clostridium acetobutylicum ATCC 824 Garden soil in Connecticut [7, 23]

2 Clostridium acetobutylicum DSM 1731 Industrial fermentations; German Collection of Microorganisms and Cell Cultures [24]

3 Clostridium acetobutylicum EA 2018 Soil [25]

4 Clostridium beijerinckii NCIMB 8052 Soil [26]

5 Clostridium cellulolyticum H10 Decayed grass compost [27]

6 Clostridium cellulovorans 743B Wood chip pile [28]

7 Clostridium clariflavum DSM 19732 Anaerobic sludge of a cellulose-degrading methanogenic bioreactor [29]

8 Clostridium phytofermentans ISDg Forest soil near the Quabbin Reservoir in Massachusetts

9 Clostridium saccharolyticumWM1 Methanogenic cellulose-enriched sewage sludge [30]

10 Clostridium sp. BNL1100 Corn stover enrichment culture [31]

11 Clostridium thermocellum ATCC 27405 Compost soil [32]

12 Clostridium thermocellum DSM 1313 Compost soil [32]

13 Clostridium lentocellum DSM 5427 Estuarine sediment of a river that received both domestic and paper mill waste [9]

14 Clostridium botulinum A str. ATCC 19397 Laboratory strain probably from foodborne botulism cases in the Western USA [33]

15 Clostridium botulinum A str. ATCC 3502 Canned peas, California [34]

16 Clostridium botulinum A str. Hall Canned peas, California [34]

17 Clostridium botulinum A2 str. Kyoto Infant botulism in Kyoto, Japan, in 1978

18 Clostridium botulinum A3 str. Loch Maree Duck liver paste during a botulism outbreak at a hotel in the Scottish highlands in 1922

19 Clostridium botulinum B str. Eklund 17B Marine sediments taken off the coast of Washington, USA

20 Clostridium botulinum B1 str. Okra Foodborne botulism incident in the USA

21 Clostridium botulinum Ba4 str. 657 Infant botulism case in Texas in 1976 [35]

22 Clostridium botulinum BKT015925 Outbreak in a Swedish poultry farm

23 Clostridium botulinum E3 str. Alaska E43 Salmon eggs associated with a foodborne case of botulism in Alaska

24 Clostridium botulinum F str. 230613 Information not available

25 Clostridium botulinum F str. Langeland Home-prepared liver paste involved in an outbreak of foodborne botulism
on the island of Langeland in Denmark in 1958

26 Clostridium botulinum H04402 065 Botulism patient in the UK in 2004 [36]

27 Clostridium difficile 630 Clinical isolate Switzerland [34]

28 Clostridium difficile BI1 Human strain isolated in the USA in 1988 [37]

29 Clostridium difficile CD196 A nonepidemic strain isolated from a patient with PMC in Paris, 1985 [37]

30 Clostridium difficile R20291 Stoke Mandeville Hospital, UK, in 2006 [37]

31 Clostridium tetani E88 Natural habitat is soil, dust, and intestinal tracts of various animals; a variant of strain
Massachusetts [18]

32 Clostridium perfringens ATCC 13124 Commonly found in soil, sediments, and the human gastrointestinal tract [17]

33 Clostridium perfringens SM101 Commonly found in soil, sediments, and the human gastrointestinal tract [17]

34 Clostridium perfringens str. 13 Commonly found in soil, sediments, and the human gastrointestinal tract [17]

35 Clostridium sp. SY8519 Isolated from adult human intestine [12]

36 Clostridium sticklandii DSM 519 Mud water [34]

37 Clostridium kluyveri DSM 555 Mud, fresh water [34]

38 Clostridium kluyveri NBRC 12016 Mud, fresh water [34]

39 Clostridium novyi NT Soil and feces [38]

40 Clostridium ljungdahlii DSM 13528 Chicken yard waste
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5, which has been corrected for multiple testing by the
Bonferroni correction based on the estimated (average) num-
ber, 300, of transcription factors in each clostridial genome
and (ii) an enrichment score of the motif occurring inP against
inG (so the higher the score, the more enriched the motif is in
P than in the general backgroundG) using BBS. This can help
to refine the motif prediction.

Pathway Enrichment Analysis

We have carried out pathway enrichment analyses on the
identified orthologous gene groups against pathways in the
KEGG database using the KOBAS 2 server [48, 49] on both
the biomass degrader group and the pathogen group. The two
sets of enriched pathways for the two groups are then statisti-
cally compared using a Fisher’s exact test. In addition, the FDR
control given in the multtest R package was applied to correct
for the p values derived through multiple comparisons [50].

Results and Discussion

Phylogenetic Analysis of 40 Clostridial Genomes

We built a 16S rRNA tree over the 40 genomes (see Table 1)
and labeled the biomass degraders (red), pathogens (blue), and
the remaining (black) in Fig. 1. It is clear from the figure that

the biomass degraders and pathogens are not strictly separable
in the tree. Eight biomass degraders are clustered together
with four strains ofClostridium difficile and two other bacteria
(cluster I), while five other biomass degraders are clustered
together with all the other 17 pathogens and four other
Clostridia (cluster II). In addition, three C. botulinum strains
(labeled with blue stars) are not clustered with other
C. botulinum strains, hence suggesting that these three
C. botulinum strains should be renamed according to the
16S rRNA phylogeny, which has been observed by other
researchers [16, 51].

Meanwhile, we have also labeled the biomass degraders
predicted to encode cellulosomes (red stars) if dockerins and
cohesins were found in their genomes. Particularly, the scaf-
fold in protein (CipA) in Clostridium acetobutylicum [6] is
encoded by a pseudo gene, and thus, it may not necessarily
make cellulosomes. The cellulosome-encoding bacteria are
present in both clusters, defined above. In cluster I, seven
out of the eight biomass degraders encode cellulosomes, while
in cluster II, four out of five biomass degraders encode
cellulosomes. This suggests that the cellulosomal structure
may have developedmultiple times during evolution, possibly
by independent gene transfers into different bacteria.

It should be noted that a 16S rRNA may have multiple
copies in a genome, which may differ in their sequences [43].
To take this into consideration, we have constructed a tree
containing all the 16S rRNAs in each of the 40 genomes to
evaluate the impact of the 16S rRNA gene as a molecular

Fig. 1 A 16S rRNA tree of the 40
clostridial genomes. The biomass
degraders are highlighted in red
and the animal pathogens are in
blue. The three blue genomes
followed by a star should be
considered for renaming based on
this species tree
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marker. The new phylogeny is largely in agreement with the
one in Fig. 1, except that five 16S rRNAs from two genomes
are stray nodes (see Supplementary Fig. S1). We have also
looked into the phylogenetic relationship among the 40 genomes
based on 31 conserved protein families [52] (Supplementary
Fig. S2). The topologies in Fig. 1 and Fig. S2 are basically in
agreement.

Comparison of General Features Between Biomass Degraders
and Pathogens

We have compared some general features between the bio-
mass degraders and the pathogens (see Supplementary
Table S1). The average genome size of the biomass degraders
is 4.5 Mbps (with median of 4.6 Mbps and interquartile range
(IQR) of 0.69 Mbps), which is larger than that of the patho-
gens at 3.8 Mbps (with median of 3.92 Mbps and IQR of
0.5 Mbps). Similar was observed between the number of
genes, 4,095 (with median of 4,085 and IQR of 342) versus
3,593 (with median of 3,699 and IQR of 574) on average, the
G + C content at 34.9 % (with median of 34.8 % and IQR of
6.43 %) versus 28.3 % (with median of 28.2 % and IQR of
0.36 %), and the coding density at 84.2 % (with median of
84.8 % and IQR of 4.06 %) versus 81.5 % (with median of
81.4 % and IQR of 1.1 %), between these two classes, as
shown in Fig. 2. The p values of a nonparametric Wilcoxon
rank-sum test for the above comparisons are all less than 0.01;
hence, the difference is statistically significant between these
two classes. These make sense as bacteria tend to lose genes

and DNAs (so called genome reduction), reduce GC content,
and increase the content of noncoding repetitive elements
when transforming from free living to parasitic [53–55] like
the pathogen group here. In addition, the biomass degraders,
overall, have significantly higher percentages of secretory
proteins than the pathogens. This is not surprising as biomass
degraders encode a large number of biomass-degrading en-
zymes that need be transported out of the cells.

Knowing that the 34 pathogens and biomass degrader
genomes fall into 14 species, ten for biomass degraders, and
four for pathogens, we have carried out a similar study to the
above but focused on differences between the two groups of
Clostridia within each species, basically to examine the var-
iations of each group across different species. Table 2 sum-
marizes the analysis results across the 14 species.

The Core- and Pan-Genome Analysis of the 40 Clostridial
Genomes

The 141,710 protein genes encoded in the 40 genomes fall
into 41,757 orthologous gene groups using our prediction
method. Based on the predicted orthologous genes groups,
we have carried out core- and pan-genome analyses. They can
be estimated based on the currently available genomes and
how the estimated pan- and core-genome sizes change as
more genomes are included in the estimation, essentially to
check if the estimated pan-genome size converges and the
core-genome size converges to a positive value [45].

Fig. 2 A comparison of general
features between biomass
degraders (B) and animal
pathogens (P). The p values
of nonparametric Wilcox
tests are shown in brackets
(all p values <0.01)
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We found that the core genome among the 40 contains
169 orthologous gene groups covering 6,760 genes, and
22,668 out of the remaining 134,950 genes are predicted
to be strain-specific genes. Figure 3 shows the occurrence
frequencies of all the orthologous gene groups across all
the 40 genomes.

We have derived an analytic function, P(n), to esti-
mate the pan-genome size, based on a least-square fit [45] of
the size distribution data derived from the 40 genomes (see
“Methods and Materials” section). The function is given as
follows:

P nð Þ ¼ Dþ tg cð Þ n−1ð Þ þ k � exp −2=t½ �1−exp − n−1ð Þ=t½ �
1−exp

−1
t

where k=1,241.88, t=109.11, D=3,329.73, and tg(c))=
672.42.

Clearly, P(n) is unbounded as n increases, hence suggesting
that the pan-genome is still open. A similar analytic function
of the number, n, of genomes has been derived for the core
genome (see Supplementary Fig. S3 for details).

The pan-genome of the 13 biomass degraders contains
23,538 orthologous gene groups, and the remaining 27 ge-
nomes have 23,177 orthologous gene groups, 4,958 of which
are shared between the two sets of genomes (see Fig. 4). We
noted that the most enriched biological functions/pathways by
the 169 core genes are related to RNA binding and ribosomal
proteins (see Supplementary Table S2) [56]. The detailed
pathway enrichment analysis is given in the following section.

Pathway Enrichment Analysis

We have analyzed the pathway information for the biomass
degrader and the pathogen groups, separately. We found that
179 KEGG pathways are enriched by 18,580 biomass
degrader-specific orthologous groups, while 165 pathways
are enriched by 18,219 orthologous groups in the other ge-
nomes, averaging 13.8 versus 6.1 enriched pathways per
genome, suggesting that biomass degraders encode more di-
verse pathways possibly due to their more diverse living
environments. We then carried out pathway-enrichment anal-
ysis on the biomass degraders against the pathogen group. We
found that the top five pathways enriched in the biomass
degrader group are the two-component system, starch and
sucrose metabolism, bacterial chemotaxis, cyano amino acid
metabolism, and pentose and glucuronate interconversions.
This is in agreement with the fact that the biomass degraders
need to respond to more complex environments and metabo-
lize more sugar sources. Further details of the enriched path-
ways can be found in Supplementary Dataset S1. The func-
tions of the strain-specific genes across the 40 genomes,
especially the 13 biomass degraders, can be found in
Supplementary Table S3.

Table 2 Summary of species-dependent comparisons between the two
groups

Species name Genome
size (Mbps)

G + C
content (%)

Coding
density (%)

Clostridium acetobutylicum 4.14 30.9 86.3

Clostridium beijerinckii 6.00 29.9 79.4

Clostridium cellulolyticum 4.07 37.4 86.6

Clostridium cellulovorans 5.26 31.2 82.4

Clostridium clariflavum 4.90 35.7 79.3

Clostridium phytofermentans 4.85 35.3 81.9

Clostridium saccharolyticum 4.66 45.0 87.0

Clostridium sp. BNL1100 4.61 37.3 87.7

Clostridium thermocellum 3.70 39.1 83.0

Clostridium lentocellum 4.71 34.3 85.2

Clostridium botulinum 3.92 28.1 80.8

Clostridium difficile 4.27 28.8 81.8

Clostridium tetani 2.87 28.6 85.4

Clostridium perfringens 3.10 28.4 82.6

The species highlighted in bold are biomass degraders, and the others are
animal pathogens. Each number is calculated as the average value among
all strains in the corresponding species

Fig. 3 Occurrence frequencies of
141,710 genes in the 40 clostridial
strains
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CAZyme Gene Identification and Analysis

CAZyme genes in each clostridial genome are identified by
using the dbCAN server [41], which has an average prediction
accuracy at 88.4 % measured against the annotation of the
CAZy database [42] (Supplementary Table S4).We found that
(i) 1.4–5.8 % of the genes of the 40 genomes fall into
CAZyme families and (ii) 20 out of the 40 genomes contain
1 to 76 genes bearing the cellulosome-related modules,
dockerins and cohesins, and those genomes known to encode
cellulosomes have the highest numbers of proteins having
these two modules. It is clear from Fig. 5 that the percentages
of the CAZymes and cellulosomal genes are substantially
higher in biomass degraders than those in the other genomes.
Especially, no or very few genes encoding the cellulosome-
related modules are found in the pathogens, suggesting the
possibility to use genes bearing the cellulosomal modules as a
marker for classification of the clostridial genomes into two
groups. However, there are exceptions: genomes 4 and 8 in
Fig. 5a have only a few genes. This is because cellulosomes
are not required for biomass degraders and many bacteria are
known to use free enzymes to degrade biomasses. This is
consistent with the data shown in Fig. 5b where genomes 4
and 8 have high percentages of CAZyme genes, like in other
genomes of the same group. For example, genome 8 (Clos-
tridium phytofermentans ISDg) is well known for its ability to
degrade cellulose using free enzymes to produce biofuels.

We then put all the identified CAZyme genes and genes
containing cellulosomal modules into three pools: 1,045
orthologous groups found only in biomass degraders (A),
478 orthologous groups found only in the other genomes
(B), and 130 orthologous groups found in both biomass de-
graders and the other genomes (C). The detailed distribution
of CAZyme domains and cellulosomal modules in these three

pools is shown in Table 3. Clearly, the number of orthologous
groups in A is larger than those in B, suggesting that CAZyme
genes play more important roles in biomass degraders. By
comparing A and B, we have found that the % glycoside
hydrolases (GH), % carbohydrate-binding modules (CBM),
and % polysaccharide lyases (PL) are much higher in A than
in B, consistent with the fact that biomass degraders have a
greater need to recognize and degrade a larger variety of
complex carbohydrates. The higher % glycosyl transferases
(GT) in B and C could be due to the fact that GT are used to
build polysaccharides, glycoproteins, and other glycol conju-
gates, which are needed by all bacteria. We have further
checked the distribution of different CAZyme domains in
the largest five orthologous groups in A, B, and C, respective-
ly, a total of 15. The largest orthologous groups in A are
enrichedwith domains CBM andGH, while the most enriched
domain in B is GT. The only one orthologous group enriched
with domain CE appears in C (see Supplementary Table S5).

Prediction of Cis-Regulatory Motifs for CAZyme Genes

We have predicted, using BoBro, 378, 273, and 539 cis-
regulatory motifs enriched in the three pools of orthologous
groups: A, B, and C, respectively, given in Supplementary
Dataset S2. We found that somemotifs are specific to biomass
degraders while some others are specific to nonbiomass de-
graders. All the motifs are grouped into 32 distinct and sig-
nificant patterns using BBC [47], whose logos are provided in
Supplementary Table S6 [57].

Figure 6 shows a heat map for the 32 predicted motifs.
Clearly, there are three motif clusters (MCs) in the heat map
corresponding to three groups of genomes in the Clostridium
genus: MC-1, the seven uppermost MCs, encapsulated inside
the blue box, which have an overall trend being more

Fig. 4 A comparison between
the numbers of genes in the 13
biomass degraders and the
remaining 27 genomes. The pan-
genome of biomass degraders is
denoted by the red circle on the
left, and the blue circle represents
the pan-genome of the remaining
27 genomes. The numbers of
KEGG pathways are shown in
brackets
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significant in nonbiomass degraders than in biomass de-
graders; MC-2, the middle eight MCs inside the red box,
which are more significant in biomass degraders than the
others (see Table 4 and Supplementary Dataset S2 for down-
stream CAZyme genes); and MC-3, the bottom 17 MCs,
inside the black box, which are significant in all the 40
genomes.

We have compared the 32 predicted motifs to known
prokaryotic motif databases, RegTransBase [58] and
PRODORIC [59], using MEME [60, 61]. Overall, 29 of the

32 predicted motifs are found in at least one database. Out of
these experimentally validated motifs, 7 are in MC-1, 6 in

Table 3 Distributions of CAZyme domains and cellulosome-related
modules in the three gene families, A, B, and C

