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Abstract Consolidated bioprocessing (CBP), which merges
enzyme production, biomass hydrolysis, and fermentation in-
to a single step, has the potential to become an efficient and
economic strategy for the bioconversion of lignocellulosic
feedstocks to transportation fuels or chemicals. In this study,
we evaluated wild-type Clostridium thermocellum,
Caldicellulosiruptor bescii, and Caldicellulosiruptor
obsidiansis, three thermophilic, cellulolytic, mixed-acid
fermenting candidate CBP microorganisms, for their fermen-
tation capabilities using dilute acid pretreated Populus as a
model biomass feedstock. Under pH-controlled anaerobic fer-
mentation conditions, each candidate successfully digested a
minimum of 75 % of the cellulose from dilute acid pretreated
Populus, as indicated by an increase in planktonic cells and
end-product metabolites and a concurrent decrease in glucan
content. C. thermocellum, which employs a cellulosomal ap-

proach to biomass degradation, required approximately 50 h
to achieve 75 % cellulose utilization. In contrast, the
noncellulosomal, secreted hydrolytic enzyme system of the
Caldicellulosiruptor sp. required about 100 h after a signifi-
cant lag phase to achieve similar results. End-point fermenta-
tion conversions for C. thermocellum, C. bescii, and
C. obsidiansis were determined to be 0.29, 0.34, and 0.38 g
of total metabolites per gram of loaded glucan, respectively.
These data provide a starting point for future strain engineer-
ing efforts that can serve to improve the biomass fermentation
capabilities of these three promising candidate CBP platforms.
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Abbreviations
SSF Simultaneous saccharification and fermentation
CBP Consolidated bioprocessing
DA Dilute acid pretreatment
HW Hot water
HPLC High-performance liquid chromatography
ATCC American Type Culture Collection

Introduction

Lignocellulosic biomass is an abundant, low-cost, and renew-
able source of carbon that has the potential to be converted
through enzymatic hydrolysis and fermentation into liquid
transportation fuels [1–4]. However, there are technical chal-
lenges and economic barriers, several of which are directly
related to the inherent recalcitrance of biomass to solubiliza-
tion. These could potentially be reduced through biomass pro-
cessing and pretreatment and/or the development of transgen-
ic feedstocks with reduced recalcitrance [5, 6]. The conven-
tional approach for the biological production of cellulosic eth-
anol has four main process steps: biomass size reduction and
pretreatment, production of hydrolytic enzymes, hydrolysis to
fermentable sugars, and fermentation of the hexose and pen-
tose sugars to ethanol. Even though the cost of enzyme pro-
duction has been significantly reduced, the economic burden
of producing exogenous hydrolytic enzymes is still formida-
ble [7, 8]. A consolidated bioprocessing (CBP) approach has
the potential to lower the cost by merging hydrolytic enzyme
production, hydrolysis, and fermentation of sugars into a sin-
gle step [9–12] and thermophilic lignocellulose deconstruc-
tion has been reviewed recently [13].

A candidate organism for CBP is the strictly anaerobic,
thermophilic bacterium, Clostridium thermocellum, that can
rapidly hydrolyze crystalline cellulose [9, 14–17]. However, it
lacks the ability to ferment pentose sugars while producing
some xylanases [18] and is considered a mixed-acid fermen-
ter, producing acetate, lactate, ethanol, formate, CO2, and H2

[18, 19]. The wild-type strain in continuous culture reached
80–90 % glucan conversion yield on pretreated hardwood
[20]. More recently, studies of fermentation performance on
pretreated biomass substrates have reported that
C. thermocellum utilizes ammonia fiber expansion (AFEX)
pretreated corn stover, dilute acid pretreated transgenic and
wild-type switchgrass, and dilute acid pretreated Populus
without the addition of hydrolytic enzymes digesting approx-
imately 75% of the cellulose [14, 15, 21]. Moreover, there is a
tractable genetic system and an engineered and evolved strain
of C. thermocellum reached 5.61 g/L of ethanol and in co-
culture with Thermoanaerobacterium saccharolyticum
reached 38 g/L ethanol, both in Avicel fermentations [19].
The mutant strain of C. thermocellum achieved a yield of
0.27 g ethanol/g glucan released from dilute acid pretreated

transgenic COMT3 switchgrass [22]. These recent develop-
ments have made progress but have not yet developed a strain
with a phenotype and fermentation performance that is rele-
vant to an industrial process.

The extremely thermophilic Caldicellulosiruptor species
are also Gram-positive, anaerobic bacteria that hydrolyze
hemicellulose and cellulose, utilizing both pentose and hexose
sugars [23]. In contrast to C. thermocellum, for hydrolysis they
use a noncellulosomal approach, but like C. thermocellum,
they are mixed-acid fermenters producing primarily acetate,
lactate, CO2, H2, and some strains produce trace amounts of
ethanol [24]. The wild-type strains not producing ethanol have
been used primarily for hydrogen production from lignocellu-
los ic subst ra tes [25–28] . Recent ly, there was a
Caldicellulosiruptor strain isolated that produced 1.12 g/L eth-
anol from unwashed pretreated Populus and in co-culture with
Thermoanaerobacter reached 1.60 g/L of ethanol [24].

Caldicellulosiruptor obsidiansis and Caldicellulosiruptor
bescii have the potential to be CBP candidates, especially with
the recent development of a tractable genetic engineering sys-
tem for C. bescii which does not natively produce ethanol
[29–32]. A strain of C. bescii was genetically engineered
and produced 0.59 g/L ethanol on switchgrass with reduced
acetate production [33]. Moreover, characterization of micro-
bial growth on different substrates of C. bescii and
C. obsidiansis showed that both microorganisms utilize hex-
ose and pentose sugars, grow on crystalline cellulose; plus,
hydrolyze and ferment pretreated switchgrass without the ad-
dition of hydrolytic enzymes [16, 34–36]. In the case of
C. bescii, it has been shown that this microorganism can par-
tially hydrolyze and ferment unpretreated switchgrass without
the addition of hydrolytic enzymes [33, 37] and Basen et al.
showed that fermentations of unpretreated switchgrass at a
solids loading of 50 g/L showed approximately 30 % solubi-
lization of the biomass [38].

There are few comparative studies of these anaerobic ther-
mophilic cellulolytic bacteria on a pretreated biomass sub-
strate. As a result, we report the fermentation performance of
C. thermocellum, C. bescii, and C. obsidiansis on a consistent
substrate (dilute acid pretreated Populus) and media to mini-
mize the effects of varying nutrient levels, substrate accessi-
bility, particle size, and pretreatment-generated compounds on
fermentation performance. This allowed for a consistent plat-
form to compare the fermentation profiles of the native strains
of the three potential CBP microorganisms.

Materials and Methods

Strains and Fermentation Conditions

All biological duplicate batch fermentations were culti-
vated on the same pretreated biomass; however, the
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washing procedure was performed on smaller subset
preparations of biomass per set of fermentations. The
same medium composition used for all three strains is
provided in Yee et al. [39].

The fermentation conditions for the candidate CBP micro-
organisms were as follows: C. thermocellum (ATCC 27405)
temperature of 58 °C, pH 6.8, and agitation 300 rpm,
Caldicellulosiruptor obsidiansis (ATCC BAA-2073) temper-
ature 75 °C, pH 7.0, and agitation 300 rpm, and
Caldicellulosiruptor bescii (ATCC BAA-1888) temperature
75 °C, pH 7.0, and agitation 300 rpm. Fermentations were
conducted in 2.0-L Applikon jacketed glass fermenters
(Applikon Biotechnology, Dover, NJ). Fermenters with water,
heat-insensitive media components, and biomass were steril-
ized at 121 °C for 30 min and then sparged overnight with O2-
free nitrogen, at 300 rpm, while equilibrating to the appropri-
ate growth temperature (58 or 75 °C). The remaining media
components, including vitamins and minerals, were added the
following day as described previously by Yee et al. [39], and
pH was actively controlled with 10 %w/v NaHCO3. The off
gas was bubbled through a water trap, which captured volatile
metabolites such as ethanol [14, 21, 36]. The inoculum was
grown in 125-mL anaerobic serum bottles containing 50 mL
of growth medium with 5.0 g/L Avicel (FMC BioPolymer) as
the carbon source. The bottles were incubated at the proper
growth temperature for each strain with shaking at 125 rpm
for 14 h and then added at 10 %v/v to the fermentors. The cell
density of the fermentations was monitored using planktonic
cell counts in a metallized hemacytometer Reichert Bright-
Line (Hausser Scientific).

Dilute Acid Pretreated Populus

The dilute acid pretreated biomass substrate for the fermenta-
tions was a Populus trichocarpadeltoides F1 hybrid clone 53–
239 male that was chipped, milled, and dilute acid pretreated
by the National Renewable Energy Laboratory (NREL) in a
SUNDs reactor at 190 °C, 0.050 g sulfuric acid/g dry biomass,
1-min residence time (flow through mode), and 25 % (w/w)
total solids during reaction conditions. The pretreated biomass
was stored under acidic conditions at 4 °C. The substrate was
washed prior to use with milli-Q water until less than 0.01 g/L
of glucose was present in the washate as determined by high-
performance liquid chromatography (HPLC) analysis [14,
40]. This substrate was previously used for several
C. thermocellum experiments [14, 40, 41]. The carbohydrate
composition of the biomass solids after dilute acid pretreat-
ment was primarily glucan from cellulose measured by the
quantitative saccharification assay. The dilute acid pretreat-
ment solubilized the majority of the hemicellulose and the
extensive washing removed soluble compounds and
extractives.

Analytical Methods

Fermentation broth samples were analyzed for products
(acetic acid, lactic acid, formic acid, and ethanol) and soluble
carbohydrates (cellobiose, glucose, xylose, arabinose) using
HPLC La chrom elite system (Hitachi High Technologies
America, Inc.) equipped with a refractive index detector
(model L-2490). The products and carbohydrates were sepa-
rated using an Aminex HPX-87H column (Bio-Rad Labora-
tories, Inc.), with a flow rate at 0.5 mL/min of 5.0 mM sulfuric
acid and a column temperature 60 °C.

Fermented biomass residues were analyzed for carbohy-
drate composition using quantitative saccharification
(quansacch) assay ASTME 1758–01 (ASTM 2003) and
HPLC method NREL/TP 51–42623. Briefly, the technical
triplicate samples per biological duplicate fermentation were
analyzed using HPLC La chrom elite system (Hitachi High
Technologies America, Inc.) equipped with a refractive index
(model L-2490) and UV–vis (model L-2420) detectors. The
carbohydrates (glucose, xylose, galactose, mannose, and arab-
inose) and pentose and hexose sugar degradation products
(furfural and 5-hydroxy methyl furfural) were separated using
an Aminex HPX-87P column (Bio-Rad Laboratories, Inc.),
with a 0.6 mL/min flow rate of water and a column tempera-
ture of 80 °C.

Results

Cell Growth

The duplicate batch fermentations of dilute acid pretreated
Populus were monitored with metabolite time course profiles
and planktonic cell counts (using a microscope).
C. thermocellum grew to a maximum planktonic cell density
greater than approximately 5×108 cells/mL and entered sta-
tionary phase at 70 h. In addition, the metabolite production
stopped at 70 h. The cell densities for C. bescii and
C. obsidiansis reached approximately 2×109 and 5×109

cells/mL at 133 and 120 h, respectively. There was not an
apparen t l ag in p lank ton ic ce l l g rowth for the
Caldicellulosiruptor sp. However, there was a significant lag
before metabolite production began. However, for both
Caldicellulosiruptor species the metabolite production contin-
ued after the cell density reached a maximum (Fig. 1a–c). The
cell densities were tracked with planktonic cell counts, be-
cause the biomass substrate interfered with other methods that
are used to monitor cell growth on insoluble substrates such as
total nitrogen and total protein [14, 15, 35, 36]. The biological
duplicate fermentations for each microbe showed an increase
in planktonic cell count qualitatively indicating when the cells
were growing and reached stationary phase; however, these
measurements are not quantitative.
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Fermentation Metabolite and Biomass Carbohydrate
Composition Profiles

