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Abstract 20�

A simple and fast protocol for the preparation of a large size mutant library for directed 21�

evolution in Escherichia coli was developed based on the DNA multimers generated by 22�

prolonged overlap extension PCR (POE-PCR). This protocol comprised (i) a linear DNA 23�

mutant library was generated by error-prone PCR or shuffling, and a linear vector 24�

backbone was prepared by regular PCR; (ii) the DNA multimers were generated based on 25�

these two DNA templates by POE-PCR; and (iii) the one restriction enzyme-digested 26�

DNA multimers were ligated to circular plasmids, following by transformation to E. coli. 27�

Because the ligation efficiency of one DNA fragment was several orders of magnitude 28�

higher than that of two DNA fragments for typical mutant library construction, it was 29�

very easy to generate a mutant library with a size of more than107 protein mutants per 50-30�

 L of the POE-PCR product. Via this method, four new fluorescent protein mutants were 31�

obtained based on monomeric cherry fluorescent protein. This new protocol was simple 32�

and fast because it did not require labor-intensive optimizations in restriction enzyme 33�

digestion and ligation, did not involve special plasmid design, and enabled to construct a 34�

large size mutant library for directed enzyme evolution within one day. 35�

 36�

Keywords: directed evolution, cherry fluorescent protein, high transformation efficiency, 37�

E. coli, prolonged overlap extension PCR, Simple Cloning 38�
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Introduction 39�

Directed evolution is a powerful protein engineering tool to accelerate the evolution of 40�

proteins with desired properties in laboratories [1-4]. Directed evolution of proteins is 41�

usually conducted in Escherichia coli or Saccharomyces cerevisiae as a host [5].  S. 42�

cerevisiae is a suitable platform for the evolution of proteins from eukaryote, and the 43�

gene of interest can be easily and efficiently integrated into the chromosome of yeast by 44�

homologous recombination for protein expression [6, 7]. However, E. coli is still the 45�

preferable workhorse especially for bacterial proteins [1, 2, 8-11].  The preparation of a 46�

protein mutant library in E. coli usually comprises three steps: (i) in vitro generation of 47�

the gene mutant library by error-prone PCR or DNA shuffling, (ii) subcloning of the gene 48�

mutant library into a protein expression plasmid, and (iii) transformation of the plasmid 49�

library into competent cells. It is very easy to in vitro generate a very large DNA mutant 50�

library (e.g., 1 µg of 1-kb dsDNA = ca.1012 DNA molecules) by error-prone PCR, DNA 51�

shuffling, or their derived methods [2]. Also, high-efficiency competent E. coli cells 52�

usually have transformation efficiencies of 108-10 colony-forming units (cfu) per µg of 53�

plasmid DNA. However, much smaller-size protein mutant libraries (e.g., 103-6 mutants) 54�

are usually generated during the subcloning step [10, 12]. This low efficiency is due to 55�

low digestion efficiency of the vector and inserted DNA fragment, low efficiency of 56�

ligation, and possible self-ligation of the digested plasmid [6, 13]. Because subcloning for 57�

directed enzyme evolution usually requires the use of two restriction enzymes, each of 58�

which has a sole recognition site in the resulting chimeric plasmid, resulting in limited 59�

choices of restricting enzymes [11]. As a result, the construction of a reasonable size 60�

protein mutant library requires careful design (e.g., restriction enzymes and sequences of 61�
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the targeted protein gene and vector) and a series of optimizations in digestion, ligation, 62�

and transformation [6].  63�

 64�

It is vital to construct plasmids containing a large DNA mutant library for directed 65�

evolution in E. coli [10, 14, 15]. To address such problems as low digestion efficiencies 66�

and limited choices of two different restriction enzymes, Maynard et al. [10] developed a 67�

restriction enzyme-free construction of random DNA library by using numerous 68�

megaprimers, T7 polymerase, T4 DNA ligase and a special host dut+ ung+ E. coli. But a 69�

special E. coli host was required and the operation was pretty complicated and required 70�

high experimental skills. Another method, megaprimer PCR of whole plasmid 71�

(MEGAWHOP), which is derived from QuickChange site-directed mutagenesis method 72�

[16, 17], have also been developed. However, this method required the addition of the 73�

high-level parental plasmid (about 1-2 ng/µl) from dam+ E. coli strain as the template for 74�

PCR and of a large amount of Dpn I for digesting the parental plasmid completely. 75�

Furthermore, the transformation efficiency of the MEGAWHOP product was about 104-76�

105 mutants/µg DNA [18], lower than that of the optimized transformation efficiency of 77�

106 mutants/µg ligated DNA [6]. Zhang and Zhang (2011) developed a restriction 78�

enzyme-free and ligase-free PCR-based method for the generation of a large secretory 79�

protein mutant library in Bacillus subtilis, whereas DNA multimers generated by 80�

prolonged overlap extension PCR (POE-PCR) are transformed into B. subtilis with very 81�

high efficiencies [19]. However, this protocol works only for the purpose of subcloning 82�

in  E. coli but not for the propose of directed evolution due to low transformation 83�

efficiencies, e.g., ca. 101-4 per µg of DNA multimers [20].  84�
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 85�

To create a large size library for directed evolution in E. coli and simplify plasmid design, 86�

a new protocol was developed based on DNA multimers generated by POE-PCR (Figure 87�

1). DNA multimers were digested by one restriction enzyme, whose cutting site can be 88�

located any place of the vector backbone, yielding linear plasmid molecules. After 89�

ligation by T4 DNA ligase, the circular plasmids were transformed to competent cells 90�

with very high transformation efficiencies, resulting in a large size protein mutant library. 91�

Labor intensive optimizations in two restriction enzyme digestion and ligation were not 92�

needed so that a beginner can obtain a large size mutant library of more than107 cfu from 93�

50 µL of the PCR product within one day. 94�

 95�

Materials and Methods 96�

Reagents. All chemicals were reagent grade or higher and were purchased from Sigma 97�

(St. Louis, MO) or Fisher Scientific (Pittsburgh, PA) unless otherwise noted. All enzymes 98�

in molecular biology experiments were purchased from New England Biolabs (NEB, 99�

Ipswich, MA). The NEB regular Taq polymerase was used for error-prone PCR and NEB 100�

high-fidelity Phusion DNA polymerase was used for regular cloning and POE-PCR. The 101�

primers were synthesized by Integrated DNA Technologies (Coralville, IA). The PCR 102�

thermocycler was Eppendorf  temperature gradient Mastercycler (Hauppauge, NY). 103�

 104�

Strains and culture conditions. The E. coli BL21(DE3) was used for recombinant 105�

protein expression. All microorganisms were grown in the Luria-Bertani (LB) medium. 106�

The ampicillin concentration in LB media was 100 µg/mL. The chemical competent cells 107�
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of E. coli BL21(DE3) were prepared as described elsewhere [13]. High transformation 108�

efficiency E. coli BL21 (DE3) cells were also purchased from Invitrogen (Carlsbad, CA). 109�

 110�

Preparation of Plasmid. The 706-bp DNA sequence encoding mCherry fluorescent 111�

protein was amplified with a pair of primers (IF, TTAAC TTTAA GAAGG AGATA 112�

TACAT ATGGT GAGCA AGGGC GAGGA GGATA; and IR, CAGTT CATTA 113�

TCTGC CCACA GCTTA TCAGA ACCTG GCTTG) using the NEB Phusion 114�

polymerase. The linear pET20b vector backbone was amplified with a pair of primers 115�

(VF, CAAGC CAGGT TCTGA TAAGC TGTGG GCAGA TAATG AACTG; and VR, 116�

TATCC TCCTC GCCCT TGCTC ACCAT ATGTA TATCT CCTTC TTAAA GTTAA) 117�

using the NEB Phusion polymerase based on the plasmid pET20b. The insertion DNA 118�

and vector backbone were assembled into DNA multimers by POE-PCR, as described 119�

elsewhere [20]. The DNA multimers were transferred to E. coli Top 10, yielding plasmid 120�

pET20b-mcherry-cbm.  121�

 122�

Preparation of DNA mutant library. A DNA mutant library encoding mCherry 123�

fluorescent protein was generated with a pair of primers (IF and IR) by error-prone PCR.  124�

The reaction solution with a total volume of 50 µL contained 0.02 ng/µL plasmid 125�

pET20b-mcherry-cbm, 0.2 mM dATP, 0.2 mM dGTP, 1 mM dCTP, 1 mM dTTP, 5 mM 126�

MgCl2, 0.2 mM MnCl2, 0.05 U/µL the NEB regular Taq polymerase, 0.4 mM IF, and 0.4 127�

mM IR [19]. The PCR reaction was conducted as the following: 94°C denaturation, 2 128�

min; 13-16 cycles of 94°C denaturation for 30 s, 60°C annealing for 30 s, and 68°C 129�
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extension for 45 s; and 68°C extension for 5 min. The PCR product was cleaned with a 130�

Zymo Research DNA Clean & Concentrator Kit (Irvine, CA). 131�

 132�

The linear pET20b vector backbone was amplified with a pair of primers (VF and VR) by 133�

using the NEB high-fidelity Phusion DNA polymerase. The PCR reaction system 134�

contained dNTP, 0.2 mM for each; primers, 0.02 µM; pET20b template, 0.02 ng/µL; and 135�

the Phusion polymerase, 0.04 U/µL. The PCR program was 98oC denaturation for 30 s; 136�

30 cycles of 98oC denaturation for 10 s; 50 oC annealing for 10 s; and extension at 72 oC 137�

at 3 kb per min for the targeted fragment. The PCR product was cleaned with a Zymo 138�

Research DNA Clean & Concentrator Kit (Irvine, CA). 139�

 140�

To generate DNA multimers by POE-PCR, 50-µL PCR reaction solution contained the 141�

following: dNTP, 0.2 mM for each; the insertion DNA fragment, 5 ng/µL (i.e., 250 ng); 142�

the vector backbone, equimolar with the insertion fragment; and the Phusion polymerase, 143�

0.04 U/µL. POE-PCR was conducted at 98 oC denaturation for 30 s; 30 cycles of 98 oC 144�

denaturation for 10 s, 60 oC annealing for 10 s, and extension at 72 oC at a rate of 2 145�

kb/min for the length of the resulting plasmid. For some DNA fragments with 146�

complicated structures, the longer extension time was recommended when the estimated 147�

polymerase rate was 1.5 kb/min for ensuring the generation of DNA multimers. One or 148�

two microliter of the PCR product was used to check the formation of th`e DNA 149�

multimers with 0.8% agarose gel electrophoresis. Another one or two microliter of the 150�

PCR product was digested by restriction enzymes for checking plasmid map with 0.8% 151�
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agarose gel electrophoresis. One µL of the PCR product (approximately 100 ng DNA) 152�

was also transformed into E. coli as a control. 153�

 154�

Approximately 45 µL of the POE-PCR product (i.e., 100 ng/µL DNA multimers) was 155�

digested in 300 µL of the NEB XhoI digestion buffer containing 200 units of XhoI at 37 156�

oC for 5 h. The mixture was. The digested DNA multimers were applied to 0.8% agarose 157�

gel electrophoresis. The linear plasmid DNAs with the targeted size was purified with a 158�

Zymo gel DNA recovery kit. The purified linear plasmid DNAs (approximately1.5 µg)  159�

were ligated in 600 µL Quick ligation system containing 1,200 units of the NEB T4 DNA 160�

ligase at 25oC for 5 min. A small fraction of the ligation product (e.g., 50 ng) was mixed 161�

with 100 µL of the competent E. coli cells in a 1.5-mL regular centrifuge tube. The tube 162�

was kept at 0 oC for 30 min, 42 oC for 90 s, and 0 oC for 5 min. One mL of the LB liquid 163�

medium was added to the tube. The cell cultures in the tube were cultivated with well-164�

mixing at 37oC for 45 min. After centrifugation at 5,000 rpm for 5 min, one mL of the 165�

supernatant was discarded. The cell pellets were resuspended in the remaining liquid, and 166�

were spread on the petri plates containing the LB solid medium supplemented with 100 167�

ng/mL ampicillin. The petri plates were incubated at 37 oC for 12-16 h or until the 168�

colonies were easily examined by eyes.  169�

 170�

Protein production and purification. The strain E. coli BL21 Star (DE3) containing the 171�

protein expression plasmid was cultivated in the LB medium supplemented with 1.2% 172�

glycerol at 37 °C. Once the absorbance of the culture reached �0.8, IPTG was added at a 173�



  

9�
�

final concentration of 0.1 mM.  After 16 h of cultivation at 20 oC, the E. coli cells were 174�

harvested by centrifugation and re-suspended in a 50 mM HEPES buffer (pH 7.2). The 175�

cells were lysed by sonication. After centrifugation, the His-tagged protein in the  176�

supernatant was adsorbed to the Bio-Rad Profinity IMAC Ni-resin (Hercules, CA) and 177�

then eluted with a 50 mM HEPES buffer (pH 7.2) containing 250mM imidazole after 178�

washed by a 50 mM HEPES buffer (pH 7.2) containing 20 mM imidazole. 179�

 180�

Other assays.  For the quantification of the DNA multimers, two µL of the PCR product 181�

was digested with the restriction enzyme XhoI and then was subjected to 0.8% agarose 182�

gel electrophoresis and analyzed with Quantity One (Version 4.6.7). Protein mass 183�

concentration was measured by the Bio-Rad Bradford protein dye reagent method with 184�

bovine serum albumin as a reference. The plasmid mutants were sequenced by DNA 185�

sequencing.  186�

 187�

Results  188�

Primer design  189�

For the formation of DNA multimers by POE-PCR (Fig. 2), the insertion DNA fragment 190�

and vector backbone must have the overlap regions at 3’ and 5’ termini. To generate the 191�

insertion DNA mutant library by error-prone PCR, a primer pair of IF and IR were used 192�

to amplify the linear DNA fragment, where mutation rates could be adjusted by the 193�

concentrations of Mg2+, Mn2+, and dNTPs [6]. Primer IF consisted of two fragments – a 194�

3’ terminus responsible for amplifying the inserted DNA fragment by error-prone PCR 195�

and a 5’ terminus responsible for overlapping with the host vector DNA fragment by 196�
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POE-PCR. Primer IR consisted of two fragments – a 3’ terminus responsible for 197�

amplifying the inserted DNA fragment by error-prone PCR and a 5’ terminus responsible 198�

for overlapping with the host vector DNA fragment by POE-PCR. To generate the linear 199�

vector backbone, a primer pair of VF/VR was used. IF had a reverse complementary 200�

sequence with VR. IR had a reverse complementary sequence with VF, too. It was 201�

possible to add a unique restriction enzyme cutting site in the primer IF/VR or IR/VF 202�

(Fig. 3). 203�

 204�

Transformation of DNA multimers and circular plasmids to E. coli 205�

When the insertion DNA mutant library and the backbone vector was mixed together 206�

without primers added, DNA multimers were generated by POE-PCR [20], where 1.5-2 207�

fold of longer extension time was used than that in regular overlap extension PCR. The 208�

DNA multimers were digested by one restricting enzyme, whose sole cutting site could 209�

be located in the backbone vector, yielding linear plasmid DNAs. Circular plasmids were 210�

obtained from linear plasmid DNAs with a T4 ligase, and then were transferred to 211�

competent E. coli (Fig. 2).   212�

 213�

Wild-type mCherry fluorescent protein was chosen for the proof-of-the-concept 214�

experiment for facile preparation of a large size mutant library for directed evolution. 215�

This recombinant protein was expressed under the control of T7 promoter (Fig. 4a). In 216�

the LB solid plate containing a trace amount of lactose as an inducer, the color of the 217�

expressed fluorescent protein mutants could be easily identified by eye. The 4.2-kb linear 218�

vector backbone and the 706-bp mcherry gene were generated by regular PCR, as shown 219�
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in lane 1 and lane 2, respectively (Fig. 4b). Large molecular weight DNA multimers 220�

generated by POE-PCR did not migrate from the well (Fig. 4b, Lane 3). The NdeI/XhoI-221�

digested DNA multimers exhibited two bands (Fig. 4b, lane 4), in good agreement with 222�

the desired chimeric plasmid pET20b-mcherry-cbm digested with NdeI/XhoI (Fig. 4b, 223�

lane 7). The XhoI-digested multimers exhibited a single band of 4.9 kb (Fig. 4b, lane 5), 224�

indicating linear plasmids. After ligation, circular plasmids (Fig. 4b, lane 6) had a slower 225�

migration rate than linear plasmids (lane 5).  Circular plasmids can be transformed to 226�

competent E. coli cells. By using commercial competent cells with a transformation 227�

efficiency of 1.8 × 109 cfu per µg of intact plasmid DNA, the circular plasmids resulted 228�

in an efficiency of 1.3 × 107 cfu per µg of DNA (Table 1). DNA multimers without 229�

digestion and ligation can be also transformed to E. coli but nearly three order of 230�

magnitude of lower transformation efficiency was obtained (Table 1).  231�

 232�

One hundred fifty ng of DNA multimers from POE-PCR and fifty ng of circular DNAs 233�

isolated from Lane 6 (Fig. 4b) were transformed into low-transformation efficiency self-234�

made BL21(DE3) competent cells, respectively. DNA multimers resulted in a 235�

transformation efficiency, 4.2 × 102  per µg of DNA (Fig. 4c and Table 1), which was 236�

good for regular subcloning [20] but was not enough for directed evolution. The circular 237�

plasmids had an efficiency of 8.6 × 104 cfu per µg of DNA (Fig. 4d and Table 1). Clearly, 238�

circular plasmids obtained from DNA multimers through one restriction enzyme 239�

digestion and ligation was vital to construct a large size mutant library.  Almost all the 240�

colonies on the plate of Fig. 4c and d were red, suggesting that a high possibility of 241�
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obtaining desired positive clones through direct transformation DNA multimers and 242�

transformation of circular plasmids.  243�

 244�

mCherry protein variants  245�

Via this method, a large DNA mutant library encoding mCherry fluorescent protein was 246�

generated by error-prone PCR. When 5 mM MgCl2 and 0.2 mM MnCl2 was added in the 247�

PCR solution, approximately 70% colonies were colorless (Fig. 5a), suggesting that most 248�

of mutants were negative. The size of this mutant library was estimated to be 1.95 × 107 249�

cfu when 1.5 µg of circular plasmids was transformed to commercial high-efficiency 250�

competent cells. Among them, several fluorescent protein mutants exhibiting different 251�

colors were easily identified in petri dish plates. Four purified protein mutants exhibited 252�

different colors under natural visible lights and UV excitation (Fig. 5 b and c). Plasmids 253�

encoding fluorescent protein mutants were sequenced. Four of them had three to five base 254�

changes, resulting in two to three amino acid changes (Table 2).  Among them, one 255�

mutant was yellow under natural visible light and had a very weak fluorescent signal. The 256�

other three mutants also had much weaker colors and fluorescent signals than wild-type 257�

mCherry fluorescent protein. For example, for the mutant protein 1, a mutation site 258�

occurred at the amino acid site of 71, the amino acid at this site was essential. Upon 259�

deleting this amino acid, the protein lost its color totally (data not shown). Despite all the 260�

fluorescent intensities of the mutant protein were decreased, these mutants could provide 261�

some useful information about influences of amino acid sites on fluorescent emissions.  262�

 263�

Discussion 264�
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We developed a facile preparation for constructing a large size mutant library (e.g., more 265�

than107 protein mutants per 50 µL of the PCR product) for directed enzyme evolution in 266�

E. coli. Frist, DNA multimers was generated by POE-PCR so that neither restriction 267�

enzymes nor ligase were required. Second, DNA multimers were digested by one 268�

restriction enzyme, whose site can be located in any place of plasmid, resulting in the 269�

linear plasmids. Third, the linear plasmids were circularized by ligase and then 270�

transformed to E. coli cells. Compared to the classical library construction method 271�

through the digestion of two restriction enzymes followed by ligation, this new methods 272�

had several advantages. (i) In the classic two-fragment ligation protocol, the optimization 273�

of the ratio between two DNA fragments was vital to achieving high transformation 274�

efficiency [6]. This labor-intensive optimization was not needed in this method because 275�

of one-fragment ligation. (ii) Larger size libraries were generated through one-fragment 276�

circularization than through two-fragment ligation. It was very easy for a beginner to 277�

construct a large mutant library size with the transformation efficiency of 106-107 cfu/µg 278�

using commercial competent cells. In contrast, experts with wise selection of restriction 279�

enzymes, careful preparation of  DNA fragments, and intensive optimization of the 280�

ligation reaction between the inserted fragment and vector and transformation conditions 281�

could obtain transformation efficiencies of 106 -107 cfu/µg of vector DNA [6]. (iii) No 282�

optimization was required in the digestion through one restriction enzyme by using a very 283�

high restriction enzyme loading, where the high-affinity restriction enzyme featuring 284�

decreased star activity, such as BamHI-HFTM, EcoRI-HFTM, HindIII-HFTM, and so on, 285�

was highly recommended. (iv) The cutting site of this restriction enzyme can be located 286�

in any place of the plasmid. (Note: it was recommended that the cutting site was located 287�
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in the vector backbone because the restriction site in the inserted mutant library may be 288�

not available after mutagenesis. If there was not appropriate cutting site in vector 289�

backbone, the primers can be designed containing a unique restriction enzyme cutting 290�

site). (v) No extra amino acids were introduced in the ends of the target protein, while 291�

several amino acids were often added in the classical protocol by designing two 292�

restriction enzymes’ cutting sites. Sometime, such extra amino acids may influence the 293�

properties of target proteins [11]. Compared to other methods for mutant library 294�

construction, like MEGAWHOP [16], MegAnneal [10], our method had its unique 295�

advantages, such as large size of library,  very low wild-type background contamination 296�

(Fig. 4d), independence of E. coli strains.  297�

 298�

The central of this method was the formation of DNA multimers by using POE-PCR 299�

without restriction enzymes and ligase. The formation efficiency of DNA multimers were 300�

influenced by several factors: (i) overlap length between the insertion fragment and 301�

vector backbone, (ii) annealing temperature in POE-PCR, (iii) DNA template 302�

concentration in POE-PCR, and (iv) extension time. Generally speaking, the longer 303�

overlap region, the higher efficiency of the DNA multimer formation [19, 20]. According 304�

to our experience, the DNA multimers could be obtained even when the overlap length 305�

between two fragments was as short as 20 bp, like typical overlap extension PCR. 306�

However, we recommended the overlap lengths of 40~50 bp so to ensure the formation 307�

of DNA multimers. Like typical overlap extension PCR, melting temperatures of the 308�

primers between 55° and 65°C generally yielded the best results. To construct a large size 309�

mutant library in POE-PCR, the concentration of the inserted DNA mutant library was 310�
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recommended to be approximately 5 ng per µL (i.e., 3 × 10 9 DNA molecules per 311�

microliter, the total library size was 1.5 × 1010) and the molar ratio of the DNA mutant 312�

fragment to the linear vector backbone was 1:1. To ensure the formation of DNA 313�

multimers, the extension time of POE-PCR was estimated to be based on the length of 314�

resulting plasmid divided by a rate of 1.5 to 2 kb per min for the Phusion polymerase [20].  315�

 316�

Although a 700-bp DNA fragment generated by ep-PCR and a 4.2-kb plasmid backbone 317�

were assembled for demonstration purpose here, this technology would be very useful to 318�

engineer large-size proteins. For big-size proteins, it may be inefficient to generate a very 319�

large size DNA library with a constant mutagenesis rate for the whole gene sequence [9]. 320�

Via this method, it was feasible to generate two or more small-size DNA fragments with 321�

different mutation rates for hot and cold DNA sequences and assemble them together. In 322�

our lab, DNA multimers can be assembled based on up to three DNA fragments with 323�

variable lengths of insertion (0.3 to7.0 kb) and a vector backbone (3.5 to 8.5 kb) by using 324�

POE-PCR. The largest length of chimeric plasmid through DNA multimers was 325�

approximately 12 kb [20].  326�

 327�

In conclusion, this POE-PCR-based protocol was simple and fast, and had great 328�

flexibility for the constructing a large size mutant library for directed enzyme evolution in 329�

E. coli. 330�

 331�
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Figure legends 386�

Figure 1. The scheme of the mutant library construction. First, the linear insertion DNA 387�

mutants were generated by error-prone PCR or DNA shuffling; the linear vector 388�

backbone was generated by high-fidelity PCR. Second, DNA multimers were formed by 389�

prolonged overlap extension PCR (POE-PCR) [20]. Third, linear plasmid DNAs were 390�

obtained after DNA multimers were digested by a restriction enzyme. Forth, the circular 391�

plasmid mutant library was ligated by T4 DNA ligase. Fifth, the circular plasmids were 392�

transformed to E. coli with high efficiencies.   393�

 394�

Figure 2. The mechanism of the formation of DNA multimers and of circular plasmids.  395�

In POE-PCR, DNA multimers were generated from both 3’ and 5’ overlapped inserted 396�

DNA mutants and vector backbone, both of which functioned as both templates and 397�

primers. DNA multimers can be digested to linear DNAs by one restriction enzyme, 398�

whose cutting site was located in the vector backbone.  399�

 400�

Figure 3. The schematic representation of primer design. A primer pair of IF/IR was used 401�

to amplify the linear DNA fragment. A primer pair of VF/VR was used to amplify the 402�

vector backbone. Primer IF and IR both consisted of two fragments, a 3’ terminus of 20-403�

25 bp of gene-specific sequence and a 5’ terminus of 20-25 bp of vector-specific 404�

sequence. IF had a reverse complementary sequence with VR, as well as IR and VF.  405�

 406�

Figure 4.  a). The map of the vector pET20b-mcherry-cbm. The arrows show the 407�

transcription directions for these genes. mcherry, wild-type mCherry-encoding sequence;  408�
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cbm, family 17 carbohydrate-binding module-encoding sequence. IF, IR, VF, and VR 409�

denote the position of the primers for PCR. b). DNA analysis by agarose gel 410�

electrophoresis. Lane M, the NEB 1-kb DNA ladder; Lane 1, a linear vector of pET20b 411�

containing cbm generated by regular PCR;  Lane 2, mcherry DNA generated by regular 412�

PCR ; Lane 3, DNA multimers generated by POE-RCR;  Lane 4, digested DNA 413�

multimers digested with NdeI and XhoI; Lane 5, XhoI-digested DNA multimers with; 414�

Lane 6, the circular plasmids after XhoI-digestion followed by T4 ligation; and Lane 7, 415�

the digested circular plasmids with NdeI and XhoI.  c). Transformation of 150 ng DNA 416�

multimers to self-made E. coli BL21(DE3) competent cells. d). Transformation of 50 ng 417�

of the ligated circular plasmid to self-made E. coli BL21(DE3) competent cells. 418�

 419�

Figure 5. The screening of mCherry fluorescence protein mutants expressed in E. coli 420�

BL 21 (DE3) in a Petri dish plate (a), where colonies containing wild-type or neutral 421�

mutants were red, a yellow colony represented a mutant with a new fluorescent color, and 422�

most white colonies reflected negative mutagenesis. Purified fluorescent proteins with the 423�

same concentrations under natural visible light (b) and under UV excitation (c). B, blank 424�

buffer; WT, wild-type mCherry fluorescent protein; 1-4, mCherry mutant 1, 2, 3, and 4. 425�
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Table 1. Transformation efficiency of treated and untreated DNA multimers on self-426�

made and commercial competent E.coli BL21(DE3) cells 427�

Transformation efficiency  
(cfu/µg) 

 
Source 

Commercial*  Self-made 

DNA multimers  4.5 X 104 4.2 X 102 
Circular plasmids  1.3 X 107 8.6 X 104 
Plasmid  1.8 X 109 6.7 X 106 

*The commercial competent cells were purchased from Invitrogen. 428�

 429�
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 430�

Table 2.  Amino acid substitutions in the selected mCherry mutants and the 431�

corresponding base mutations. 432�

Mutant  Mutation DNA Amino acid 
1  A92T, T204C, A211T Q31V, silent, M71L 
2 A41T, T204A, T269A, T605C,  

G686C 
K14M, silent, L90Q, I202T, 
G229A 

3 T168A, T467G, A560G, T605C silent, W156C, K187R, I202T  
4 G325T, A425G, A503T  V109L, Q142R, Q168L 

 433�

 434�


