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Abstract This article addresses how the functionalities of the cellular machinery of a bacterium might have constrained the

genomic arrangement of its genes during evolution and how we can study such problems using computational approaches,
taking full advantage of the rapidly increasing pool of the sequenced bacterial genomes, potentially leading to a much
improved understanding of why a bacterial genome is organized in the way it is. This article discusses a number of
challenging computational problems in elucidating the genomic structures at multiple levels and the information that is
encoded through these genomic structures, gearing towards the ultimate understanding of the governing rules of bacterial
genome organization.
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1 Cellular Machinery and Genome

Bacteria are the simplest free-living organisms on
Earth. They are unicellular. A typical cell (see
Fig.1(a)) has a diameter of ∼0.5 micrometer, about one
twentieth of the diameter of a human cell. While tiny,
they are equipped with rather sophisticated capabilities
for doing some amazing things. A bacterial cell con-
sists of multiple cellular systems for carrying out the
basic house-keeping functions such as DNA replication
during multiplication of a cell, gene transcription and
translation for the generation of functional molecules
such as proteins and RNAs, and metabolic processes
to handle nutrient processing and energy conversion in
support of its basic needs as a living organism. On top
of these, a bacterial cell also has certain information
processing capabilities such as environmental sensing,
signaling and circadian rhythms, as well as a complex
network of regulatory elements that controls the timing
and the amount of different types of biomolecules to be
created under specific conditions. In a complex environ-
ment where the living conditions such as the tempera-
ture, the pH level and the amount of available nutrients
constantly change, the bacteria there have learned to

adapt to the changing environment by turning on and
off the relevant cellular systems to best cope with the
current environmental condition. Some bacterial cells
are capable of moving themselves by using their flagella.
Like all living organisms, bacterial cells can reproduce,
often at an astonishing rate. Bacterial reproduction is
generally asexual, which involves only one parent and
the offspring are exact replicates of the parent.

While very small, bacteria play many essential roles
in keeping our environment livable as well as in keep-
ing each of us healthy, among many other things that
they are capable of doing. For example, cyanobacteria,
the largest as well as perhaps one of the oldest groups
of bacteria on Earth, is considered the architect of our
atmosphere since they were responsible for creating the
oxygen atmosphere under which our lives and many
other forms of lives are on going. For each healthy hu-
man being, we have approximately 1014 bacterial cells
inside our intestines, some of which help us to process
certain foods, such as vegetables, that are otherwise not
(easily) digestible by ourselves among other functions
they do inside our intestines.

While individual bacterial cells can execute very
complex biological functions, bacterial communities
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could do substantially more. For example, it is
known that bacterial cells can self-organize into
hierarchically structured colonies under natural growth
conditions[1-4]. Fig.1(b) shows two such complex pat-
terns of bacterial colonies, which emerge through
interplays among individual bacteria coordinated
through their inter-cellular communications. While
much is yet to be understood about the formation of
such complex patterns, it is known that the bacterial
colonies provide the degree of plasticity and flexibil-
ity required for better durability and adaptability of
a whole bacterial community to the changing environ-
ment.

As we understand now, all these capabilities are en-
coded in the genome of the bacterial cell. Specifically,
the bacterial genome encodes the components of the cel-
lular machinery capable of carrying out all these capa-
bilities, along with the regulatory information about the
conditions under which each such component will be ac-
tivated. A typical bacterial genome ranges from 1 mil-
lion base pairs (bps) of nucleotides to ∼10 million bps
long. The genome of the widely known E. coli K12 is ∼4
million bps long and encodes ∼4000 protein genes. In
addition to the protein genes, a bacterial genome may
also encode functional RNA genes, called non-coding
RNAs although we do not have a clear idea yet about
the number of such RNA genes that a typical bacterial
genome may encode. Under a particular cellular condi-
tion, a specific group of genes may be activated to pro-
duce protein and/or RNA molecules through a chain
of events such as sensing, signaling, regulation, tran-
scription (and translation), and together they will carry
out their designed functions after being transported to
the desired sub-cellular locations. Then the physical
and chemical laws on Earth will take over so these
functional molecules will fold into the correct struc-
tural conformations, form molecular associations, say,
to activate proteins through post-translational modifi-
cations such as phosphorylation, to catalyze chemical
reactions, or to transport ions in or out of a cell. The

combined effect of these molecular functions and inter-
actions could be some rather complex cellular functions
such as converting nutrient transported from the envi-
ronment to some form of energy that the cell can utilize.
In order to keep a cell to function properly, all individ-
ual molecular functions have to be done in the proper
order, at the right time, under the right conditions and
for the right duration of time, controlled by the rele-
vant regulatory information that is also encoded in the
genome of the bacterial cell.

