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Abstract

Background: Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol
tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid
composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have
not been elucidated fully.

Methodology/Principal Findings: In this study, ethanol stress responses were investigated using systems biology
approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption,
growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential
growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to
metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress
condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many
genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome
biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic
data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic
and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation
coefficients when fold-change values are higher.

Conclusions: Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated
‘‘omics’’ approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and
proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.
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Introduction

A number of countries around the world have set targets to

displace substantial amounts of gasoline with lignocellulosic

ethanol (see reviews [1,2,3,4,5]). Z. mobilis are Gram-negative

facultative anaerobic ethanologenic bacteria with a number of

desirable industrial characteristics, such as unique anaerobic use of

the Entner-Doudoroff (ED) pathway that results in low cell mass

formation, high-specific productivity and ethanol yield and high

ethanol tolerances of up to 85 g/L (11% v/v) for continuous

culture and up to 127 g/L (16% v/v) in batch culture

[6,7,8,9,10,11]. Recombinant strains that utilize pentose sugars

such as xylose and arabinose have been developed to overcome the

substrate limitations [12,13].

The Z. mobilis ZM4 genome annotation has undergone

important improvements [14], and several ZM4 genome scale

metabolic models have been derived from it [15,16]. Genomes for

other strains have recently become available and others will be

available shortly [17,18,19]. Z. mobilis recombinant cellulase

expression and secretion has been reported [20], and there have

been improvements in transformation efficiency by modifying

DNA restriction-modification systems [21]. Gene deletions are

possible in Z. mobilis [22]. DNA microarray studies have provided

insights into Z. mobilis growth under aerobic and anaerobic
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conditions [23], under sodium chloride and sodium acetate stress

conditions [22], as well as under ethanol and furfural stress [24,25]

that led to insights into its physiology, inhibitor tolerance, and

electron transport [26]. Other studies have improved Z. mobilis

tolerance to different inhibitors using overexpression of the native

hfq gene [27] or Deinococcus radiodurans irrE gene [28].

One of the common stresses that biocatalysts encounter and a

bottleneck for bioethanol production improvement is increasing

ethanol titers during fermentation. Ethanol is a chaotropic

compound that influences membrane stability, as well as the

structure and function of macromolecules such as proteins, nucleic

acids, and lipids leading to both reduced membrane rigidity and

the impairment of metabolic processes [29,30,31].

Hopanoids, or bacteriohopanepolyols (BHPs) are sterol substi-

tutes that have been found in a variety of bacteria including Z.

mobilis and reported to protect against the toxic effects of ethanol

[32,33,34,35,36]. However, there are contradictory reports over

the role of hopanoids on ethanol stress tolerance. Moreau et al.

[37] showed that there were complex changes in the levels of

hopanoids and other lipids with the addition of ethanol, but no

significant increase in any of the hopanoid lipid classes was

identified as ethanol concentration was increased [37]. Other

genes have also been reported to be related to ethanol stress

response in Z. mobilis. For example, alcohol dehydrogenase II was

identified as a major stress protein and induced by exposure to

ethanol [38], and heat-shock proteins DnaK, GroEL, and GroES

increase in abundance after exposure to thermal or ethanol stress,

with GroES and GroEL being the two most abundant stress

proteins in Z. mobilis [39]. Although Z. mobilis ethanol responses

have been investigated previously, a systematic investigation of Z.

mobilis ethanol responses using integrated ‘omics’ approaches has

not been conducted.

While much progress has been made in understanding Z.

mobilis, more detailed insights into its physiology and regulatory

networks are required to facilitate future metabolic engineering or

synthetic biology studies for biocatalyst development. In this study,

we combined transcriptomic, proteomic and metabolic profiling

with bioinformatic analyses to elucidate the Z. mobilis ethanol stress

responses and add to the foundation of knowledge on this

bacterium.

Methods

Bacterial Growth
Z. mobilis ZM4 was obtained from the American Type Culture

Collection (ATCC31821) and cultured in RM medium (Glucose,

20.0 g/L; Yeast Extract, 10.0 g/L; KH2PO4, 2.0 g/L, pH5.0) at

30uC as described previously [23]. The growth of Z. mobilis under

anaerobic conditions was monitored by a Bioscreen C instrument

using the 600nm filter (Growth Curves USA, NJ) as described

previously [22,27]. Growth experiments were repeated at least

three times and at least two replicates were used for each

condition. Duplicate batch fermentations for the ethanol treatment

(47 g/L) and control (no added ethanol) conditions were

conducted in approximately 2.5-L RM medium in 7.5-L

BioFlo110 bioreactors (New Brunswick Scientific, NJ) fitted with

agitation, pH, temperature and DOT probes and controls as

described previously [23]. Growth was monitored turbidometri-

cally by measuring optical density at 600nm with a model 8453

spectrophotometer (Hewlett-Packard, CA). Samples were harvest-

ed during fermentation at different time points, as described

previously [23].

HPLC Analysis of Extracellular Metabolites
High-performance liquid chromatography (HPLC) analysis was

used for the measurements of the extracellular metabolite

concentration of glucose, acetate, and ethanol in 0.2 mm-filtered

samples taken at different time points during fermentation as

described previously [23]. Briefly, fermentation samples were

acidified with 10 mM sulfuric acid, separated and quantified by

HPLC using a LaChrom Elite System (Hitachi High Technologies

America, Inc., CA). Analysis was performed with an oven (Model

L-2350) set at 60uC, and a pump (Model L-2130) set with a flow

rate of 0.5 mL/min in 5 mM H2SO4. The run time for each

sample was set for 35 min (Injector Model L-2200). Eluted

compounds were registered and quantified by a refractive index

detector (Model L-2490) equipped with a computer-powered

integrator. Soluble fermentation products were identified by

comparison with retention times and peak areas of corresponding

standards. Metabolites were separated on an Aminex HPX-87H,

30067.8 mm column (Bio-Rad, CA).

Intracellular Metabolite Analysis by Gas
Chromatography-mass Spectrometry (GC-MS)
Culture samples were rapidly pelleted by centrifugation,

supernatants removed, cell pellets snap-frozen in liquid nitrogen

and then stored at –80uC until analysis. A rigorous comparison of

sampling approaches for microbial cultures published recently and

it was concluded that fast filtering and centrifugation (even at

room temperature) produced similar concentrations of metabo-

lites, even for those predicted with high turnover [40]. Metabolite

analyses of microbial pellets collected at different time points were

similar to that described previously [23]. Cell pellets were

suspended with 6–12 mL 80% ethanol (aqueous) with extraction

volume proportional to the pellet mass. Cells were disrupted using

a sonicator 3000 (Misonix, Inc., NY). An internal standard of

375 mL sorbitol aqueous solution (1 mg/mL) was then added to

each tube and 2-mL aliquots were then dried in a helium stream.