The fermentations of dilute acid pretreated Populus with the
CBP candidate microbes were monitored over time using
HPLC for measuring fermentation metabolites (acetic acid,
lactic acid, formic acid, and ethanol) and simple carbohydrates
released from the biomass (cellobiose, glucose, xylose, and
arabinose). In duplicate fermentations, C. thermocellum
showed the production of acetic acid and ethanol with mini-
mal lactic acid (Fig. 1a) and an average endpoint ethanol con-
centration of 0.35 g/L in the water trap. The water trap ethanol
was accounted for in the endpoint conversion and yield cal-
culations. The production of ethanol and acetic acid started at
approximately 4 h and reached a plateau at 70 h with a ratio of
2.9:1 acetic acid to ethanol. This ratio was slightly higher than
what is typically reported 2:1 acetic acid to ethanol [14, 17,
41], and the ethanol concentration appears to decrease in the
fermentation broth. Both phenomena are likely due to evapo-
rative ethanol losses which were collected in the water trap,
because these fermentations were equipped with a condenser
but had continual low flow rate nitrogen sparge into a water
trap to maintain anaerobic conditions. The endpoint concen-
trations of acetic acid and ethanol in the fermentation broth
where 0.90 and 0.20 g/L, respectively. In contrast, C. bescii
and C. obsidiansis produced primarily acetic acid, minimal
lactic acid, and no detectable amounts of ethanol (Fig. 1b,
c). The acetic acid concentration for C. bescii and
C. obsidiansis started to increase at approximately 70 and
40 h, respectively and the metabolite production reached a
maximum at approximately 200 h with final acetic acid con-
centrations on average of 1.2 and 1.7 g/L, respectively. Of the
biological duplicate fermentations for C. bescii, one of them
produced minimal but still measurable amounts of lactic acid
at a concentration less than 0.5 g/L.

In addition to tracking fermentation metabolites, HPLC
analysis was used to monitor the cellobiose, glucose, xylose,
and arabinose levels that were liberated and potentially con-
sumed from the biomass. The fermentation broth of
C. thermocellum revealed minimal concentrations of cellobi-
ose (0.03 g/L), xylose (0.01 g/L), and no detectable glucose or
arabinose.C. bescii andC. obsidiansis fermentations had min-
imal cellobiose and glucose concentrations, but both fermen-
tations had residual but minimal xylose concentrations of 0.08
and 0.09 g/L, respectively (data not shown).

The carbohydrate composition of the dilute acid pretreated
Populus was monitored throughout the fermentations to eval-
uate hydrolysis and extent of sugar consumption. The biomass
was subjected to a severe dilute acid pretreatment and exten-
sive washing. The carbohydrate content of the pretreated bio-
mass was primarily glucan (~600 mg/g dry biomass) with
minimal xylan at approximately 16–17 mg/g dry biomass
and with negligible amounts of arabinose, galactose, and man-
nose in the starting biomass solids prior to fermentation. The
three CBP candidate microorganisms’ hydrolytic systems sig-
nificantly reduced the glucan content of the biomass leaving
25, 10, and 16 % of the initial content for C. thermocellum,
C. obsidiansis, and C. bescii, respectively (Table 1). Overall,
the three CBP microorganisms did not fully hydrolyze the
biomass leaving residual glucan and xylan at the end of the
fermentation (Figs. 2, S1, S2, and S3). In the C. thermocellum
fermentations, the biomass glucan content was reduced from
593 to 155 (mg/g dry biomass). In the C. bescii and
C. obsidiansis fermentations, the biomass had a starting glu-
can content of 670 (mg/g dry biomass) and it was reduced to
70 and 102 (mg/g dry biomass), respectively (Figs. S1, S2,
and S3). While C. thermocellum does not ferment xylose, it
can still solubilize some xylan. The Caldicellulosiruptor sp.
can both solubilize and ferment xylan, and more xylan was
solublized. However, in all cases, the amount of xylan
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Bioenerg. Res.



available and released was small compared to the glucan ac-
tivity. The Caldicellulosiruptor species had a greater total ex-
tent of hydrolysis thanC. thermocellum as seen in Fig. 2, but a
slower rate. C. thermocellum had an overall glucose release of
approximately 9 mg glucose/g dry biomass/h in comparison to
the Caldicellulosiruptor species which had a rate of approxi-
mately 3 mg glucose/g dry biomass/h. The maximum rate of
glucose release which occurred during the solublization of the
first 50 % of total solubilized glucan was 18 mg/g/hr, 7 mg/g/
hr, and 5 mg/g/hr for C. thermocellum, C. bescii, and
C. obsidiansis, respectively. The decrease in glucan content
of the residual pretreated Populus for C. thermocellum fer-
mentations halted at approximately 45 h while the glucan
decrease from Caldicellulosiruptor species halted at approxi-
mately 175 h after the lag phase.