1.1 What is Known About Bacterial Genomes
in General

Haemophilus influenzae was the first sequenced bac-
terial genome, completed in 1995[7]. Since then, over
879 bacterial genomes have been sequenced (as the
writing of this article), and ∼2000 additional bacterial
genomes are in the pipeline being sequenced or to be
sequenced[8]. A bacterial genome is typically circular,
and encodes proteins on both the leading and the lag-
ging strands of its chromosome[9-10]. On average, a bac-
terial genome encodes one protein gene per ∼1000 bps.
Bacterial genes are organized as operons[11-14], the ba-
sic transcriptional units, and then further grouped into
a higher level organization called regulons[15-17], the ba-
sic units of the cellular response system. In addition,
a genome encodes various regulatory elements such as
cis regulatory motifs for transcription regulation. Bac-
terial genomes are constantly changing their composi-
tion and organization as they may move some of their
genetic material from one location to another within a
genome or exchange genetic material with other organ-
isms. Such genetic material is generally called mobile
genetic elements[18-23], which provide the basic mate-
rial for genomes to gain new functionalities during evo-
lution.

Numerous computational techniques have been de-
veloped to characterize and identify these and other
biological entities encoded in a bacterial genome, some

Fig.1. (a) A cartoon of bacterial cell[5]. (b) Patterns formed by Paenibacillus dendritiformis bacteria[6].
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of which have matured to a level that they are currently
being widely used for studying bacterial genomes.

Protein-Encoding Genes. Protein-encoding genes
account for ∼80% of a typical bacterial genome. Iden-
tification of such genes in a genome represents one of
the areas where computational techniques have played
a key role. The basic information for identification of
protein-encoding genes in a genome is that the protein-
encoding regions generally have distinguishing di-codon
(two codons with each consisting of three nucleotides)
frequencies[24] from those in non-coding regions. In ad-
dition, the start of a protein-encoding gene also has de-
tectable signals[25-26]. By combining these two pieces
of information, various computational techniques have
been developed to find genes in a sequenced bacterial
genome. The best gene-prediction programs can reach
over 90% of identification accuracy at the nucleotide
level[27].

Functions of Protein-Encoding Genes. The function-
ality of a protein is not directly encoded in the genome;
instead it is determined by the three-dimensional shape
of its folded structure, which is ultimately decided
by its amino acid sequence and the physical laws on
Earth. Numerous computational techniques have been
developed for prediction of molecular and cellular func-
tions of proteins, mostly based on comparison to pro-
teins with known (experimentally characterized) func-
tions. Sequence homology-based approaches repre-
sent the most widely-used class of methods for pro-
tein function prediction. Structural homology-based
approaches, such as protein threading[28-29], allow iden-
tification of more distant homologues that are not easily
identifiable by sequence-based approaches. In addition,
there are prediction methods based on functional mo-
tifs in protein sequences[30-32]. The current estimate
is that ∼70% of the proteins encoded in a newly se-
quenced bacterial genome can have some level of func-
tional prediction[33] using computational techniques.

Non-Coding RNA Genes. Non-coding RNA
(ncRNA) genes are involved in a variety of cellular
processes ranging from regulation of gene transcrip-
tion to genome modification and editing[34-36]. Vari-
ous types of ncRNA genes have been observed in
bacterial genomes except for microRNAs[37]. It has
been observed that homologous RNA genes are gene-
rally not as well conserved at the sequence level as
their protein counterparts while their secondary struc-
tures are generally better conserved, suggesting that
the key functional information is encoded in the se-
condary structures. A number of computer programs
have been developed for identification of ncRNA genes
using both sequence and secondary structure conserva-
tion information[38-41]. This class of methods is mostly

limited to prediction of ncRNA genes whose homolo-
gous genes have been characterized before.

Operons. Unlike eukaryotic genomes, bacterial genes
are organized into operons[11-12], in which genes are
arranged in tandem on the same strand of a genome
and share a common promoter and a common termina-
tor. The average operon size in a bacterial genome is
2∼3 genes. Genes in the same operon generally en-
code proteins that work in the same biological pro-
cess, and hence are functionally related. Various ob-
servations have been made about genes of the same
operons. For example, the distance between adjacent
genes within an operon tends to be shorter than the
distance between adjacent genes in adjacent operons;
the close proximity relationships among genes in the
same operons are often kept across multiple (related)
genomes. Based on these and other observations, a
number of computer tools have been developed to pre-
dict operons[13-14,42-46]. Currently the best prediction
programs have slightly better than 80% accuracy in pre-
dicting if two adjacent genes are in the same operon.

Promoter Regions and cis Regulatory Elements. The
transcription of a gene, the first step in making a gene
into its functional form, is initiated through having
the RNA polymerase (RNAP) bind to the promoter
of the gene (actually its operon) while such binding
generally requires a sigma factor[47-49] and additional
regulatory proteins to recruit the RNAP to the right
location. Such regulatory proteins, called transcription
regulators, will first bind to their cis regulatory elements
around the promoter and then recruit the RNAP. Oper-
ons that are regulated by the same transcription regula-
tor generally have cis regulatory elements with similar
sequences, i.e., these cis elements or motifs are con-
served at the sequence level. So identification of such
cis regulatory elements has been generally done through
identification of conserved short sequences across the
upstream regions of operons considered to be transcrip-
tionally co-regulated. While scientists have been work-
ing on this problem since the late 1980’s, the prob-
lem remains an unsolved and challenging problem. The
best programs will have no better than 50% of predic-
tion accuracy for large scale applications in bacterial
genomes[50-51].

Mobile Elements. Mobile genetic elements (MGEs)
can be broadly defined as regions of a genome that are
able to move themselves within a genome. A domi-
nating class of the MGEs is the transposable elements.
Some genes can move from one organism to another,
called horizontally transferred genes (HTGs). These
mobile elements form the basis for gene transfer, ge-
nomic rearrangement or deletion during the evolution
of a genome. Various computational techniques have
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been developed for characterizing and identifying these
mobile elements[19-20,52-54]. While the prediction of
the MGEs has reached a good level of maturity, re-
liable prediction of HTGs remains a very challenging
problem[55-58].

1.2 What Is Not Known About Bacterial
Genomes

We can consider a bacterial cell as a complex ma-
chine consisting of three intertwined systems: (i) a
metabolic system that carries out all the essential cel-
lular functionalities, (ii) a regulatory system that de-
termines under what conditions to carry out which
functionalities, and (iii) a signaling system that de-
tects “need attention” signals inside the cell or in the
surrounding of the cell, transmits signals across dif-
ferent regulatory elements and changes the functional
states of the relevant components of the metabolic sys-
tem. Each system is made of interacting molecules,
mostly proteins, DNAs and RNAs plus other molecules
such as lipids and small molecules like water. While
the house-keeping molecules are constitutively active
to maintain the basic functions of a cell, most of the
functional molecules are only activated upon request.
In a sense, the genome of a cell can be viewed as an
instruction book about the composition and the orga-
nization of each functional molecule and the regulatory
switch that controls the timing of the activation of the
molecule and its abundance. The switch gets turned
on and off by the cell releasing specific regulatory pro-
tein(s) to its vicinity, typically triggered by a chain of
signaling events executed through a sequence of inter-
actions among signaling molecules. Essentially, a cell
is like a dynamically assembled machine with a con-
stantly changing structure, which is determined by the
interplays between the cellular environment and the ac-
tivated functional molecules, dictated by the physical
and chemical laws.

One challenge in “reading” the genome is that our
understanding about the language in which the book is
written is very limited. For a typical bacterial genome,
we know (or are able to find out) the majority of the
proteins it encodes, the regulatory switches for some
proteins and their corresponding regulatory proteins
for only a few of them. We also know a few RNA genes
but know very little about their regulatory elements.
We know that some of the encoded molecules will work
directly with each other when activated, e.g., proteins
encoded in the same operons. From other sources of in-
formation, we also know that under certain conditions,
some of these encoded molecules will be activated with
a specific abundance to work together or in subsequent
steps to accomplish a designed function after being put

into certain sub-cellular compartments, and then be
degraded upon completion of their task. In a sense,
we have some general knowledge about the basic parts
and some interacting parts of the cellular machine of a
bacterial cell, and have made some observations about
which parts will react to what conditions[59-60]. But
we are clearly far from understanding the machine as a
functional system.

First we do not have any knowledge yet about the
designing principles of the machine. There is an emerg-
ing field called systems biology[61-67] that studies issues
of biological systems from a system’s point of view.
Scientists in that field study known biological networks
and processes, attempting to decipher the designing
principles of such systems and link so derived informa-
tion back to the genome. In a sense, they are using a
top-down approach to derive how biological systems are
encoded in a genome, while we are here attempting to
study the same problem using a bottom-up approach.

Second, while we know numerous individual
metabolic processes, a few signaling pathways and
regulatory networks in some specific organisms such
as E. coli, we do not yet know how such individual
“components” fit together to form a higher level or-
ganization. Actually we do not even know if these
components constitute natural subsystems of a cellu-
lar system, in the sense that they can be replaced by
equivalent subsystems following some assembly rules.
Intuitively we would imagine that the genes encoding
each pathway or network should be arranged in tan-
dem or at least in close proximity in the genome to
facilitate efficient transcription but that is apparently
not the case when we examine the actual distributions
of such genes/operons. To the best of our knowledge,
there have not been any published studies about why
the genes encoding each pathway are arranged in the
genome the way they are (beyond individual operons).

Third, it is well known that the circular DNA of a
bacterial chromosome is folded into a complex shape
in a cellular location called nucleoid, which consists
of multiple loops, each of which is a topologically in-
dependent domain, possibly formed through connecting

Fig.2. Electronic microscopy image of folded E. coli geno-

phore[68].
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parts of them to histone-like proteins H-NS[68], as
shown in Fig.2. Each loop is probably further folded
into a compact structure (independent of other loops)
that may be opened up during the transcription of the
genes encoded in the loop and folded up again after the
completion of the transcription[68]. While researchers
already knew the folded structure as shown in Fig.2
30+ years ago[69], not till very recently did people start
to study the detailed structure of the folded DNA and
associated DNA-binding proteins. Still, very little is
known about how these loops correlate with genes in
the same operons, regulons or biological pathways.

Fourth, the cellular machinery of a bacterium not
only has a dynamic structure but also has a dynamic
parts list. It is now generally understood that bacte-
ria exchange genetic material among related organisms
constantly through horizontal gene transfers[70-71]! So
genes come and go! The scale of such exchange of ma-
terial is surprisingly high. For example, among three
closely related E. coli strains: MG1655, EDL933 and
CFT073, only 39.2% of the genes are shared by the
three organisms[72]. Our current understanding about
how foreign genes adapt to the new host and develop a
new function there after getting into the host genome
is very limited.

Fifth, while we know most of the proteins encoded
in a genome, we know very little about their interaction
partners other than the ones sharing a common operon.
Actually it may be impossible to predict such inter-
action relationships based on genome sequence alone.
As we know, proteins are put into the designed cellu-
lar compartments after their creation. It will depend
on the geometric shapes and the physical properties of
their folded structures whether two proteins may inter-
act, which clearly cannot be predicted easily from the
sequence alone. Even more challenging is to predict
under what conditions two proteins may interact. We
know even less about interactions between RNAs, as
well as between proteins and RNAs, which are all es-
sential parts of the cellular machinery that is encoded
in a genome.

Sixth, while we know very little about how the
whole cellular machinery is assembled from its parts
list, we know even less about the dynamic behavior of
the machinery, much of which is probably determined
by the physical and chemical laws when the proteins
and RNAs along with other molecules are put into the
same sub-cellular locations. Currently, studies of the
dynamic behaviors of biological systems are generally
conducted in the fields of biophysics and computational
chemistry, not necessarily using any genomic informa-
tion. Ultimately studies of genomes and such dynamic
behaviors of biological systems will need to be merged

into one framework that takes into consideration all
the relevant information to realistically model biological
systems.

Seventh, while bacteria are unicellular organisms,
they do communicate with other cells of the same or-
ganism and even with other organisms. Actually the
majority of the bacterial cells of different organisms
need to co-exist in order for them to survive in na-
ture. For example, hundreds of, possibly much more,
different bacteria co-exist in human intestines, total-
ing ∼1014 bacterial cells. The majority of these bacte-
rial cells are not free-living, indicating that they need
metabolites generated by other bacterial cells to sur-
vive. Such a bacterial community, together with their
living environment, forms a very complex metabolic
system. Without any key component of the community,
the whole system will collapse. While researchers have
started looking into such bacterial communities using
probing techniques like metagenome sequencing[73-75],
our general understanding about such bacterial com-
munity, as well as their genomes, is very limited.

1.3 Information Potentially Derivable That
Can Help to Bridge the Knowledge Gap

There is clearly a substantial gap between the in-
formation encoded in bacterial genomes and what we
know about it. The challenge does not only lie in the re-
ality that we do not know how to read the language yet,
in which the genome is written, but also lies in another
(often forgotten) reality that this is not a self-contained
book — it is missing all the information about the phys-
ical and chemical laws. So we need to constantly remind
ourselves about this when attempting to bridge the gap!

In the rest of the article, I will discuss the informa-
tion that is potentially derivable from genome sequence
alone in the foreseeable future, which will need to be
integrated, when attempting to understand the whole
picture, with information derivable based on other ex-
perimental data such as (a) microarray gene expression
data[76-77] for inference of the transcription subsystem
and associated regulatory subsystem in a cell, (b) tiling
arrays[78-79] for identification of cis regulatory elements
of operons, (c) ChIP on chip data[80] for identification
of interaction partners between transcription regula-
tors and their cis regulatory elements, (d) proteomic
data measuring the presence and the quantities of pro-
teins under specific conditions typically collected using
mass spectrometry techniques[81-82], (e) metabolomic
data measuring the metabolites as the results of
metabolic reactions and their quantities using mass
spectrometry or nuclear magnetic resonance (NMR)
techniques[83-84], (f) protein interaction data generated
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using techniques like yeast two-hybrid arrays[85] or
pull-down approaches[86-87], (g) protein and complex
structures generated using X-ray crystallography[88-89],
NMR or electronic cryo-microscopy techniques[90-91],
which can provide detailed information such as how a
protein executes a particular reaction, and (h) imaging
data for tracing the movements of bio-molecules inside
a cell, as well as information derived through systems
level modeling and simulational studies as outlined ear-
lier.

So what information is potentially derivable from
the genome sequence alone, other than the one that
people have already derived? The key in answering
this question lies in the genomes themselves, not just
individual genomes but all the (available) genomes as
a whole. A substantial amount of information could
be derived through genome comparisons! By genome
comparisons, people have observed various “rules” for
arranging genes in a genome such as genes working
in the same pathways tend to group into operons[92].
The general belief is that these observed patterns of
genomic arrangements are probably due to functional
reasons. As organisms evolve to adapt to their chang-
ing environments, the genomic structures and their
gene lists change. This is illustrated in Fig.3, which
shows substantially rearranged genomic blocks across
three related cyanobacterial genomes. From the figure,
we see that while the global gene arrangements of the
three related genomes are quite different, many of the
local structures are well preserved. For example, genes
encoding a specific metabolic pathway will generally be
arranged into a set of similar operons across related or-
ganisms. Such functional constraints on genomic struc-
tures provide the basis for the powerful comparative

Fig.3. Orthologous gene mapping across three cyanobacterial

genomes, MED4 (top), WH8102 (middle) and MIT9313 (bot-

tom), each represented by a horizontal line[94]. The line connect-

ing two dots across two genomes represents an orthologous gene

pair.

genome analyses[93], which can be used to reveal un-
known genomic structures by detecting conserved struc-
tures, local or global, across multiple genomes.

The most essential idea of comparative genome ana-
lyses is to discover conserved (or preserved) patterns,
such as the preserved gene blocks in Fig.3 across mul-
tiple genomes, and map such discovered patterns to
well-understood biological concepts. Using such in-
formation, people have developed computational me-
thods for prediction of orthologous genes (intuitively,
equivalent genes in different organisms) across multi-
ple genomes[95], for inference of HTGs in a genome[57],
for discovery of a type of previously unknown genomic
structure, called uber-operons[96-97], and for prediction
of cis regulatory elements of genes (or operons)[98], just
to name a few.

2 Comparative Genome Analyses —
Knowledge Discovery Through Comparison

The idea of comparative genome analyses is to iden-
tify the equivalent (genomic) elements across multiple
genomes and then to discover patterns among the or-
thologous elements with statistical significance. Ori-
ginally, the idea was introduced for identification of
orthologous genes, referring to genes in different or-
ganisms that have evolved from a common ancestral
gene through speciation only[93,95]. This is in con-
trast to paralogous genes, which refer to genes related
by duplication within a genome[99]. Generally, or-
thologs retain the same function in the course of evo-
lution, whereas paralogs evolved to adopt new func-
tions. Identification of orthologous genes has be-
come the basis for many genome analysis strategies.
For example, identification of cis regulatory motifs
for transcription regulation relies on identification of
promoters of orthologous genes[100] across related or-
ganisms, which has been widely used for eukaryotic
genomes. Other applications include (a) prediction
of protein functions[101], (b) operon prediction[102], (c)
uber-operon identification[97], (d) co-evolutionary ana-
lyses of genes[103-104], (e) co-occurrence analyses of
genes[105-106], (f) genome rearrangement analyses[107],
(g) prediction of protein-protein interactions[108], (h)
biological pathway mapping[93] among other applica-
tions.

Whereas the importance of finding orthologous genes
is obvious, there has not yet been a generally accepted
algorithm for solving the problem. This is because the
definition of orthologous genes given above, as an evo-
lutionary concept, does not give rise to an operational
definition. The existing methods are generally based on
finding genes with the highest sequence similarities, ei-
ther one way[101], two-ways[109-110], or three-ways[111].
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While practically useful, these methods are not very
satisfying due to the lack of a solid basis for predic-
tion of orthology. By definition, orthologous genes re-
fer to genes having the same functions when working in
the same biological process across different organisms;
hence their prediction should also rely on information
of their working partners. A few efforts have been at-
tempted along this direction[93], i.e., to predict ortho-
logous genes through first identification of the working
partners of a query gene in its genome and then check-
ing if the homologs of the partner genes are also the
working partners of the homolog of the query gene in
the target genome. However such prediction methods
have relatively low coverages, and do not work par-
ticularly well for genomes that are remotely related.
The field of comparative genome analyses can definitely
use a theoretically sound and computationally effective
method for orthologous gene prediction.

The above idea can also be applied to other bio-
logical entities such as ncRNA genes, promoters, and
even higher-level organizations like operons, regulons
and biological pathways. There is really a need for de-
veloping a general framework for mapping various ge-
nomic elements as outlined above to their counterparts
(orthologs) across genomes and in support of more ef-
fective ways for information discovery through compa-
rative analyses of bacterial genomes. We believe that
some of the more global structures of genomes may only
become apparent through analyses of such large corre-
spondence maps.