Metabolites of two biological samples from each condition were

analyzed with a ThermoFisher DSQII GC-MS as trimethylsilyl

(TMS) derivatives. The internal standard was added to correct for

differences in derivatization efficiency and changes in sample

volume during heating and it was not produced by Z. mobilis under
the assay conditions. Dried exudates were dissolved in 500 mL of

silylation–grade acetonitrile followed by the addition of 500 mL N-

methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% tri-

methylchlorosilane (TMCS) (Pierce Chemical Co., Rockford, IL),

and samples then heated for 1 h at 70uC to generate. After 4 days,

1-mL aliquots were injected into the GC-MS, fitted with an Rtx-

5MS (crosslinked 5% PH ME Siloxane) 30 m60.25 mm60.25 mm
film thickness capillary column (Restek, Bellefonte, PA). The

standard quadrupole GC-MS was operated in electron impact

(70 eV) ionization mode, with 6 full-spectrum (70–650 Da) scans

per second. Gas (helium) flow was set at 1.1 mL per minute with the

injection port configured in the splitless mode. The injection port

and detector temperatures were set to 220uC and 300uC,
respectively. The initial oven temperature was held at 50uC for

2 min and was programmed to increase at 20uC per min to 325uC
and held for another 11.25 min, before cycling back to the initial

conditions. Quantified metabolites of interest were extracted using a

key selected m/z that was characteristic for each metabolite, rather

than the total ion chromatogram, to minimize integration of co-

eluting metabolites. Peaks were quantified by area integration and

the concentrations were normalized to the quantity of the internal

standard (sorbitol) recovered, amount of sample extracted,

derivitized, and injected. Metabolite data of ZM4 under ethanol

control and treatment conditions were averaged and presented as

Z. mobilis ZM4 Ethanol Stress Responses
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relative responses between ZM4 under ethanol treatment fermen-

tation versus ZM4 without ethanol treatment. Treatment differ-

ences between ethanol treated versus control cultures at a given

sample collection time were analyzed by Student’s t-tests with

differences considered significant at P#0.05.

Microarray Analysis and Validation
Microarray analysis was conducted essentially as described

previously [22]. Briefly, samples were harvested by centrifugation

and the TRIzol reagent (Invitrogen, Carlsbad, CA) was used to

extract total cellular RNA. Each total RNA preparation was

treated with RNase-free DNase I (Ambion, Austin, TX) to digest

residual chromosomal DNA and subsequently purified with the

Qiagen RNeasy Mini kit in accordance with the instructions from

the manufacturer. Total cellular RNA was quantified at OD260nm

and OD280nm with a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, DE) and the RNA quality was checked

with Agilent Bioanalyzer (Agilent, CA). High-quality, purified total

RNA was used as the template to generate ds-cDNA using

Invitrogen ds-cDNA synthesis kit (Invitrogen, CA). The ds-cDNA

was sent to NimbleGen for labeling, hybridization, and scanning

following the company’s protocols. Quality assessments, normal-

ization and statistical analyses were conducted using JMP

Genomics 4.0 software (SAS Institute, Cary, NC) as described

previously [23], except that DNA microarray data were normal-

ized using the LOWESS method [41]. An analysis of variance

(ANOVA) statistical test determined differential expression levels

between conditions and time points using the False Discovery Rate

testing method. Differences were considered significant at P#0.05

and comparisons were also conducted using a two-fold filtering

criterion [42]. The expression profiles generated in this study have

been deposited in GEO database under the accession number

GSE21165 so that others may access the data and apply their own

testing methods and criteria. The interaction among ethanol-

regulated genes was investigated using the String 8.2 pre-

computed database [43], available at http://string.embl.de/.

Microarray data were validated using real-time qPCR as

described previously [22,23], except that the Bio-Rad MyiQ2

Two-Color Real-Time PCR Detection System (Bio-Rad, CA) and

Roche FastStart SYBR Green Master (Roche Applied Science,

IN) were used for this experiment. Ten genes representing

different functional categories and a range of gene expression

values based on microarray hybridizations were analyzed using

qPCR from cDNA derived from different time point samples.

Primer pairs were designed as described previously, and the

oligonucleotide sequences of the 10 genes selected for qPCR

analysis are listed (file S1).

Proteomic Analysis
Shotgun proteomic measurements were carried out using the

MudPIT approach [44]. Briefly, proteins were extracted from

fermentation culture cell pellets by sonication and centrifugation.

Two ethanol-treated cultures were examined, as were two control

cultures. Total protein concentrations were then quantified with

the Bio-Rad DC Protein Assay Kit II (Bio-Rad, CA). Proteins were

digested by trypsin after denaturing and reducing with 6 M

guanidine and 10 mM dithiothreitol (DTT) (Sigma Chemical Co.,

MO). Digested proteins were then reduced with 20 mM DTT and

desalted using C18 solid-phase extraction (Sep-Pak Plus, Waters,

MA). The protein digests were loaded on split-phase back columns

containing reverse-phase and strong cation exchange phases [45].

Two-dimensional LC separation was performed with twelve salt

pulses of increasing strength each of which was followed by a 2-h

reverse-phase gradient. MS/MS analysis was performed on an

LTQ linear ion trap mass spectrometer (Thermo Scientific, CA)

with dynamic exclusion enabled (repeat count = 1; exclusion

duration = 180 s).

MS/MS spectra were extracted into MS2 files [46] from RAW

files using the program Raw2MS2, version 1.0, which was

developed locally [47,48]. All MS/MS scans were searched

against the FASTA database containing all 1,946 reannotated Z.

mobilis proteins [14]) and their reversed sequences, with a total of

3,892 protein entries using the SEQUEST program (version 27)

[49], with mass tolerance for precursor ions = 3.0 and mass

tolerance for fragment ions = 0.5. No peptide modifications were

specified. Peptide identifications were filtered and assembled into

proteins by the DTASelect program (version 1.9) [50] using its

default criteria (at least two fully tryptic peptides, up to 4 missed

cleavages, a delCN of at least 0.08 and cross-correlation scores

(Xcorrs) of at least 1.8 (for charge state [z] = +1), 2.5 (z =+2), and
3.5 (z = +3). The DTASelect parameter (2p 2) that requires two

peptides also permits protein identifications arising from a single

peptide sequence for which MS-MS spectra are identified from

parent ions of two or more change states; these identifications were

subsequently removed from the reported results. The false

discovery rate for peptide identification was #,1% when using

these default parameters [51]. The isoelectric point and molecular

mass distributions were generated for the predicted proteome

using the Expasy pI and molecular weight tool (http://ca.expasy.

org/tools/pi_tool.html).

To estimate relative abundance differences of proteins, each

spectrum count value was increased by 1 to avoid division by zero

errors [52]. These adjusted spectrum count values were normal-

ized such that the sum of adjusted spectrum count values for each

individual MudPIT analysis was equal to the average of this

quantity across all four analyses. Spectrum count values from

MudPIT analyses of duplicate cultures of ethanol treated cells

were pooled, as were results for the control cells. Identification of

protein abundance changes between ethanol-treated versus

control cells was based on a G test applied to the adjusted and

normalized spectrum count values [52,53]. A protein was

determined to be different in abundance in the ethanol-treatment

condition if the p value resulting from comparison of the G statistic

with a x2 distribution (one degree of freedom) was less than 0.05

and the normalized spectrum count for both biological replicates

from ethanol treatment condition were higher (or lower) than

those from the control condition. Additionally, for a given protein,

the p value resulting from the G test, pj, was required to pass the

Benjamini-Hochberg criterion such that pj#q(j/t), where q is the

chosen false discovery rate (set at 0.05), t is the total number of

identified proteins, and j is the rank of that protein in a list ordered

by increasing p value [53]. Proteins passing these criteria are

denoted as ‘‘UP’’ or ‘‘DOWN’’ while those not passing the criteria

are denoted as ‘‘NULL.’’ To estimate the rate of false discovery for

proteins with increased or decreased abundance, the G test was

applied to the two replicates of ethanol-treated cells, and also to

the two replicates of the control cells [54]. Identified peptides with

sequences that are found in more than one Z. mobilis protein are

identified in Table S2 in file S2, and the corresponding proteins

containing these peptides are listed in Table S3 in file S2. The data

associated with this manuscript may be downloaded from the

ProteomeCommons.org Tranche network using the following

hash:/29rG1vBesn7r/1UyybgeueybqrFf3P63Ipz8PzhfZD/dWur-

BeqrJ5ajE6eSQBQmfmAI+it0t9x+XFI8qJwhal0+72EAAAAAAA
Aw7w== .