C. thermocellum fermentations did not exhibit a lag phase
as measured by planktonic cell count, metabolite production,
and hydrolysis but C. bescii and C. obsidiansis both exhibited
lag phases of approximately 70 and 40 h. Despite the differ-
ences in lag phase between the three microorganisms,
C. thermocellum, C. obsidiansis, and C. bescii liberated and

consumed fermentable carbohydrates from the pretreated
Populus corresponding to yields of 0.39, 0.42, and 0.35 g of
total metabolites per gram glucan liberated, respectively
(Table 1). In addition, the amount of carbon going to cellular
biomass has been shown to be minimal <5 % for the C. bescii
and ≤10 % for C. thermocellum [42–44]. These fermentations
showed substantial glucan liberated from pretreated Populus
and assuming minimal carbon going to cellular biomass with
the metabolites measured the carbon balance remains not fully
closed.

Discussion

In this study, we provide comparative fermentation profiles of
the wild-type strains for C. thermocellum, C. obsidiansis, and
C. bescii grown on dilute acid pretreated Populus to investi-
gate hydrolysis, rate, and metabolite titer. The substrate used
was dilute acid pretreated Populus, which was extensively
washed to remove any inhibitors and soluble carbohydrates
[39, 41]. As described previously, the carbohydrate

Table 1 Summary of fermentation capabilities of C. thermocellum, C. bescii, and C. obsidiansis with dilute acid pretreated poplar

CBP
microorganism

Active
fermentation
time (h)

Lag
(h)

% of initial
cellulose remaining
in solidsa

Endpoint yield
(g/g liberated
glucan)a,b

Endpoint conversion(g
total products/g glucan
loaded)a,b

(h) to hydrolyze
75 % of the
cellulose

Max rate of
cellulose hydrolysis
(mg/g/h)

C.thermocellum 120.0 0 25.6±0.8 0.39±0.01 0.29±0.01 ~45 ~18

C. bescii ~200 ~50 10.7±0.3 0.35±0.02 0.34±0.04 ~140 ~7

C. obsidiansis ~220 ~50 16.7±2.3 0.45±0.03 0.38±0.02 ~140 ~5

aAverage of biological duplicate fermentations and standard deviation of technical triplicates analyses; endpoint analyses were after last time point (120,
295, and 285 h, respectively)
b Total products=acetic acid+lactic acid+ethanol
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(5 g/L dry biomass)
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composition of the starting substrate was primarily glucan
from cellulose with minimal xylose and negligible amounts
of mannose, galactose, and arabinose. The fermentations did
not require the addition of hydrolytic enzymes for digestion
and there was a significant increase of mixed metabolites (ac-
etate, lactate, and ethanol) and planktonic cells throughout the
fermentations indicating active metabolism and cell growth at
solids loading of 5 g/L on a dry biomass basis. The final extent
of growth and metabolism where most of the glucan is con-
sumed in these dilute conditions supports a conclusion that
product and substrate inhibition was not very important in
these fermentations. Other inhibitors may have slowed the rate
but not the extent.

There were apparent slower initial planktonic growth for
both C. bescii and C. obsidiansis that were not observed with
C. thermocellum. This was paralleled by a significant lag
phase in metabolite production. This extensive lag phase has
been observed before, and Svetlitchnyi et al. reported approx-
imately a 40-h lag phase of a Caldicellulosiruptor species on
pretreated Populus [24]. In contrast, Hamilton-Brehm et al.
did not observe a lag phase for C. obsidiansis fermenting
dilute acid pretreated switchgrass at a 1 %w/v loading [36].
Moreover, Basen et al. did not observe as significant of a lag
phase for C. bescii fermentations of unpretreated switchgrass
at 5 g/L loading as was observed during these fermentations
[38]. One possible explanation for the lag phases is that the
inocula were cultivated on crystalline cellulose, which is a
significantly different substrate than dilute acid pretreated
Populus. The Caldicellulosiruptor species may have needed
to express different and/or new enzymes to hydrolyze the
biomass leading to an adaption time. However, all three spe-
cies are known to form biofilms on the cellulosic biomass
which carry out most of the degradation and metabolite pro-
duction. Either the initial amounts of planktonic cells results in
undetectable metabolites or the Caldicellulosiruptor sp. may
have a decoupled growth and end-product metabolism. There
was no buildup of soluble but unfermented monomeric carbo-
hydrates in the broths for the three fermentations at any time
point sampled. This indicates that they are utilizing the liber-
ated carbohydrates at equal or higher rates than they become
available. In this case, due to the severe pretreatment, primar-
ily glucan from cellulose was being liberated from the bio-
mass by the hydrolytic enzyme systems. This was confirmed
by the significant reduction in glucan content in the residual
biomass.

Considering the lag phase, the entry to stationary phase and
the maximum production of metabolites, we can estimate an
active fermentation time of about 120 h for C. thermocellum
and about 150 h for the Caldicellulosiruptor sp. (Fig. 1). The
hydrolysis rate was approximately twofold greater for
C. thermocellum in comparison to both Caldicellulosiruptor
species (Fig. 2). The planktonic growth of C. thermocellum
was less than half of C. bescii or C. obsidiansis; this may be

due to a higher proportion of attached or biofilm growth. In
addition, the planktonic numbers of the C. bescii and
C. obsidiansis continued to apparently increase after the pro-
duction of measured metabolites decreased. However, the
measured metabolite production rate during the most active
phase was actually greater for the Caldicellulosiruptor sp.

The dilute acid pretreatment of the Populus increased the
accessibility of the biomass to enzymatic hydrolysis, removed
the hemicellulose, and likely formed lignin aggregates on the
solid surface as previously reported [45, 46].We noted that the
pretreated Populus composition during the time course fer-
mentation showed significant reduction in glucose content.
This appears to contrast with the previous report by Kataeva
et al., who showed that the glucose/xylose/lignin ratio was
unchanged for the digestion of unpretreated switchgrass by
C. bescii [42]. Indeed, the greatly reduced hemicellulose con-
tent in our samples after dilute acid fermentation may have left
insufficient pentose and other biomass sugars to demonstrate
the proportional consumption of minor sugars. Still, Raman
et al. and Lochner et al. respectively showed that
C. thermocellum and C. bescii each produced an augmented
or altered suite of hydrolytic enzymes depending on the sub-
strate [14, 35]. As a result, it is not unreasonable to have
differences in hydrolysis patterns and therefore substrate com-
position for fermentation of two dissimilar substrates.

In our hands, under these conditions, we noted a significant
reduction in glucan content of the entire fermented biomass
residue. However, there were varying amounts of residual
fermentable carbohydrates remaining in the solid residues de-
pending on the fermentation microbe and this has been noted
by others [14, 17, 21]. These observed differences could be a
result of the use of varying hydrolytic enzymatic approaches.
C. thermocellum produces a cellulosome which is a multien-
zyme complex while the Caldicellulosiruptor species rely on
noncellulosomal secreted cellulolytic and hemicellulolytic en-
zymes that are multifunctional [16, 23, 34, 35]. In addition,
Lochner et al. showed that there was variation in the secreted
cellulolytic systems betweenC. obsidiansis andC. bescii [35].
This could partially explain the difference in glucan content in
the endpoint residues between the Caldicellulosiruptor spe-
cies. There was significant glucan reduction but incomplete
hydrolysis of the biomass substrate. It is possible that as the
hydrolysis progressed, the remaining recalcitrance increased
mainly due to increasing cellulose crystallinity, lignin content,
and possible lignin-carbohydrate complexes within the re-
maining solid substrate.

Conclusions

The wild-type cellulolytic organisms C. thermocellum and the
Caldicellulosiruptor spp. are thermophilic anaerobic bacteria
that successfully hydrolyze and ferment dilute acid pretreated
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Populus without the addition of exogenous hydrolytic en-
zymes. This study directly compared the fermentation perfor-
mance of these organisms on acid pretreated Populus under
parallel conditions (with the exception of growth tempera-
ture), which so far, has not been reported in the literature.
There are differences in metabolite production and carbohy-
drate content of the biomass residues for the fermentation
profiles. C. thermocellum had minimal to no lag phase and a
faster rate of hydrolysis than the Caldicellulosiruptor sp.
However, the Caldicellulosiruptor species eventually re-
moved a slightly larger percentage of the glucan and
C. obsidiansis had the greatest endpoint metabolite yield.
Now that genetic engineering is beginning to demonstrate
product yield and titer improvements [19, 30, 32], this data
can be taken into consideration for guiding future strain engi-
neering of the three candidate CBP platforms to improve per-
formance on real biomass substrates.
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