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treatment to remove noise and
facilitate data analysis in sensing, spectroscopy and
other applications

V. V. Zaharov,ad R. H. Farahi,ac P. J. Snyder,a B. H. Davisona and A. Passian*abc

Resolving weak spectral variations in the dynamic response of materials that are either dominated or excited

by stochastic processes remains a challenge. Responses that are thermal in origin are particularly relevant

examples due to the delocalized nature of heat. Despite its inherent properties in dealing with stochastic

processes, the Karhunen–Loève expansion has not been fully exploited in measurement of systems that

are driven solely by random forces or can exhibit large thermally driven random fluctuations. Here, we

present experimental results and analysis of the archetypes (a) the resonant excitation and transient

response of an atomic force microscope probe by the ambient random fluctuations and nanoscale

photothermal sample response, and (b) the photothermally scattered photons in pump–probe

spectroscopy. In each case, the dynamic process is represented as an infinite series with random

coefficients to obtain pertinent frequency shifts and spectral peaks and demonstrate spectral

enhancement for a set of compounds including the spectrally complex biomass. The considered cases

find important applications in nanoscale material characterization, biosensing, and spectral identification

of biological and chemical agents.
1 Introduction

Geometric and molecular identication of materials by probing
at contact or at a distance, remains a major challenge in phys-
ical, chemical, and biological detection, sensing, and material
characterization.1–3 While this challenge thrives from lack of
adequate mechanical, electromagnetic, and chemical probes, in
cases where such measurements are possible, the detected
signal is typically associated with random uctuations that can
render the ne spectral features inaccessible.4,5 Point and
standoff detection of complex molecules that make up chemical
and biological agents are increasingly explored for applications
ranging from medicine6,7 to security. In nanometrology,
depending upon the local morphology and concentration of the
sought compound or the desired detection threshold, and
random characteristics of both the sample/environment and
the measuring systems, the acquired data can contain a variety
of stochastic components that in some cases can dominate the
useful signal despite employment of phase sensitive detection.
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Manymaterial characterization and biosensing experiments,
employ the micro-cantilever force sensor platform8 or the
atomic force microscope probes, as well as laser reectometry
and interferometry that require operation in atmospheric
condition, dense gases and uids, leading to further sensitivity
difficulties due to gas kinetic and hydrodynamic dissipation
and coupling as well as background absorption and scattering.
For example, by using quantum cascade lasers and invoking a
pump–probe scheme, we recently demonstrated acquisition of
spectral ngerprints of substances from a variable standoff
distance.1,9 However, the pump–probe measured data are oen
accompanied by a high level of random uctuations that
obstruct the systematic pattern. As for any laser remote sensing
measurement, the nature of those uctuations are uncorrelated
or weakly correlated random noise, and weakly or strongly
correlated instrumental errors.3 Here, aiming toward better
molecular recognition, we treat the measurement results of the
Brownian motion of a micro-oscillator; and the infrared
absorption of molecularly complex materials, by employing
spectral analysis and Karhunen–Loève Transform (KLT). In the
case of the Brownian motion of the cantilever, the KLT
possesses advantages in the data processing, by virtue of its
inherent suitability for handling non-stationary random func-
tions. Furthermore, KLT can detect signals embedded in noise
when values of the signal-to-noise ratio is extremely small
(�40 to �50 dB).10,11 Among the variety of different noise
suppression techniques, KLT12,13 plays a unique role despite its
implementation complexities and higher computational cost
Analyst, 2014, 139, 5927–5935 | 5927
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compared to FFT. In 1988 Freire and Ulrych introduced the
application of the KLT to seismic proling, where they referred
to KLT as the singular value decomposition (SVD), and
demonstrated its use as a new method of separating upgoing
and downgoing waves in vertical seismic proling (VSP)
sections.14 Following in 1991 Al-Yahya discussed practical
techniques for reducing the computational cost of SVD in
ltering seismic sections.15 Recently, C. Maccone has elucidated
the importance of KLT in applications related to broad-band
and extremely feeble signals encountered in SETI (search for
extraterrestrial intelligence) searches and has further empha-
sized the advantages of the KLT compared to Fast Fourier
Transform (FFT).10,11 KLT/SVD has also been applied to remove
random noise in real time cardiac cine MRI (magnetic reso-
nance imaging) without blurring stationary or moving edges16