Z. mobilis ZM4 Ethanol Stress Responses
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Operon Prediction
Operons were predicted based on a previously published

method [55,56,57]. In brief, a classifier was trained based on

experimentally validated operons of E. coli and B. subtilis. The

classifier was tested on five other genomes with limited number of

operons available, and it was shown that the accuracy was

comparable to the training data sets. The classifier was then

applied to Z. mobilis genome without further modification.

Operon Adjustment through Microarray Data Analysis
Note that an adjacent gene pair could be in either two

consecutive operons, hence called a boundary pair, or the same

operon, called an operon pair. From previous studies, we found

that adjacent gene pairs with prediction-score less than 1.5 and

larger than 5 have very high confidence of being operon pairs and

boundary pairs, respectively [55,56,57]. As a result, only those

adjacent gene pairs with prediction-score between 1.5 and 5 were

adjusted using microarray data. The microarray data underwent a

discretization transformation. Briefly, two arrays (duplicated

experiments) of expression values for ZM4 wild-type growth

without ethanol stress at the time of 6 hours were used to calculate

the gene expression base value for each gene in the data. Then, if

the difference between the expression value and the base value falls

into [20.5, 0.5), the discretized value is set to be 0; and [0.5, 1.5)

to 1; [1.5, 2.5) to 2; [2.5, 3.5) to 3; [3.5, ‘) to 4; and similarly for

the down-regulated expression values. These discretization cutoffs

were determined as described previously [58], to maximize the

correlation of the identified expression patterns with predicted

operon structure. After that, the discretized microarray data were

represented using a matrix of integers between 24 and 4 to

represent their gene expression levels in the corresponding

experiments. For each adjacent gene pair, their microarray-score is

assigned with the maximum number of experiments under which

they are at the same expression levels. Then, the adjusted

prediction-score was calculated as followed: AdjpredictionScor-

e = predictionScore + ln (fbp(X)/fop(X)), where fbp and fop are the

frequencies of the boundary and operon pairs with the same

microarray-score X, respectively. In this work, the ethanol stress

microarray data generated in this study (GSE21165) and the

microarray data from a previous salt stress study (GSE18106) [22]

were used. These two microarray studies were conducted using

same procedure, platform and protocols. Raw data from the two

experiments were combined and processed together using JMP

Genomics 4.0 software using LOWESS normalization method as

described above.

Results

Physiological Response to Ethanol
The growth of Z. mobilis supplemented with 0, 16, 32, 47, 63,

79, 95 or 118 g/L ethanol was assessed using a Bioscreen C

instrument under anaerobic conditions to determine an appropri-

ate ethanol concentration for systems biology studies. Z. mobilis
growth was arrested when ethanol was added to the medium at or

above 79 g/L, and minor differences were observed between

untreated control cultures and where ethanol was added at

concentrations of 16 and 32 g/L (Fig. S1 in file S5). Z. mobilis
showed intermediate growth rate decreases when rich medium

(RM) cultures were amended with 47 g/L (6% v/v) ethanol, and

cultures treated with this concentration of ethanol attained final

cell densities similar to untreated control cultures (Fig. S1 in file

S5). The concentration of 47 g/L ethanol was chosen for the

treatment in the subsequent systems biology study to impact cell

growth slightly (Fig. 1). For simplicity in the present manuscript,

control refers to no ethanol supplementation; and ethanol

treatment refers to the supplementation of 47 g/L ethanol; unless

otherwise stated, the absolute ethanol concentration is omitted.

The presence of ethanol negatively affected growth in Z. mobilis
ZM4 fermentations (Fig. 1). Z. mobilis had a maximal culture

density of 7.0 OD600nm units approximately 9 h post-inoculation

without ethanol supplementation, while Z. mobilis only reached its

highest culture density of 6.5 OD600nm units at 13 h post-

inoculation with the supplementation of 47 g/L ethanol despite

initial inocula concentrations being slightly greater than that of

control condition (Fig. 1). The growth rate of ethanol-treated cells

was reduced by more than one third compared to that of control

cells, dropping from 0.4760.008 hour21 to 0.3160.01 hour21.

Figure 1. The growth, glucose consumption and net ethanol production of Z. mobilis in the absence or presence of 47 g/L (or 6% [v/
v]) ethanol. Black and grey arrows indicate the sampling time points of transcriptomic and metabolomic studies for Z. mobilis in the absence of
ethanol (control, black arrows) or in the presence of ethanol (treatment, grey arrows) respectively. The exponential phase samples (control at 6 h and
treatment at 10 h post-inoculation) were used for proteomic study.
doi:10.1371/journal.pone.0068886.g001

Z. mobilis ZM4 Ethanol Stress Responses
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For comparison of equivalent exponential phase growth, Z. mobilis
control at 6 h and ethanol-treated cells at 10 h (ETOH_10h/

Control_6h) were usually used for comparison purposes, unless

otherwise described. In addition, the early stationary phase

(transition from exponential phase to stationary phase) comparison

was for the ethanol-treated cell at 13.5 h to control at 10 h

(ETOH_13.5h/Control_10h), and the late stationary phase

comparison was of ethanol-treated cells at 26 h to control at

26 h (ETOH_26h/Control_26h).

HPLC was used to quantify and compare Z. mobilis glucose

consumption and the kinetics of ethanol, lactate, and acetate

production either with or without added ethanol. Z. mobilis
consumed glucose more slowly with ethanol supplementation;

more than 71% of the initial glucose was not utilized by Z. mobilis
at 10 h post-inoculation, and an additional 4.5 h was needed to

fully utilize the remaining glucose (Fig. 1; file S3). In contrast, only

2.9% of the initial glucose concentration (98 mM or 0.053 g/L)

remained at 10 h post-inoculation in the absence of added ethanol

(Fig. 1; file S3). Z. mobilis ethanol production was correlated with

substrate (glucose) consumption. Where growth was reduced with

supplemental ethanol, slower ethanol production was seen

compared to control cells (Fig. 1; file S3). In addition, ethanol-

treated Z. mobilis had a reduced net ethanol production with a

highest net ethanol production of 6.1 g/L compared to that of

8.3 g/L for control cells (Fig. 1; file S3). Similarly, acetate

production was reduced dramatically from 0.12160.002 g/L to

0.05460.004 g/L with ethanol supplementation at 26 h post-

inoculation. The majority of lactate was produced after exponen-

tial growth and in contrast with ethanol and acetate production,

lactate production in ethanol-treated Z. mobilis increased about

one-fifth to 0.04660.001 g/L after 14.5 h post inoculation

compared to that of control, and remained relatively steady

through the end of the experiment (file S3).