Category A B C
Total no. of orthologous groups 1,045 478 130

%Cohesin 3.1 0.21 0.0

%Dockerin 10.1 0.63 0.0

%CBM 31.3 22.0 13.1

%GH 42.7 28.9 42.3

%GT 24.5 27.0 36.9

%CE 17.6 17.0 18.4

%PL 4.3 1.5 0.0

Fig. 6 A heat-map for predicted motifs of the CAZyme genes in 40
clostridial genomes, with 32 rows (representing 32 motif clusters) and 40
columns (representing 40 genomes). The size and color of each solid
circle represent the statistical significance of each predicted motif, mea-
sured using the p values and enrichment scores, the calculation of which
can be found in “Methods and Materials” section. Specifically, the lower
a p value is, the larger the corresponding circle is, and the enrichment
score of a motif increases along with the color changing from green to red

Fig. 5 a The percentage of
proteins bearing cellulosome-
related modules (cohesin and
dockerin). b The percentages of
proteins in CAZyme families
across the 40 genomes, along
with five CAZyme domain types:
carbohydrate-binding modules
(CBM), carbohydrate esterases
(CE), glycoside hydrolases (GH),
glycosyl transferases (GT), and
polysaccharide lyases (PL)
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MC-2, and 16 in MC-3. Interestingly, motifs for the nucleoid-
associated proteins, ArcA and IHF, are only in MC-2, sug-
gesting that the regulation of the corresponding genes in
biomass degraders may be done through chromosomal fold-
ing and refolding [62, 63]. ExuR in MC-2 is previously
known to be involved in transport and catabolism of
galacturonate and glucuronate [64, 65], which is important
in biomass degradation. More details can be found in Table 5
and Supplementary Dataset S2.

Summary of New Findings

We have gained new insights about Clostridia through a
comparative genomic analysis, particularly in terms of
the genomic-level differences between the 13 biomass
degraders and the other genomes of 40 sequenced
genomes.

The current classification of the C. botulinum strains is
based on if they encode botulinum toxin-producing genes,

but not on 16S rRNA sequence similarities, which is more
accurate and usedmost widely in determining the taxonomical
positions of bacterial species. Our 16S rRNA-based
phylogenic analyses strongly suggest that three C. botulinum
strains (genome nos. 19, 22, and 23) should be renamed since
they are in different locations from the other C. botulinum
strains and they also differ from the other C. botulinum strains
in general genome features such as genome size, GC content,
and the number of genes (Supplementary Fig. S4).

Our comparative analyses revealed that biomass degraders
tend to have larger genome sizes, more genes, higher GC
contents, and higher percentages of secretory proteins than
the other clostridial strains. In addition, biomass degraders
also have larger pan-genomes and encode more metabolic
pathways. We believe that all these reflect the different life-
styles and the complexities of their living environments. Spe-
cifically, as shown in Table 1, the 13 biomass degraders are
mostly isolated from soils and biomass composts, whereas the
21 pathogenic bacteria are host associated. Soils and biomass
composts are environmentally harsher than host-associated
niches such as intestinal tracts. Thus, biomass degraders need
more genes and metabolic pathways to process their foods:
complex carbohydrate molecules. Due to the same reason,
biomass degraders tend to encode more CAZyme proteins
and cellulosome-related modules than the other genomes.
Future studies will be needed to test if this is a general feature
of other bacteria that use plant biomass as their main nutrient
sources. Lastly, eight potentially important regulatory motifs
are found to be conserved in the promoter regions of CAZyme
genes that are unique to biomass degraders. These motifs are
worth further experimental investigating, as they might be
good targets for improving biofuel production. Overall, we
believe that our analyses could provide useful information to
mechanism studies of biomass degradation and possibly de-
signing more efficient biomass degraders.

Table 4 The logos of eight motifs (MC-2) with high statistical significance in biomass degrader genomes, with p values under each ID, all less than
1.0e–5

ID LOGO ID LOGO ID LOGO

2746-1

(1.6e-15)

3468-10

(1.3e-19)

4003-8

(4.9e-9)

4908-4

(7.0e-6)

5131-1

(3.8e-7)

5514-5

(6.9e-15)

5987-1

(2.5e-10)

893-10

(3.0e-11)

Table 5 Overlapping results between the 32 predicted motifs and known
motifs in the RegTransBase and PRODORIC databases, all with p values
less than 0.01 (calculated by MEME)

Motif
clusters

TFs in RegTransBase TFs in PRODORIC

MC-1 NagC, XylR, and VP2396 Ada, XylR, and CaiF

MC-2 ArcA, ExuR, CscR, and
RL4253

IHF, SigB, Fur, AhrC,
and CodY

MC-3 ModE, Fnr, MtaR, NagC,
VP2396, IscR, TnrA,
Atu4556, and YP00846

CovR, LexA, TnrA, Hpr,
GlnR, TyrR, YhiX, CodY,
NagC, PhoP, GltC, and resD
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