and to denoise MRS (magnetic resonance spectroscopy) data.17

The use of KLT is also valuable in the noise reduction and
estimation of recorded speech.18,19 Furthermore, SVD can play
an important role in denoising the multi-faceted sensor array
data generated in electronic nose systems.20 While KLT, SVD,
and PCA (principal component analysis) have frequently been
mentioned in common context, there are subtle differences
among them, as for example described by J. J. Gerbrands in the
context of digital image processing.21 Here, we demonstrate that
KLT provides similar advantages when applied to sensing and
spectroscopy signals. For example, other sensor technologies
that could benet from KLT denoising are nanowire tempera-
ture sensors,22 graphene-based biosensors for immunoassay of
small molecules,23 indirect absorption spectroscopy,24 micro-
cantilever-based detection of protein markers,25 microcanti-
lever-based detection of CrO4,2–8 mid-infrared spectroscopy of
exhaled breath analysis,26 surface-enhanced Raman scattering
(SERS) detection of organophosphate pesticides,27 and also
sensing applications where surface heating by optical beams
occur.28

In Section 2 the analysis of the random uctuation of a
micro-oscillator is discussed; KLT is introduced and applied to
both ambient and photoacoustically induced responses. The
random uctuation in spectroscopic measurement is discussed
in Section 3, where the experimental setup and analysis of the
obtained infrared (IR) absorption spectra for a set of test
compounds including Poplar cross sections, a biomass with
considerable molecular complexity and of great importance in
biofuel research are given. Concluding remarks given in
Section 4.
2 Random fluctuations of a solid
micro-oscillator

The dynamics of a free micro-cantilever is commonly acquired
via the optical beam deection detection employed in atomic
force microscopy (AFM).5,29 Consider S(t) as the signal repre-
senting the relevant observable in the cantilever dynamics, that
is, the transversal deformation u(x, t) at a given point x along the
length of the cantilever (assuming other oscillatory modes
being negligible under the weak random uctuations). We will
5928 | Analyst, 2014, 139, 5927–5935
begin by rst treating the Brownian response of the cantilever
under no driving forces. The case where a transient driving
force is also presented, while the probing tip of the cantilever is
engaged in contact forces with a sample surface, will be treated
following the Brownian case. Upon interaction with the surface
(as in the contact mode), the spectrum of the probe undergoes a
redshi. Similar to molecular binding (adsorption) induced
frequency shis when biosensing with microcantilevers, such
interface induced frequency shis are amenable to the treat-
ment here. In AFM, a free probe, that is, when the tip of the
microcantilever is outside the range of interfacial force elds
(typically a few nanometers away from the surface), can be
described by S(t). To explore the specic utility of the KLT in the
treatment of the cantilever response, we also consider the case
where the AFM is operated in the contact mode for the detection
of the spectral properties of the sample. In particular,
morphologically highly heterogenous and chemically highly
complex biological samples are extremely difficult to charac-
terize noninvasively. The specic material considered here is
the biomass and the characterization method employed is the
broadband infrared absorption spectroscopy. The photo-
thermally induced transient effects are embedded in S(t), which
we intend to study.
2.1 Measurements and KLT analysis