Metabolomics of Z. mobilis in Response to Ethanol
The physiological status of Z. mobilis was investigated further by

a comparative GC-MS analysis of intracellular metabolomic

profiles that examined relative differences at different time points

post-inoculation (6, 10, 12, 13.5 or 26 h). Metabolite identification

and analysis gave 45 metabolites that were present at different

abundance levels between Z. mobilis with and without ethanol

treatment (file S4). Fewer metabolites had at least a 1.5-fold or

greater change during exponential phase growth compared to that

of earlier stationary or stationary phase comparisons (file S4). In

ethanol-treated cells, most observed metabolites accumulated in

the early time point samples and treatment differences then

diminished thereafter. This may be either the ethanol effect

slowing a pathway or a transient response to overcome ethanol

toxicity. Tryptophan increased over time in the control, ethanol

treated microbes had only 3% of the tryptophan levels of the

controls in the later two sampling time points. Of the metabolites

quantified, tryptophan was the most impacted by ethanol stress.

Transcriptomic analysis indicated the upregulation of genes for

tryptophan synthesis (ZMO0584-7, which forms an operon with

two other genes of ZMO0582 and ZMO0583), however; when all

variables were taken into consideration together the changes were

less than the cutoff value of at least 2 fold (Table S7, Table S13 in

file S2).

Previous studies showed that the lipid membrane is related to Z.
mobilis ethanol stress [32,33,34,35]. In this study, we identified

several metabolites related to lipid metabolism, such as glyceric

acid, palmitic acid, and stearic acid, which were present at

elevated levels in the ethanol-stressed Z. mobilis compared to those

of the control cells at 10 h but not at other sampling points (file

S4). They accumulated in the early stationary phase in response to

ethanol treatment, but treatment differences were again absent in

the stationary phase, although the relative amount of fatty acids

was only a small fraction of the total metabolites identified (file S4).

Similarly hopanoids were detected via GC-MS, but their levels

were relatively low and not considered significantly different

between the control and the ethanol stress condition in the present

experiment (data not shown).

Hirasawa et al. found that the addition of tryptophan to the

culture medium, over-expression of tryptophan permease gene or

tryptophan biosynthesis genes increased the ethanol stress

tolerance [59]. Based on our results (file S4) and previous studies,

we investigated whether or not the supplementation of glycerol or

tryptophan in the fermentation media could improve Z. mobilis
ethanol tolerance. While the addition of supplemental tryptophan

did not appear to have an effect on ethanol tolerance (data not

shown), medium supplementation with glycerol at low concentra-

tions (0.001%) improved Z. mobilis growth marginally as it entered

stationary phase under ethanol stress conditions on a consistent

basis but not at levels considered significant in this study (Fig. S2 in

file S5).

Proteomic Profiling of Z. mobilis in Response to Ethanol
Shotgun proteomics was used to compare exponentially

growing Z. mobilis cells. To reduce the growth-phase effect on

protein expression difference, Z. mobilis cells at either 10 h post-

inoculation for treatment or at 6 h post inoculation for control

cells were at a similar mid-exponential phase, and therefore used

for comparison (Fig. 1). We identified 942 proteins, which is about

55% of the total predicted Z. mobilis ZM4 proteins (Table S6 in file

S2). The isoelectric point and molecular mass distributions for the

identified proteins were similar to the corresponding distributions

for all proteins in the revised genome annotation of Z. mobilis [14]
(Fig. S3 in file S5). This is the largest number of expressed proteins

described for Z. mobilis to date (Table S2, Table S6 in file S2).

We identified 95 differentially detected proteins based on a

comparison of spectrum count values (i.e., the number of tandem

mass spectra that identify tryptic peptides of a particular protein)

[52,53,54], of which 84 had at least a 1.5-fold change and 61 had a

2-fold or higher difference (Table 1 and Table S6 in file S2). Two

differentially detected proteins (ZMO0593 and ZMO0734)

contain peptides that also could be assigned to other Z. mobilis
proteins; Table S3 in file S2 lists the 30 identified proteins that

contain non-unique peptides. To estimate the rate of false

discovery of differential proteins, we also applied the G test [54]

for comparing the two ethanol-treated biological replicate samples

to each other, as well as the two control samples, leading to

identification of much lower numbers (8 and 20, respectively) of

differentially detected proteins. We identified 53 up-regulated

proteins and 31 down-regulated proteins for the ethanol treatment

at exponential phase compared to the untreated control in the

same growth phase at the 1.5-fold cutoff (Table S6 in file S2), and

these were sub-grouped by their COG (Clusters of Orthologous

Groups of proteins) functional categories [60] separately (Fig. 2

and Table S6 in file S2). We present the proteins that showed two-

fold significant changes (Table 1). Approximately two-fifths of the

down-regulated proteins belong to the functional category of

translation, ribosomal structure and biogenesis. About one-third of

the up-regulated proteins are within the metabolism category, and

most are related to energy production/conversion, as well as

nucleotide transport proteins (Fig. 2 and Table S6 in file S2). The

interactions among the down-regulated or up-regulated proteins

with at least a 1.5-fold change were also analyzed for their

previously documented interactions using STRING database [43]
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(Fig. 3). Among the 31 ethanol down-regulated proteins with at

least 1.5-fold change, ribosomal proteins as well as proteins

involved in flagellar synthesis and DNA replication have been

shown to interact with each other (Fig. 3A and Table S6 in file S2).

The 53 ethanol up-regulated proteins with at least 1.5-fold change

had fewer interactions; chaperone proteins, DNA and protein

repair proteins, as well as alcohol dehydrogenase and proteins

involved in the ED pathway and energy metabolism showed

stronger linkages than the rest of the ethanol up-regulated proteins

(Fig. 3A and Table S6 in file S2).

Among proteins with highest normalized spectrum counts, and

therefore likely to be abundant [61], were ribosomal proteins,

enzymes involved in the ED pathway, and chaperones (Table S6

in file S2). Ribosomal proteins (ZMO0726, ZMO0728) and

translation elongation factor Ts (ZMO1155) were the most

abundant proteins down-regulated by ethanol treatment. Cy-

stathione gamma-synthase (ZMO0676), iron-containing alcohol

dehydrogenase (ZMO1596) and a hypothetical protein

(ZMO1109) were among the most abundant up-regulated

proteins. Enzymes that were abundant in both the ethanol-treated

and control conditions included key enzymes such as pyruvate

kinase (Pyk, ZMO0152), phosphopyruvate hydratase (Eno,

ZMO1608), and glyceraldehyde-3-phosphate dehydrogenase

(Gap, ZMO0177); as well as proteins like chaperone DnaK

(ZMO0660) and chaperonin GroEL (ZMO1929)(Table S6 in file

S2).

Transcriptomic Profiling of Z. mobilis in Response to
Ethanol
Samples from the control fermentation and the ethanol-treated

fermentation were taken at 6, 10, 13.5, and 26 h post-inoculation

and the gene expression profiles were analyzed using a NimbleGen

high density expression array as described previously [22]. The

microarray data were assessed using several approaches and the

quality was found to be high. The correlation coefficients for

microarray data from biological replicates were good, with r

.0.98 for each comparison (Fig. S4A in file S5). In addition, the

microarray data of biological replicates were also grouped together

closely based on the hierarchical clustering and principal

components analyses (Fig. S4B–C in file S5), and that data can

be grouped or separated as time points advance through the

experiment and also by treatment before the application of the

ANOVA testing. Finally, ten differentially expressed genes from

different functional categories with a broad range of expression

ratios were chosen for real-time quantitative PCR (RT-qPCR)

validation (Table S1). RT-qPCR results indicated a high degree of

concordance between microarray and RT-qPCR data (Fig. 4).