3 Genome Visualization in Support of
Knowledge Discovery

Up till very recently, most of the genome analysis
studies have been to answer specific biological questions
such as finding protein-encoding genes or identification
of operons based on identified characteristics of previ-
ously known similar elements. The availability of the
rapidly increasing pool of bacterial genomes allows com-
putational scientists to go beyond this type of analysis
to carry out discovery-driven analyses of genomes. One
such example is the discovery of uber-operons[97,112].
During the analysis of predicted operons across multiple
bacterial genomes, researchers found that whereas oper-
ons are in general not conserved across genomes, some
of their unions are conserved, which led to the discovery
of uber-operons[97]. We would expect that many similar
discoveries will be made as more genomes become avai-
lable and as our ability to “mine” genomes continues to
improve. One thing that computational scientists can
do to facilitate such discoveries is through development

of effective visualization techniques of genomes to make
many of the genomic features visually apparent.

We have recently developed a simple but yet very
effective method for visualizing genomes[55], through
which numerous non-trivial genomic features become
visually obvious. The basic idea of this genome-
visualization technique is that for a given genome, we
partition its sequence into a series of non-overlapping
and equal-sized fragments� of M bps; then for each
k-mer, for any fixed integer k between 1 and 7, we calcu-
late the combined frequency of the k-mer and its reverse
complement within each partitioned fragment. We de-
fine a matrix of N(k) columns and genome length/M
rows, with each element representing the frequency of
the corresponding combined k-mer within the corre-
sponding sequence fragment, where N(k) is the number
of unique combined k-mers. Note that N(k) = 4k/2 or
(4k + 4k/2)/2, depending on if k is odd or even. For
example, N(4) = 136. Our first observation is that the
combined k-mer frequency distribution is highly stable
across the whole genome, for any fixed k-mer; and this
is true for any sequenced genome, prokaryotic or eu-
karyotic, chromosomal or organelle[55].

The discovery of this property led to an image repre-
sentation of a genome, where we map the frequency of
each k-mer to a grey level so that higher frequencies are
mapped to brighter grey levels (we refer the reader to
[55] for the detailed mapping information). We noted
that the stable frequency distribution for each com-
bined k-mer gives rise to a vertical line with a generally
consistent grey level across the whole image, and hence
we term the image the barcode of the genome. Fig.4
shows the mapped grey-level images of four genomes
and a random DNA sequence. We also noted that this
interesting barcode property of a genome is mostly due
to the 5th order Markov chain property that the coding
regions of a genome, which typically account for 85%
of the whole genome, have[55].

By visualizing these and the other computed genome
barcodes, we have made the following observations. (a)
The majority of the sequence fragments in a genome
share highly similar barcodes while the fragments with
distinct barcodes in the genome generally represent
horizontally transferred genes or highly expressed
genes[55,113]; and (b) different classes of genomes, such
as eukaryotic, prokaryotic, mitochondrial, plasmid and
plastic, each have their unique and identifiable charac-
teristics, as shown in Fig.5. Hence we should be able
to tell if a piece of genomic segment is from which class
of genomes such as eukaryotic, prokaryotic or plastids.

The barcode representation of a genome has made
discoveries of some genomic features relatively easy,

�Possibly except for the last fragment that might be shorter than M bps.
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Fig.4. Grey-level representations of k-mer frequency distribu-

tions. (a) E. coli K12. (b) E. coli O157. (c) Chromosome 1 of

B. pseudomallei K96243. (d) Archaean P. furiosus DSM3638.

(e) Random nucleotide sequence generated using a zero-th order

Markov chain model. The x-axis for each representation is the

list of all (combined) 4-mers arranged in the alphabetical order,

and the y-axis is the genome axis with each pixel representing a

fragment of M = 1000 bps long.

Fig.5. Barcodes in feature space. The x-axis is the average of

variations of the 4-mer frequencies across a whole genome across

all 4-mers, and the y-axis measures the similarity level among all

1000-bps partitioned fragments of the genome, each represented

as a 136-dimensional vector of 4-mer frequencies; specifically, for

each genome, we build a minimum spanning tree[114] based on

the 4-mer frequency vectors for its sequence fragments and their

distances. The y-axis is the averaged weight (distance) of all

edges in the minimum spanning tree. The green dots represent

prokaryotes (586 genomes), the blue ones for eukaryotes (83 chro-

mosomes), the red ones for plastids (101 genomes with lengths

> 20000 bps), and the black for mitochondria (120 genomes with

lengths > 20000 bps).

including native versus recently transferred genetic ele-
ments and mRNAs that can bind to a particularly class
of proteins[55]. We believe that a visualization capa-
bility like this could substantially speed up knowledge
discoveries about genomic structures and information
encoded in them. The barcode scheme utilizes only
one specific property of the genomes, i.e., the stable k-
mer frequency distributions across a genome and the
uniqueness of the collection of such k-mer distributions
for each genome, which has already led to some very
exciting discoveries. We expect that different ways to
visualize bacterial genomes, utilizing other features of
the genomes, may lead to even more effective and more
general visualization tools to facilitate knowledge dis-
coveries. The challenge lies in identifying genomic fea-
tures useful to make such visualization tools effective.