Resonant cantilever response can be experimentally observed as
a result of phonon uctuations and interaction with particles in
a medium actuating the sensor into vibrations. Within the
linear response, the resonance frequencies are identied with
Lorentzian peak shape functions in the frequency domain.
Apart from the physical properties of the probe, the resonance
spectrum strongly depends on the nature of the interacting
particles. Resonance frequency shis provide the basis for
many sensing applications, where unknown analytes or adsor-
bates may be detected and classied. The quality-factor Q
determines the resolution, and thus the precision of the reso-
nance frequency shi measurement. In the absence of any
external driving forces, S(t) represents the equilibrium state of u
and the accumulative random uctuations in the entire system
including the electronics noise and the Brownian oscillations of
the cantilever at temperature T. Denoting the Fourier transform
of the signal S(u), the uctuation-dissipation theorem states
that S(u)S*(u) ¼ (2KBT/u)J(S(u)) (which for example can take
the form of eqn (5) in ref. 30), where KB is the Boltzmann constant.
Embedded in S(t) is the resonant oscillations of the cantilever due
to stochastic excitation as shown in Fig. 1. For a given frequency
range Du, the mode n dependent power spectral density of the
resonant form h|un|i(un, T) ¼ (2m2kBTDu/pg

3)/Qn
2, where

Qn, n ¼ 1, 2, . depend on the cantilever geometry, material,
elasticity and mass (m). The higher the Q, the higher the sensi-
tivity of the sensor and the narrower the resonance peak band-
width; hence, a shi in resonance frequency can be detected and
estimated with the high precision. However, despite the possi-
bility of high Q that can provide high sensitivity, the response of
the sensor can be rather slow. For example, for a cantilever with
Q ¼ 5 � 104 and a resonant frequency fr ¼ 50 kHz, the
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 An instance of the measurement of the equilibrium state of the
atomic force microscope probe, the microcantilever. (a) Time domain
representation of 10 000 samples at Dt ¼ 0.2 ms, and (b) the resolved
leading resonances f(1)r ¼ 10.025 kHz and f(2)r ¼ 66.917 kHz in frequency
domain.
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maximum bandwidth29 is only 0.5 Hz. The corresponding time
domain response given as s ¼ 2Q/ur ¼ 0.32 s, which may be too
long for some applications. Furthermore, the dynamic range of
the high sensitivity system is also restricted due to high
amplitude response at resonance. Thus, the cantilevers with
high Q must be examined carefully as the higher Q oscillator
would require longer time to reach a steady state. Low Q
cantilevers offer faster response, e.g. Fig. 1 indicates that a Q-
factor of z 7, and therefore s(1) z 2 ms. However, the experi-
mentally observed low peak resolution means the shis in
resonance frequencies cannot be estimated precisely and can be
undetectable. Hence, one arrives at contradictory implementa-
tion requirements: while a fast response is sought, a low
sensitivity is desired. Satisfaction of both conditions is a chal-
lenge that requires a trade-off.

We propose to apply the KLT for denoising the low Q canti-
lever data, and exploiting the high resolution properties of KLT
to signicantly increase the precision of the resonance
frequency estimation. We therefore consider a decomposition
of the stochastically generated signal S(t), t ˛ [t1, t2] as an
innite linear combination of orthogonal functions j ˛
L2[t1, t2]:

SðtÞ ¼
XN
k¼1

skjkðtÞ; (1)

where

sk ¼
ðt2
t1

SðtÞjkðtÞdt; (2)

are uncorrelated random variables. The KLT employs a set of
orthogonal functions that provides the optimum approximation
This journal is © The Royal Society of Chemistry 2014
of the original stochastic process in the sense of the total mean-

square error (MSE) h[S(t) � ~S(t)]2i, where ~SðtÞ ¼
XL
k¼1

skjkðtÞ is a

truncated decomposition of S(t) up to L terms. The solution is
found by solving the homogeneous Fredholm integral equation
of the second kind:

ðt2
t1

KSðs; tÞjkðsÞds ¼ lkjkðtÞ; (3)

where KS(s, t) is the covariance function (kernel) satisfying the
Mercer theorem,31 which postulates that a set of eigenvalues
and eigenfunctions, (lk, jk (t)), exists and form an orthonormal
basis on L2[t1, t2], such that KS(s, t) can be expressed as:

KSðs; tÞ ¼
XN
k¼1

lkjkðsÞjkðtÞ: (4)