In the absence of any fold-change filtering, about seventeen

hundred genes were identified to be significantly differentially

expressed using the ANOVA with treatment and time as variables

(Table S7 in file S2), covering nearly all of the Z. mobilis ZM4 genes

reannotated by our group [14] indicating a dynamic gene

expression for ethanol responses. Two comparisons were then

carried out to identify the ethanol-responsive genes, by comparing

the significant genes between the ethanol-treated cells and the

control cells at different growth phases, as well as by comparing

the time series of differentially expressed genes within ethanol-

treated cells (Fig. S5 in file S5). In addition, the identification of

differentially expressed genes in the time series study of control

cells helps exclude growth-phase related genes. Differentially

expressed genes identified from both the treatment versus control

study and the ethanol-treatment time series study but not from the

control time series study were regarded as ethanol-responsive

genes (Fig. S5 in file S5).

By comparing gene expression between ethanol-treated and

control cells at the same growth phase, 483 genes were significant

Figure 2. Functional categories of the eighty-four ethanol differentially regulated proteins with at least 1.5-fold significant changes
at exponential phase for 47 g/L ethanol treated cells at 10 h versus control cells at 6 h. The functional categories are based on COG
(Clusters of Orthologous Groups of proteins) categories.
doi:10.1371/journal.pone.0068886.g002
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with at least a 2-fold change (Fig. S5 in file S5, Table S8 in file S2).

About 10% of the 483 genes showed differential gene expression

during an exponential growth comparison. The majority of

differentially expressed genes responded to the transition from

exponential phase to stationary phase (Fig. S5 in file S5, Table S8

in file S2). Similar to proteomic data (Table 1), ethanol treatment

repressed the expression of genes related to the function of

information storage and processing, with more genes associated

with cellular processes being up-regulated in response to the

treatment (Table S8 in file S2). Five genes were constitutively

down-regulated with the ethanol treatment, which are a subfamily

IA HAD-superfamily hydrolase (ZMO1862), Beta-fructofuranosi-

dase (ZMO0375), exodeoxyribonuclease III Xth (ZMO1699),

DNA primase (ZMO1622), and a hypothetical protein

(ZMO0930) (Table S8 in file S2). Only two genes were

constitutively ethanol upregulated, namely a putative oxidoreduc-

tase (ZMO0101) and an YceI family protein (ZMO1334) (Table

S8 in file S2).

With a cut-off value of at least a 2-fold change, a time series

comparison identified 571 genes significantly expressed in ethanol-

treated cells (Fig. S5 in file S5, Table S9 in file S2). 112 genes were

identified to be related to ethanol stress but not growth phase

(Table S10 in file S2). The time series gene expression of ethanol-

treated cells had a different pattern of functional categories from

the treatment versus control comparison, with more genes related

to cellular processes down-regulated and more genes associated

with metabolism and information storage and processing up-

regulated (Table S10 in file S2).

Thirty-four genes were identified to be ethanol-induced in both

the comparison of ethanol-treated to control and time series

ethanol responsive genes (Table S11 in file S2). In addition, Z.

mobilis responded to ethanol stress primarily by repressing the gene

expression at an early stage such as the exponential phase

treatment and control comparison and the time-series study of the

treated-cells from 6 h to 10 h (Fig. S5 in file S5; Table S9, Table

S10 in file S2). For example, 32 genes were down-regulated

comparing the treated to the control cells during the exponential

phase, which was twice as many as the up-regulated ones (Fig. S5

in file S5, Table S9 in file S2). Time series studies of the ethanol-

treated cells’ response from 6 h to 10 h also identified 19 genes

down-regulated compared to 2 up-regulated ones only (Fig. S5 in

file S5, Table S10 in file S2).

At least 17 genes are likely to be involved in Z. mobilis ZM4

hopanoid biosynthesis, including an orphan gene (ZMO1599),

four putative operons (ZMO0867-0871; ZMO0874-5; ZMO1547-

8; ZMO0972-4) and three additional genes of ZMO0873,

ZMO0876, and ZMO0975 adjacent to these operons. In this

study, the regulation of hopanoid biosynthetic gene expression was

related to the growth phase rather than ethanol treatment. Among

the twelve hopanoid biosynthesis proteins identified by proteomic

study, none were significantly different between the treatment and

control conditions (Table S6 in file S2). Hopanoid amount

differences were not observed between treatment and control

conditions at the metabolite level either. The transcriptomic study

also indicated that ethanol treatment did not significantly change

the expression levels of the hopanoid biosynthesis associated genes.

The Correlation between Proteomic and Transcriptomic
Data
Nine hundred and twenty five proteins identified by proteomic

study also yielded corresponding gene-expression data, which

formed 925 gene-protein pairs (Table S6, Table S7 in file S2). At

the same exponential phase as used in the proteomic study, 500

genes were found to be significantly expressed based on JMP

Genomics analysis out of the total 925 genes from all the

conditions (Table S6 in file S2). The number of significantly

expressed genes was more than that of the 95 significantly

expressed proteins by the G-test analysis (Table 2, Fig. S5 in file

S5, Table S6 in file S2), which is likely due to technical differences

between the proteomic and transcriptomic techniques and

analyses. Only one protein out of the 95 significantly expressed

proteins had no corresponding gene expression data, and there is a

correlation coefficient R-squared value (R2) of 0.33 between these

94 gene-protein pairs (Table 2, Fig. S5 in file S5, Table S6 in file

S2). We can also see a better correlation between proteomic and

transcriptomic data for the significantly differentially expressed

gene-protein pairs with increasing gene expression differences

(Table 2, Fig. S5 in file S5). For example, when we selected the

significantly expressed proteins with at least 1.5 or 2-fold change

and then compared their correlations to their corresponding genes

with significant gene expression, the R2 values are 0.49 (49

protein-gene pairs) or 0.50 (40 protein-gene pairs) respectively

(Table 2, Fig. S5 in file S5).

We identified nine examples where gene expression and protein

levels changed in opposite directions, likely pointing to differences

in regulation between transcripts and proteins (Table S12 in file

S2). For instance, glucose-6-phosphate dehydrogenase gene

(ZMO0367), 30S ribosomal protein S5 gene (ZMO0533), and

30S ribosomal protein S6 gene (ZMO1225) had higher expression

levels with ethanol treatment (ca 2-fold change), however, the

protein level decreased in ethanol treated cells (ca 1.5-fold to 2-fold

change). Other example includes six genes such as heat shock

protein DnaJ domain-containing gene (ZMO1690), protease ClpA

gene (ZMO0405), short-chain dehydrogenase/reductase SDR

gene (ZMO0318), alcohol dehydrogenase (ZMO1236) etc., which

had a reduced gene expression (ca 1.6-fold to more than 2-fold

change) but an increased protein expression (ca 1.6- to more than

8-fold change) levels with the ethanol treatment (Table S12 in file

S2).

ZM4 Operon Predictions and Adjustments
The Z. mobilis ZM4 genome annotation has been updated

recently [14] and in this study we examined and improved ZM4

operon models. Operons were predicted by our published method

[55,56,57], which was ranked as the best available operon

prediction program by an independent study [62].

We predicted that 1,808 Z. mobilis ZM4 genes are organized

into 1,048 transcriptional units, 370 of which are multi-gene

operons, which is available at DOOR database [57] This

predicted operon map is then refined based on the analysis results

of available ethanol and salt stress microarray data with 13.8% of

the initial predictions rejected since they are not consistent with

the microarray gene expression data, and this level of accuracy is

Figure 3. Documented interactions based on String 8.2 database for 31 ethanol down-regulated proteins (A) and 53 ethanol up-
regulated proteins (B) with at least 1.5-fold changes from proteomic study. A greater the number of lines associated with the connection,
indicates a greater level of confidence in the association. The network nodes are proteins. The edges represent the predicted functional associations.
An edge may be drawn with up to 7 differently colored lines - these lines represent the existence of the seven types of evidence used in predicting
the associations. A red line indicates the presence of fusion evidence; a green line - neighborhood evidence; a blue line - coocurrence evidence; a
purple line - experimental evidence; a yellow line - textmining evidence; a light blue line - database evidence; a black line - coexpression evidence.
doi:10.1371/journal.pone.0068886.g003

Z. mobilis ZM4 Ethanol Stress Responses

PLOS ONE | www.plosone.org 8 July 2013 | Volume 7 | Issue 8 | e68886



Table 1. Comparison of array data to significantly different proteins.

Proteomics Array

Gene Product Ratioa p-value Ratio p-value Sig Indexb

ZMO1373 TIR protein 3.4 9.50E-06 0.7 5.13E-08 1

ZMO1818 4Fe-4S ferredoxin iron-sulfur binding domain-containing
protein

3.2 8.40E-05 20.3 3.89E-03 1

ZMO0101 putative oxidoreductase 3.2 9.60E-05 1.5 1.66E-31 1

ZMO0405 ATP-dependent Clp protease, ATP-binding subunit ClpA 3.1 2.00E-04 20.7 5.37E-14 1

ZMO0347 RNA-binding protein Hfq 3.0 3.10E-04 20.1 5.37E-01 0

ZMO0844 sporulation domain-containing protein 2.9 8.60E-04 0.7 1.05E-06 1

ZMO0896 hypothetical protein 2.9 8.60E-04 0.5 2.40E-12 1

ZMO1041 NUDIX hydrolase 2.8 1.20E-03 21.2 1.17E-13 1

ZMO0864 cytidine deaminase 2.8 1.60E-03 0.3 1.91E-07 1

ZMO0760 lactoylglutathione lyase 2.8 1.80E-03 0.0 7.08E-01 0

ZMO1466 alpha/beta family hydrolase 2.7 1.10E-05 0.4 1.48E-16 1

ZMO1583 DNA topoisomerase (ATP-hydrolyzing) 2.6 3.40E-03 0.1 1.74E-02 1

ZMO1370 nitrilase/cyanide hydratase and apolipoprotein N-
acyltransferase

2.6 4.80E-03 20.4 7.08E-11 1

ZMO1722 S-(hydroxymethyl)glutathione dehydrogenase/class III
alcohol dehydrogenase

2.6 4.80E-03 0.3 6.92E-09 1

ZMO1544 Cobaltochelatase 2.6 4.50E-05 0.5 2.75E-15 1

ZMO1576 putative short-chain dehydrogenase/oxidoreductase 2.5 1.80E-05 20.2 9.55E-05 1

ZMO1605 pyruvate dehydrogenase subunit beta 2.3 4.10E-06 1.0 5.62E-23 1

ZMO1741 GTP-binding protein LepA 2.0 4.90E-03 0.4 1.62E-08 1

ZMO0811 methionyl-tRNA formyltransferase 1.9 2.20E-03 20.1 1.91E-02 1

ZMO0734 3’(2’),5’-bisphosphate nucleotidase 1.9 3.80E-04 0.2 1.66E-04 1

ZMO1412 MucR family transcriptional regulator 1.9 2.90E-03 0.9 1.66E-20 1

ZMO1873 glutaredoxin-related protein 1.8 5.40E-03 0.5 3.31E-12 1

ZMO1052 Phosphoribosylaminoimidazolesuccinocarboxamide synthase 1.8 2.30E-03 1.2 1.23E-14 1

ZMO0442 HAD-superfamily hydrolase, subfamily IA, variant 3 1.7 3.20E-03 20.1 6.31E-01 0

ZMO1334 YceI family protein 1.7 4.30E-05 1.4 3.98E-18 1

ZMO0318 short-chain dehydrogenase/reductase SDR 1.7 2.80E-08 21.1 8.51E-26 1

ZMO0948 Endopeptidase Clp 1.7 6.30E-08 0.6 3.47E-14 1

ZMO1424 ATPase 1.7 1.20E-11 0.5 3.31E-05 1

ZMO0921 hypothetical protein 1.7 1.20E-03 0.3 1.55E-13 1

ZMO0913 branched-chain amino acid aminotransferase 1.6 5.50E-03 0.7 2.09E-16 1

ZMO0432 arginase family protein 1.5 6.20E-04 0.9 6.17E-26 1

ZMO1684 Phosphoserine transaminase 1.4 1.90E-05 0.8 4.57E-26 1

ZMO0016 GrpE protein 1.3 7.30E-06 0.6 1.17E-12 1

ZMO0855 farnesyl-diphosphate synthase 1.3 2.30E-05 0.3 4.79E-10 1

ZMO1690 heat shock protein DnaJ domain-containing protein 1.2 1.20E-03 20.8 6.17E-21 1

ZMO1570 Formate C-acetyltransferase 1.2 4.40E-04 0.3 5.89E-04 1

ZMO0593 3-dehydroquinate synthase 1.1 4.70E-04 0.4 6.61E-21 1

ZMO1498 histidine triad (HIT) protein 1.1 2.50E-03 0.0 6.92E-01 0

ZMO0684 CRISPR-associated Csy3 family protein 1.1 1.90E-04 0.8 2.69E-10 1

ZMO1496 Phosphoenolpyruvate carboxylase 1.1 2.30E-05 0.2 2.63E-04 1

ZMO0792 dihydroorotase 1.0 2.80E-03 0.4 1.00E-09 1

ZMO1034 calcium-binding EF-hand-containing protein 1.0 2.20E-06 20.3 2.69E-02 1

ZMO1294 sugar isomerase (SIS) 23.5 2.00E-05 20.1 5.50E-01 0

ZMO1593 peptidase M61 domain-containing protein 22.9 2.40E-03 20.1 6.92E-02 0

ZMO0508 GCN5-related N-acetyltransferase 22.7 4.60E-03 20.1 1.91E-01 0

ZMO0399 hypothetical protein 22.1 2.90E-04 20.1 5.25E-01 0
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comparable to a previous observation [56]. The new operon

predictions consist of 366 multi-gene transcripts and 651 single-

gene transcripts (Table S13 in file S2). Compared to the original

prediction result of 1,048 transcription units, the addition of

microarray data reduced the number of transcription units to

1,017.

Discussion

Z. mobilis synthesizes large amounts of hopanoids (up to 30 mg/

g, dry weight), which are members of the triterpenic isoprenoids

(C30) [63,64]. Hopanoids have been detected in approximately

30% of bacteria tested and are thought to function as prokaryotic

sterol analogues involved in membrane integrity, although there is

a wealth of different triterpenic (.20,000) structures and their

Figure 4. Correlation between microarray and RT-qPCR results for microarray data verification. Comparison of gene expression
measurements by microarray and qRT-PCR between wild-type Z. mobilis ZM4 with the treatment of 47 g/L ethanol and control cells without ethanol
treatment at different time points. The gene expression ratios of both microarray data and qPCR data for ten genes were log transformed in base 2
(log2,Ethanol_treatment/Control.), and the microarray log2 ratio values were plotted against the qRT-PCR log2 values.
doi:10.1371/journal.pone.0068886.g004

Table 1. Cont.

Proteomics Array

Gene Product Ratioa p-value Ratio p-value Sig Indexb

ZMO0970 putative purine nucleoside permease 22.1 1.30E-03 0.3 9.55E-06 1

ZMO0610 flagellar basal-body rod FlgF 21.8 2.00E-04 0.4 1.15E-03 1

ZMO0605 flagellar hook-associated protein FlgK 21.8 1.10E-03 0.0 8.32E-01 0

ZMO1411 ferric uptake regulator family protein 21.4 1.90E-03 0.2 2.14E-03 1

ZMO0611 flagellar basal body FlaE domain-containing protein 21.4 5.10E-18 0.2 1.48E-02 1

ZMO1609 hypothetical protein 21.3 9.60E-08 0.0 6.61E-01 0

ZMO1542 single-strand binding protein 21.2 2.60E-04 20.8 7.76E-08 1

ZMO1712 FKBP-type peptidyl-prolyl cis-trans isomerase 1-like 21.2 6.70E-05 0.0 7.76E-01 0

ZMO0727 50S ribosomal protein L10 21.1 3.10E-13 20.1 8.91E-03 1

ZMO0518 50S ribosomal protein L4 21.1 2.30E-15 0.3 3.31E-03 1

ZMO1779 hypothetical protein 21.1 1.60E-17 20.2 1.35E-05 1

ZMO1490 hypothetical protein 21.1 4.90E-04 20.7 1.12E-11 1

ZMO0533 30S ribosomal protein S5 21.1 2.80E-15 0.8 1.41E-22 1

ZMO1079 50S ribosomal protein L19 21.1 1.40E-06 20.3 5.50E-04 1

ZMO0542 50S ribosomal protein L17 21.0 1.90E-07 0.4 1.15E-02 1

aRatios are represented as log2 values for 10 h treatment condition over 6 h control condition.
bSignificance index shows if a gene was significantly differentially expressed (1) or not (0) for this comparison.
doi:10.1371/journal.pone.0068886.t001
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functions are not fully understood [64]. Differences between

ethanol-treated cells and control cells were largely due to growth

differences (Table S7 in file S2). The sterol-like hopanoids did not

appear to be a major response or difference under the stress

conditions used in this study. The lack of hopanoid response to

ethanol stress is not unusual [33]; however, hopanoids might still

be part of a constitutive component of this organism’s ethanol

tolerance. The naturally high levels of hopanoids that Z. mobilis

produce could potentially be exploited to generate isoprenoids of

interest for building block chemical synthesis or upgrading to

biofuels. The data from global studies such as these will be useful

as future synthetic biology and metabolic engineering studies are

contemplated.

Addition of ethanol negatively affected growth, carbon utiliza-

tion and energy maintenance of Z. mobilis, and lead to increased

fermentation time and reduced ethanol productivity (Fig. 1), which

is consistent with a recent transcriptomic study for Z. mobilis under

5% ethanol stress published during the reviewing process of our

manuscript [25]. In addition, both studies indicated that ethanol

has effects on multiple aspects of cellular metabolism [25]. Z.

mobilis genes or proteins related to translation, ribosomal

biogenesis, and flagellar biosynthesis were down-regulated and

those related to energy metabolism and stress response such as

chaperones were up-regulated for ethanol treated cells. The

majority of the early growth phase down-regulated genes that

encode hypothetical proteins formed putative operons or clustered

together, while the up-regulated genes were scattered around the

genome (Fig. 3). The Clostridium thermocellum ethanol shock response

suggests that nitrogen metabolism plays an important role in wild-

type ethanol resistance by enabling ethanol-stressed cells to bypass

the carbon metabolism inhibition [65]. A C. thermocellum strain with

a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase

gene (adhE) had altered cofactor specificity, which likely affects

electron flow in the mutant and taken together this indicates

different microorganisms respond to such stress using different

strategies.

In this study, we updated operon predictions for Z. mobilis and

this may aid future metabolic engineering endeavors (Table S13 in

file S2), just as a prior study joined two genes into the nhaA gene for

increased tolerance to sodium acetate when over-expressed [22].

The hypothetical characteristics of most down-regulated genes

may lay a direction to fully understand the bacterial genome for

stress response mechanisms; the differential expression of the

hypothetical proteins also provides a way to annotate these genes

for future studies, and the clustering expression of the down-

regulated genes provides information on operon prediction

optimization and bacterial evolution studies. As an example, four

genes (ZMO0929, ZMO0930, ZMO0931, and ZMO0932)

belonging to an operon predicted by DOOR were down-regulated

at least 2-fold at the exponential phase comparison between

ethanol-treatment and control condition, but induced in the

stationary phase in time series study. Another gene (ZMO0934)

originally assigned to the same operon was also down-regulated

too with a similar expression pattern, however, the expression

value and pattern are different from above four genes and we

updated this as a single gene transcription unit.

Although the above four genes were annotated as hypothetical

proteins, NCBI Blast search results indicated that actually this

region of the chromosome contains two genes, which are zliE and

zliS activating the expression and secretion of levansucrase as

reported by Kondo et al. [66]. Z. mobilis possesses three sucrases,

an intracellular sucrase SacA as well as two extracellular

levansucrases of SacB and SacC, which contribute to sucrose

hydrolysis. In this study, the structural gene sacB (ZMO0374)

encoding beta-fructofuranosidase, which is regulated by ZliE and

ZliS, was down-regulated in the exponential phase and then

induced at a later stage. A SacB homologue has been suggested to

be involved in signal transduction for cell wall and membrane

composition change, and SacB levansucrase mutants are known to

grow on sucrose medium without levan production and produce

higher levels of ethanol [67]. The fine-control of the expression of

Table 2. Correlations between log2 based expression ratios from transcriptomic and proteomic studies at exponential phase
(ethanol-treated cell at 10 h versus control cells at 6 h).

a 1 SPRA SP1.5RA SP2.0RA SPRSA SP1.5RSA SP2.0RSA

Number 94 84 61 54 49 40

Correlation 0.33 0.33 0.33 0.49 0.49 0.50

a 2 SARP SA1.5RP SA2.0RP SARSP SA1.5RSP SA2.0RSP

Number 500 84 24 54 18 8

Correlation 0.17 0.41 0.56 0.49 0.75 0.90

a 3 PrRA SPrRSA SP1.5rRSA1.5 SA2.0rRSP2.0

Number 925 54 23 8

Correlation 0.10 0.49 0.74 0.90

a: The direction of comparison; 1: from significant protein list to identify their corresponding genes for correlation; 2: from significant gene list to identify their
corresponding proteins for correlation; 3: both the proteins and their corresponding genes used for correlation calculation have same statistical significant differential
expression level, and the results of comparisons are same from either directions. P: proteomics, A: transcriptomics; S: statistically significant, 1.5: at least 1.5-fold
difference; 2.0: at least 2-fold difference. The numbers for proteomic and transcriptomic studies before comparison are: P: 942; SP: 95 (94 proteins with corresponding
gene expression were used for SP); SP1.5: 84; SP2.0: 61; A: 1694; SA: 912; SA1.5: 174; SA2.0: 48. Number: the number of gene-protein pairs after comparison;
Correlation: the R-squared number between the log2 based expression ratio (ethanol-treated cell versus control cells) of proteins identified from proteomics and log2
based expression ratio (ethanol-treated cell versus control cells) of genes identified from microarray. R: the direction for comparison; For example, PRA is to identify
the corresponding genes in microarray data from the protein list of proteomic data. SP1.5RA is to identify the corresponding genes in microarray data from the
protein list of proteomic data with at least 1.5-fold changes.
doi:10.1371/journal.pone.0068886.t002

Z. mobilis ZM4 Ethanol Stress Responses

PLOS ONE | www.plosone.org 11 July 2013 | Volume 7 | Issue 8 | e68886



beta-fructofuranosidase SacB may help Z. mobilis tolerate the

ethanol stress, although further investigation is still needed.

We have reported that a lactate dehydrogenase gene ZMO1237

was more abundant in the relatively more stressful aerobic

condition [23]. In this study, there was more lactate produced in

ethanol-treated cells when the cells were entering into stationary

phase than that of control condition. Expression of a D-lactate

dehydrogenase (ZMO0256) was up-regulated in the ethanol-

treated cell and it was also induced within the stationary phase.

Up-regulation of lactate dehydrogenase genes ZMO1237 and

ZMO0256 may lead to the accumulation of lactate in Z. mobilis.

The production of lactate may help Z. mobilis rebalance its

reducing power through NADH biosynthesis. It will be useful in

the future to compare different stressors or conduct studies where

cells are shocked with different inhibitors and their responses

immediately assayed and followed over time. An important aspect

of this study is that we have confirmed the expression of a large

number of Z. mobilis proteins for the first time. Likewise, we have

added information on transcription levels using a whole genome

microarray and this information could be useful for others

choosing appropriate promoters to use for metabolic engineering

and synthetic biology studies.

Glycerol is a by-product of biodiesel and a potentially abundant

and inexpensive source of reducing equivalents [68]. An increase

in glycerol flux has been suggested as being important way that S.

cerevisiae balances intracellular NAD(+)/NADH pools under

ethanol stress conditions [69] and redox is evidently important

for C. thermocellum ethanol tolerance [70]. Exogenous glycerol has

been shown to enhance ethanol production from a Bacillus species,

which was suggested to occur by the presence of additional NADH

generated from glycerol uptake and its utilization through

glycolysis [71]. In Z mobilis growth studies the addition of glycerol

to the medium appeared to have a marginal effect on ethanol

stress (Fig. S2 in file S5). Further study is required into Z. mobilis

intracellular redox balance, to define better any role for glycerol

and other metabolites in overcoming ethanol stress and to improve

the strains performance under industrial conditions. The elimina-

tion of undesirable end-products such as lactate or acetate by

metabolic engineering of Z. mobilis is another avenue for future

studies.

We have made a cursory examination of correlation between

gene expression and protein levels. We observe better correlations

between proteomic and transcriptomic data for the significantly

differentially expressed gene-protein pairs with increasing gene

expression differences (Table 1, 2, Fig. S5 in file S5). We examined

the correlations between the gene or protein expression ratios and

abundance, as well as the factors affecting the correlations in this

work, rather than investigating the relationship between the gene

or protein abundance with the genetic structural characteristics

such as codon bias, CDS and RNA secondary structures as

reported previously [72,73]. The present datasets are a rich source

for further studies that may address various factors such as RNA

secondary structures in transcript and protein comparisons.

Finally, our study has provided insights into the molecular

responses of the model ethanologenic bacterium Z. mobilis to

ethanol stress through an integrated transcriptomic, proteomic,

and metabolomic approach, in conjunction with bioinformatics

analysis, for the first time. This study provides data on the dynamic

levels of Z. mobilis molecular responses at a global level, whose

better understanding will be requisite to build better models of

cellular physiology, its regulation and for manipulation purposes.

Supporting Information
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proteomics that contain non-unique peptides. Proteomics
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ethanol-treated cells time-series study. Subset of DNA
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expressed genes for ZM4 ethanol-treated cells time-
series study excluding the growth-phase related genes.
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ethanol-responsive genes from both the treatment
versus control and time-series studies. Subset of DNA

microarray data. Table S12: The list of 28 proteins with
both proteins and their corresponding genes having at
least 1.5-fold statistically significant differences be-
tween treatment and control conditions. Comparison of

array and proteomics data. Table S13: Operon prediction
result after adjustment based on microarray results.
Operon IDs after adjustment based on transcriptomic data.
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File S3 Table S4: The concentrations of extracellular
metabolites in ethanol-treated and control cells of Z.
mobilis at different time points post-inoculation. Ethanol
supplemented for ethanol treatment is 47 g/L (equal to 6% [v/v]).

The concentration units of glucose, ethanol, lactate, acetate and

succinate were g/L. Ethanol concentration is the net production

amount. ND: non-detectable.

(DOCX)

File S4 Table S5: Time-course metabolite intracellular
concentrations of Zymomonas mobilis ZM4 cultured in
control media and media supplemented with 6% ethanol
(EtOH). The average (top value) and standard error of the mean

(bottom value) of 2 biological replicate cultures are shown for each

treatment at each time point. Concentrations are shown as mg/g
fresh weight. Ratios of the metabolite responses of ethanol-treated

versus control (top value) and the P-values of Student’s t-tests
(bottom value) are shown at the right.

(DOCX)

File S5 Fig. S1: The effect of different ethanol concen-
trations on Z. mobilis growth. ZM4 growth at 30uC under

anaerobic in rich media (RM) broth with or without the

supplementation of 16, 32, 47, 63, 79 or 118 g/L ethanol

respectively. Fig. S2: Growth curves for Z. mobilis cultures
under ethanol stress and ammended with glycerol. Z.
mobilis growth at 30uC under anaerobic conditions. The mean

A6006 S.E. (bars) for 3 replicate growth experiments is shown,

with each experiment having at least three independent replicates.

Fig. S3: Molecular weight (MW) and pI distribution of
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proteins identified through proteomics. The observed MW

and pI distributions for 942 proteins are similar to the theoretical

distributions based on genome prediction. Fig. S4: DNA
microarray quality assessments. Correlation coefficients

for biological replicates (A), hierarchical clustering analysis based

on the correlations (B) and Principal Components Analysis (C).
Treatment arrays are shown in red and control arrays are colored

blue. Fig. S5: Flowchart of metabolite, protein, and gene
numbers. The among metabolome (light yellow boxes), pro-

teome (pale blue boxes), transcriptome (pink box) of ethanol

treatment versus control (rose boxes) or time course studies of

ethanol-treated cells (purple boxes) and control cells(grey boxes),

and different comparisons used in this study to investigate their

connections. The boxes drawn with dashed lines indicate the

comparison across different omics platforms of metabolomics,

proteomics and transcriptomics. Samples were taken at 6, 10, 13.5

or 26 h post-inoculation. Three phase comparisons of ethanol

treated versus control cells at exponential phase (EP), early

stationary phase (ESP) and late stationary phase (LSP) for

metabolomic and transcriptomic studies as well as an exponential

phase proteomic comparison study were conducted. SM:

significant metabolites; SM1.5: significant metabolites with at

least 1.5-fold changes; SM2.0: significant metabolites with at least

2-fold changes; P: all the proteins identified from proteomics; SP:
proteins with significant changes based on G-test result; SP1.5:
significant proteins with at least 1.5-fold changes; SP2.0:
significant proteins with at least 2-fold changes; A: all the genes

identified from transcriptomics; SA: significant genes identified

from transcriptomics; SA1.5: significant genes with at least 1.5-

fold changes; SA2.0: significant genes with at least 2-fold changes.

The numbers after above symbols are the total number identified,

and the numbers underneath the symbols are ethanol up-regulated

with red font followed by ethanol down-regulated with blue font.

The arrows indicate connection between each omics comparison,

the orientation of arrow indicates the comparison direction.

(DOCX)
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