By doing so, (2) becomes the KLT. As a result, KLT uses the
best possible basis with the fastest convergence of ~S(t) toward
S(t). However, the drawback of the KLT is the high numerical
cost of determining the eigenvalues and eigenfunctions of its
covariance operator, which are given by the solutions to the
integral eqn (3). The sampled presentation of the S(t) in our case
simplies the implementation of the KLT since the eigenvalue
decomposition of a discrete covariance matrix can be employed.
As an orthogonal transform, the KLT is optimum under theMSE
between truncated and the actual data providing the highest
convergence of the data vector into smaller dimension
subspace. In contrast to Fourier transform, the orthogonal basis
of KLT are the eigenvectors of the data covariance matrix. As a
result, KLT exhibits powerful properties such as complete
decorrelation of the measured data, squeezing the data infor-
mation into the minimum number of parameters, and splitting
the whole data information into two subspaces (useful data and
unwanted noisy data) yielding the highest resolution of the data
spectral components among other orthogonal transforms.31,32

However, prior to KLT operation, a data pre-processing is
required: the ”training” set of representative data needs to be
collected, and the data covariance matrix needs to be formed,
and nally by computing the data covariance matrix eigenvalue
decomposition, the proper basis functions are to be found.
Therefore, KLT is data dependent, and the proper basis func-
tions are never known a priori except in cases where the data
model is known. Nevertheless, data denoising with KLT offers
the advantage of splitting the data into two subspaces, the
useful data and the noisy data.

For our data denoising, the KLT algorithm includes the
following steps.31 We will rst obtain the data covariance matrix

R ¼ 1
M

XM
i¼1

SiSTi ; M$N, where M is the number of measure-

ments runs, andN is the length of themeasurement data vector.
We then commence with nding the eigenvalue decomposition
R¼FLFT, whereL¼ [l1, l2,., lN] is a N� N diagonal matrix
R, with elements sorted in descending order, and matrix F ¼
[f1, f2, ., fN] is an eigenvectors matrix, where fi, i ¼ 1, ., N
are N � 1 vectors. We will then proceed by determining the
Analyst, 2014, 139, 5927–5935 | 5929
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threshold that divide the data space into two subspaces and
dene m signicant eigenvalues, m # N and forming an N � m
KLT transform matrix Fm ¼ [f1, f2, ., fm] that includes only
eigenvectors that belong to the largest m eigenvalues of R.
Finally, we can compute direct KLT as y ¼ FT

mx, or compute
inverse KLT as x ¼ Fmy for reconstruction and data denoising.
The computational cost and the memory requirements of the
KLT algorithm is O {N2} versus O {N log2 N} in the case FFT.11,31
Fig. 3 Distribution of the first 100 eigenvalues obtained by decom-
position of the sampled Brownian motion of the microcantilever.
2.2 Free oscillation analysis

In the case of the free oscillations of the undriven cantilever, for
statistical purposes, S(t) is split and routed to four channels of a
digitizing oscilloscope, where all channels are captured in rapid
succession, with each channel measurement containing 104

points sampled at 200 ns. Since typically only the rst few
resonances can be directly observed during the random uc-
tuations, for practicality (for example in biosensing) we
consider also the second resonance frequency of the cantilever
f (2)r ¼ 66.9 kHz (T(2)r ¼ 1/f (2)r z 15 ms) for adequate sampling (see
Fig. 1). Denoting the bandwidth du, the response time of the
cantilever is sr ¼ 2Q/ur ¼ (2fr/du)/(2pfr) ¼ 1/(pdu), that is,
independent of fr and the sampling time. For a total observation
time of ttot ¼ 2 ms, that is, ttot/T

(1)
r z 2 � 10�3/100 � 10�6 ¼ 20

rst mode oscillations, a sampling rate of 5 MHz (Dt ¼ 0.2 ms ¼
T(2)r /n), with nz 75 chosen, the data is shown in Fig. 1. We note
that Dt ¼ 0.2 ms clearly yields an oversampling for the second
resonance but is more suitable for the third resonance (since
f (3)r z 15 � f (1)r for a rectangular microcantilever).

Following the procedure described in the previous section,
we implemented the KLT33 and processed the data presented in
Fig. 1 to obtain a spectrum of 104 eigenvalues. This spectrum
was acquired without truncating the matrix of eigenvalues and
eigenvectors.

As can be seen from Fig. 2, the KLT spectrum has higher
resolution than the reference spectrum obtained with Fast
Fourier Transform (FFT) and, as a result, the resonance
frequencies can be estimated with yet higher precision.
However, the high level of accomplished noise can distort the
result of the measurement. Thus, to start the data denoising
Fig. 2 Brownian response of the microcantilever in the Fourier versus
KLT domains. Broad range (main plot) and high resolution spectra
(inset) for comparison of the resonance peaks.

5930 | Analyst, 2014, 139, 5927–5935
with KLT the distribution of the eigenvalues should be found.
The resulting data eigenvalues distribution is presented in
Fig. 3. Considering only the largest eigenvalue, we obtain a
perfect estimation of the rst resonance peak as Fig. 4(a) shows.
Involving other signicant eigenvalues, following their dimin-
ishing amplitudes, we observe that aer involving only four
eigenvalues the second peak is detected as shown in Fig. 4(b).
These powerful resolving features are highly desirable for
frequency shi based sensing and imaging. The time domain
representation with only the rst four eigenvalues depicted in
Fig. 4(c) clearly discerns the rst and the second frequencies as
the lower and the higher oscillations, respectively. The strong
and narrow resonance frequency peaks allow the estimation of
frequency shis withmuch higher precision than those that can
be provided by the reference spectrum obtained with FFT.

2.3 Analysis of photoacoustically driven transient
oscillations

In order to analyze the cantilever transient response, we
engaged the cantilever tip in contact with a sample surface. We
then examined the cell-wall layers of a 25 mm thick cross-section
of extractive-free poplar wood that was mounted on a ZnSe
substrate. An interferometric infrared source in the range of
4000–400 cm�1 was focused on the sample surface via trans-
mission through the substrate. During the interferometer
operation at 4 cm�1 resolution the AFM probe measures the
transient surface response of the poplar due to the photo-
thermal process. This nanomechanical interferogram is inverse
transformed into the localized absorption spectra of the mate-
rial. We positioned the probe in the cell corner middle lamella
region within the IR illumination area in order to observe
different regions of cellulose and lignin composition, and
obtained high spatial and spectral resolution data as shown in
Fig. 5. Following the discussions in Section 2 we applied the
KLT algorithm for the driven transient oscillations including
the rst 20 signicant eigenvalues, discarding the insignicant
eigenvalues which present the random oscillations. As Fig. 5
shows the denoising with KLT allows signicantly diminish the
stochastic uctuation even those presented by strong ampli-
tudes bursts. The specic number of eigenvalues to be retained
or suppressed depends on the threshold setting between the
useful pattern subspace and noisy component subspace. For
example, in the case of the Brownian motion, analyzing the
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Peak position estimation with KLT. Estimation of the (a)
fundamental resonance employing the single largest eigenvalue, (b)
the second resonance peak employing the four largest eigenvalues,
and (c) its corresponding denoised and unbiased time domain repre-
sentation using four eigenvalues out of 10 000.
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distribution of eigenvalues in Fig. 3, we can see that the rst
eigenvalue corresponds to as much as 23 dB higher than that of
the 20th (or 200 times as a ratio). For practical applications this
can be considered a reasonable ratio. Moreover, aer the 20th

eigenvalue, the KLT spectrum shows a gently diminishing
nature, vanishing to zero, conrming the spectral property of
the Brownian process.
Fig. 5 Photoacoustic force microscopy and KLT reconstructed data
using 20 eigenvalues out of 2000. Probe response in the plant cell
corner middle lamella region of biomass cross section, indicates lignin
content. The reconstructed data, resolving all the salient spectral
features while excluding the random spikes, was computed employing
only 20 eigenvalues resolve.
3 Random fluctuations in
spectroscopic measurements

By using tunable quantum cascade lasers and invoking a pump–
probe scheme, we recently demonstrated acquisition of spectral
ngerprints of substances from a variable standoff distance.1

The experimental details have been reported previously.1 In
brief, the experimental system is composed of a tunable IR laser
(Daylight Solutions, Inc., Poway, CA) for the pumping action
and a low power visible or near IR laser for the probing action.
The pump laser is of the quantum cascade type having a
This journal is © The Royal Society of Chemistry 2014
spectral tunability of 9.26 to 9.8 mm (1079.91 to 1020.41 cm�1)
and modulating at a frequency within the thermal response of
the sample, e.g. 50 Hz. The probe laser, a 632.8 nm HeNe,
measures the surface's absorption of the pump light via lock-in
amplication at the modulation frequency.

In this study we used Paralm wax (Pechiney Plastic Pack-
aging Co., Chicago, IL), a proprietary formulation of approxi-
mately 50% paraffin wax and 50% polyolens, having no major
absorption peaks in the quantum cascade laser (QCL) range.
However, the high sensitivity of the pump–probe measurement
allowed us to detect small absorbance patterns that changed
between unheated and melted wax. Unheated wax lm was
affixed to a n-type silicon (Si) wafer substrate and spectroscop-
ically measured with the pump–probe method and a commer-
cial Fourier Transform Infrared (FTIR) spectrometer (Spectrum
GX, Perkin Elmer); the results of the comparative spectral
analysis are shown in Fig. 6. The averaged (11 measurements)
pump–probe data is corrected for wavelength-dependent QCL
output, but is otherwise unltered. Background-correction for
the Si wafer substrate is included in the FTIR data.

The intensity corrected absorption spectra presented in
Fig. 6 can be considered as matched well to the reference
spectra obtained from FTIR spectrometer. The pump–probe
measured data are also complemented by the high level of
random uctuations that obstruct the systematic pattern whose
components should be identied. The noise sources include the
environmental temperature changes and air movement in the
laboratory, the mechanical vibrations of the instrument
components, and stray light on the photodetector. Recognizing
the systematic pattern in the presence of random uctuations is
oen challenging requiring sophisticated data processing
techniques.
3.1 Spectral and correlation analysis

Standoff detection techniques can be particularly sensitive to
the environmental and background noises leading to the power
of the noise being higher than the power of the useful pattern.
Analyst, 2014, 139, 5927–5935 | 5931
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Fig. 7 (a) The effect of the removal of seven higher amplitude
harmonics on the power spectral density, or periodogram. (b) Auto-
correlation and the cross correlation after filtering of seven higher
amplitude harmonics using sample #5.

Fig. 6 Photothermal absorption spectroscopy. Averaged pump–
probe spectra of 11 measurements for unheated wax film is compared
with an FTIR measurement.
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The detection and identication of the systematic pattern based
on a single measurement vector cannot be considered reliable
but can be improved in a multi-observation approach, where
decision making is carried out by processing of M observations
(reducing the power of random component by a factorM). Here,
we aim to process and analyze the data using statistical analysis
involving the spectral and correlation analysis, ltering, and
Karhunen–Loève orthogonal transform (KLT).

We present our measurements as a discrete series Si(n), n ¼
1, 2, ., N, and i ¼ 1, 2, ., M, where the wavelength variable, l,
has been substituted by an abstract variable n, which counts the
elements in the vector. The classical time series analysis allows
the decomposition of the data into four main components: (1)
trend – non-periodic tendency of the data over a long period of
time, (2) cyclic components – trend's low frequency oscillations,
(3) periodic components – narrow band harmonics on a wide
range of frequencies, (4) and random noise – unpredictable
oscillation with an autocovariance function that asymptotically
approaches the autocovariance function of additive white
Gaussian noise (AWGN) that is unity if zero lag, and zero for any
nonzero lag.34

Selected absorption spectra are presented in Fig. 6. Limiting
our analysis to the corrected absorption spectra for latex, eleven

series were obtained (M¼ 11) with an average Save ¼ 1
11

X11
i¼1

Si as

shown, along with the FTIR data, in Fig. 6. The average power
spectral density (PSD), or periodogram, is found to be
��Ŝave��2 ¼ 1

11

X11
i¼1

��Ŝi��2, where Ŝi ¼ FFT{Si}. The resulting perio-

dogram exhibit strong peaks at zero frequency as well as at
0.0078 Hz, corresponding to the trend and trend's low
frequency oscillations. Then, applying sequentially detrending
and moving average (MA) ltering32 with the edge frequency
0.05 Hz, those components can successfully be removed as
displayed in Fig. 7(a) (black curve), showing deep suppression
in the range 0.00–0.05 Hz. Aerward, the fundamental
frequencies of the higher amplitude harmonics are estimated as
(in descending order) – 0.051 Hz, 0.087 Hz, 0.150 Hz, 0.173 Hz,
0.319 Hz, 0.425 Hz, 0.449 Hz, and 0.488 Hz, which are used as
the central frequencies of band stop lters designed to reject
5932 | Analyst, 2014, 139, 5927–5935
the mentioned harmonics (prewhitening). The IIR Butterworth
band stop lters of 7th order (stable implementation) with the
edge frequencies fmin and fmax were then designed, where fmin

and fmax is chosen in the range of each peak width.
The main challenge is how many harmonic components

should be suppressed to achieve the complete randomness of
the remaining sequence? The hypotheses testing approach can
be helpful, which is based on the fact that when an analyzed
sequence is a sampling of a purely random process and the
sample vector length is very long, then all theoretical lagged
correlation coefficients are zero except at lag zero, i.e., the tested
random process is AWGN. However, when the series length is
not so long (137 in our case), the approximate threshold, or
critical level of correlation coefficients that helps to accept or
reject the null hypothesis (the sequence represents the random
process with zero correlation) should be found. For example, if
signicance interval is 95%, then the critical level is
�1=N � 2=

ffiffiffiffi
N

p
.35 For N¼ 137 the 95% condence interval limits

are approximately �0.18. Using the band-stop lters we
suppress one by one the periodical components in descending
order of amplitudes and aer each suppressed component we
performed the hypothesis testing for the 95% signicance
interval. The resulting correlogram (graph of autocorrelation
coefficients level versus lags) aer suppression of seven larger
components is presented in Fig. 7(b) (black curve). The
This journal is © The Royal Society of Chemistry 2014
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corresponding plot of the periodogram aer ltering those
components is also presented in Fig. 7(b) (green curve).

Even though two of the correlation coefficients in Fig. 7(b)
are outside of the signicance limits (at the lag 3, 5, and 8) there
is no reason to reject the hypothesis that the sequence data are
independently distributed (due to the length not being long). If
hypothesis is accepted then the power of random noise is found

as snoise
2 ¼ 1

N � 1

XN
i¼1

½SaveðnÞ � m�2, where m is an expectation

value of data aer suppression of seven larger components, and
the result is m ¼ �9.6858 � 10�8, and snoise

2 ¼ 6.2219 � 10�9.
Fig. 7(b) also depicts the cross-correlation coefficients versus
lags between the prewhitening series #5 and the average series
with subtracted sample #5. A similar analysis conrms the
randomness and independence of the different series aer
prewhitening. Decomposing the data sequence with spectral
analysis allows reconstruction of the original systematic pattern
by properly combining the obtained decomposition compo-
nents. The random noise as well as deterministic instrumental
error components can be successfully suppressed, as Fig. 8
shows.

Particularly, Fig. 8(c) shows that aer a major part of the
noise was ltered the reconstructed data still contains strong
uctuated components. It means that the high correlated
instrumental noise still complements the data. The nature of
this noise has been described in ref. 1. Fig. 8(a) depicts the data
pattern aer suppression of instrumental noise, and resulting
curve (green) can be considered as a good approximation of the
FTIR curve, shown in Fig. 6.
Fig. 8 Data reconstruction using periodogram, (a) including the trend
and all harmonics up to a frequency of 0.05 Hz, (b) including the trend
and all harmonics up to a frequency of 0.2 Hz, (c) including all the
components in the range 0.0–0.5 Hz excluding the random noise, and
(d) including all the components in the range 0.0–0.5 Hz including the
random noise.
3.2 Denoising with KLT

The spectral and correlation analysis presented in the previous
subsection is a simple and non-expensive computational
method. However, drawbacks such as low resolution of the
spectral components, slow convergence of the Fourier series
when the data vector is short, and distortion of periodogram
aer prewhitening using non-ideal lters, motivates alternative
and superior denoising algorithms. Here we show that the KLT
overcomes all drawbacks of the FFT.

We begin our demonstration with a small sample size ofM¼
11. Ideally, the number of available realizations should at least
equal the number of data points (requiring enormous numbers
of measurements and computations), otherwise the matrix R is
singular. However, in our case the process can be handled if the
true covariance matrix R (it is asymptotic covariance matrix
when M / N) could be predicted. Various types of random
processes and their covariance matrices have been analyzed.36

Analyzing the available data, we hypothesize that the data
represents the Wiener process and the appropriate eigenfunc-
tions are just pure sinusoidal functions (noting that such
functions also serve successfully for many other random
processes, including white Gaussian noise).37 These observa-
tions help us to apply the asymptotic matrix R of the Wiener
process to our KLT algorithm. This matrix forming routine has
been described in detail.36 The KLT denoising procedure over
This journal is © The Royal Society of Chemistry 2014
the averaged data sample (Fig. 6) involving different numbers of
signicant eigenvalues is presented in Fig. 9.

To estimate the threshold between the subspace of the useful
data and the subspace of the unwanted noise, we nd the
eigenvalues of the covariance matrix. Since, N ¼ 137, the
covariance matrix has a dimension 137� 137 and a rank r¼ 11,
hence it is degenerated because r < N.32 To be able to apply the
eigenvalue decomposition, the matrix should have a full rank,
i.e., r ¼ N. For this, the degenerated covariance matrix was
regularized by adding the noise power value into diagonal
elements creating intentionally r ¼ N where the degenerated
matrix becomes invertible; hence the eigenvalue decomposition
can be performed. The resulting distribution of eigenvalues is
presented below in Table 1, showing that the eigenvalues have
Analyst, 2014, 139, 5927–5935 | 5933
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Fig. 9 The effect of the number of eigenvalues on data reconstruction
employing KLT. Out of 137 significant eigenvalues, employing (a) 2, (b)
10, (c) 50 and (d) all 137 eigenvalues.

Table 1 Distribution of eigenvalues of sampled correlation matrix

Eigenvalue Numerical value Eigenvalue Numerical value

l1 3.0505 � 10�6 l7 5.8191 � 10�7

l2 2.7596 � 10�6 l8 4.4572 � 10�7

l3 1.6693 � 10�6 l9 3.5650 � 10�7

l4 1.3818 � 10�6 l10 2.4938 � 10�7

l5 9.8285 � 10�7 l11 6.2219 � 10�9

l6 7.7259 � 10�7 l12 6.2161 � 10�9
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converged to the noise power we found in the previous
subsection. Hence, it is more likely that the rst ten eigenvalues
could be considered as signicant, i.e., m ¼ 10. The pattern
reconstruction with ten signicant eigenvalues presented in
Fig. 9(b) is well matched with result depicted in Fig. 8(a). The
5934 | Analyst, 2014, 139, 5927–5935
11th eigenvalue is signicantly less than the 10th, hence, 10
eigenvalues can be certainly considered as belonging to the
useful pattern set. We interpret that these gures likely repre-
sent the systematic pattern of our measurement.
4 Conclusions

In conclusion, we showed that the measured Brownian or
otherwise thermal actuation of microcantilevers and analytes
can be advantageously treated with the KLT. The KLT was
demonstrated to effectively improve both the spectral identi-
cation of the microcantilever resonances that were driven by the
Brownian uctuation, and the infrared spectral data that con-
tained random uctuation of thermal, mechanical and elec-
tronic origin. The result of the analysis illustrates that KLT can
be adapted as a powerful data denoising tool for the presented
pump–probe infrared standoff spectroscopy and cantilever
based sensing applications.
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