4 Identification of Operons and cis Regulatory
Motifs — Going Beyond Individual Genes

Genes in bacterial genomes are organized into ope-
rons, which are transcribed together. While there have
been debates about the driving force for the forma-
tion of operons[92,115], one probable reason is that ope-
rons are to facilitate efficient co-transcription of genes
working in the same biological processes. It is this
feature of bacterial pathways that makes their eluci-
dation much easier than their counterparts in eukar-
yotes. By utilizing this feature, researchers have deve-
loped computational tools for derivation of gene com-
ponents of pathways based on predicted operons and
other information[116].

Numerous operons have been experimentally stu-
died, particularly in model organisms like E. coli and B.
subtilis. As of now, 690 operons in E. coli[117] and 992
operons in B. subtilis[118] have been elucidated experi-
mentally. In addition, a few other organisms also have
experimentally determined operons such as Shewanella
oneidensis[119], Pediococcus pentosaceus [120] and Law-
sonia intracellularis[121]. Researchers have made a
number of observations about these known operons, in-
cluding: (a) the intergenic distance within an operon
is generally shorter than the inter-operonic distance;
(b) the adjacency relationship among genes within an
operon is often conserved across related genomes, and
(c) genes in the same operon are generally function-
ally related. The other information also found useful
for operon prediction includes (i) the cis motifs for the
general transcription regulators that recruit the RNA
polymerases, such as the motifs for sigma factors[123],
(ii) the different length distributions of operons on the
two (leading and lagging) strands of a genome[124],
and (iii) termination signals for some classes of ope-
rons, specifically the rho-independent terminators[125].
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Based on these and other observations, researchers have
developed a number of operon prediction programs
such as DOOR[13-14], MicrobesOnline[46] and Gene-
Regulation[122].

Fig.6. Schematic for two operons and their promoter sequences

in a genome. Each rectangular box represents a gene and each

star represents a regulatory motif in the promoter region.

The state of the art in operon prediction is about
∼92% accuracy in determining if a pair of adjacent
genes on the same genomic strand represents an operon
boundary or not when trained on data from the same
organism, and ∼84% when trained on data from a dif-
ferent organism[14]. While respectable, this level of ac-
curacy could possibly be improved through better uti-
lization of the genomic sequence data. There are a few
areas where further exploration could lead to improved
signals for operon boundaries. For example, none of
the existing operon-prediction programs have fully uti-
lized the information about promoter sequences, which
have traditionally been considered as a separate prob-
lem, although they are really the two sides of the same
problem. We anticipate that a strategy that attempts
to solve the two problems together may lead to more ef-
fective ways for solving both problems more accurately.

Recent studies suggest that operons may have sub-
structures that can be transcribed independent of the
other genes in the same operon[126]. Our analyses of 380
sets of microarray gene-expression data[126] for E. coli
K12 support this observation, which suggest that the
majority of the multi-gene operons in E. coli K12 have
more than one unique transcript (unpublished data).
Our data suggest that there could be regulatory ele-
ments inside operons that can control the transcription
of subsets of genes within operons. Further analyses
along this direction could lead to discoveries about such
substructures and their associated regulatory elements,
and the results could fundamentally change our under-
standing about operons as we know.

The cis regulatory motifs for each operon are located
in their promoter region, and they can bind to their
transcription regulators (proteins) released by the cell
under designed conditions, to adjust the transcrip-
tion status of the operon. Prediction of cis regu-
latory motifs for transcription regulation represents
one of the classical problems in bioinformatics, which
has been receiving considerable attention since the
late 1980’s. The first generation of prediction algo-
rithms mostly focused on solving the following prob-
lem: given a set of promoter sequences of possi-
bly co-expressed genes, find sequence segments in the

promoters, which have high information content when
aligned[127]. The co-expression information could come
from gene-expression data or other experiments. Nu-
merous algorithms have been developed to tackle this
problem[128-129]. The next major advancement in cis
motif finding came when the phylogenetic foot-printing
technique[130-131] was developed, which does not require
the initial guess or information about co-expression.
The basic idea of the technique, originally developed
for motif finding in eukaryotic genomes, is to find or-
thologous genes across related organisms, and then find
conserved sequence motifs across the promoters of the
orthologous genes. The assumption for the technique to
work is that orthologous genes of closely related organ-
isms are regulated by orthologous regulators that have
highly similar DNA-binding domains, and hence have
similar cis regulatory motifs. While this technique has
proved to be useful for eukaryotic genomes, its applica-
tion in bacterial genomes has been limited mainly be-
cause it has to be generalized to find orthologous oper-
ons, which may not exist in general across related orga-
nisms. Clearly further thinking is needed to effectively
extend the idea of finger-printing to bacterial genomes.
An important and challenging application of finding co-
transcribed operons is to solve the regulon problem as
detailed in Section 6.

5 Searching for Functionally Associated Genes
— Basic Components of Cellular Machinery

We (loosely) refer genes working in the same bio-
logical (metabolic, regulatory or signaling) pathway as
functionally associated. The question we are interested
in addressing is if so-defined functionally associated
genes can be identified based on genomic sequence in-
formation alone. Clearly having such a capability is
very important to elucidation of biological pathways as
it can provide the component list of a pathway. From
predicted operons, some portions of such a list can be
derived but the question now is “Can we derive func-
tionally associated genes beyond the ones encoded in
the same operons?”

We have previously developed a computational
scheme[132-133] for predicting such functionally
associated genes, mainly based on two types of in-
formation of genes: (a) co-evolutionary information
and (b) co-occurrence information. There have been
a number of computational methods developed to de-
rive co-evolutionary relationships of genes. Among
them, the phylogenetic profile analysis was shown to
be effective[132-133]. Genes are considered to be co-
occurred if they appear in the same neighborhood of
a genome substantially more frequent than by chance.
Using such information, one can predict if two genes in
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a genome are functionally associated. When applying
to all the gene pairs encoded in a genome, one can
build a functional linkage map consisting of all gene
pairs predicted to have functional associations using
the above idea[133]. From such a functional linkage
map (represented as a graph with genes as nodes and
a predicted functional association between two genes
as an edge), one can identify subgraphs whose intra-
subgraph edge density is substantially higher than the
density of edges connecting the subgraph with the rest
of the graph. A few research groups have developed
and published computational methods for predicting if
two genes are functionally associated essentially using
such information such as AVID[135] and PIPA[136].

Our analysis of the so derived subraphs, which were
termed functional modules, led to an interesting ob-
servation that the majority of these functional mo-
dules correspond to component genes of known biolo-
gical pathways[93,132-133] as shown in Fig.7. This sug-
gests that by fully utilizing co-evolutionary and co-
occurrence information of genes, one can possibly derive
component information of biological pathways. So the
general question is “Can we possibly determine which
class of biological pathways could possibly have the
majority of their component genes derived using this
type of method?” To fully address this problem, we
probably need more sophisticated methods for identi-
fication of “functional modules?” and carefully bench-
mark the to-be-developed methods against known path-
ways in databases such as KEGG [137] or MetaCyc[138].
New insights from such studies could lead to improved
ways to derive biological pathways encoded in bacterial
genomes.

6 Identification of Regulons — Working
Towards Elucidation of Cellular Response
Systems

A regulon typically consists of a few, in some cases
many, transcriptionally co-regulated operons, whose
protein products work together to accomplish a high-
level function in response to a particular stimulus,
extra-cellular or intra-cellular. For example, genes in-
volved in the response system to nitrogen in a bacterial
cell may include genes that encode transcription regu-
lators coupled through two-component systems[139-140]

with proteins for sensing the availability of nitrogen in
various forms; transporter proteins that can transport
the detected forms of nitrogen from the environment
into the cell; enzymes that can break the up-taken ni-
trogen (possibly in compound forms) into a form that
the cell can utilize; enzymes that can convert the nitro-
gen to energy; and possibly genes encoding some secon-
darily related cellular processes triggered by the above
activities. Operationally, all the genes involved in such
a nitrogen uptake and assimilation regulon should be
transcriptionally regulated by a common transcription
regulator or a group of transcription regulators, and
hence they should have conserved cis regulatory motifs
in their promoters that can bind to the same regulatory
protein(s). Hence computational prediction of regulons
can be formulated as to group operons into (possibly
overlapping) clusters, each of which contains a maxi-
mal set of operons sharing at least one common cis
regulatory motif. Intuitively this problem seems to be
quite solvable but the reality is that there is not a single
prediction program developed and publicly available

Fig.7. Examples of predicted functional modules in E. coli. Modules marked in black are consistent with known pathways in KEGG,

and the modules marked in grey have highly similar GO numbers.
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for solving this problem for bacterial genomes in gen-
eral!

The challenge in solving this problem comes mainly
from the reality that neither operons nor cis regula-
tory motifs can be predicted very accurately; what
makes the situation even worse is that some of the
cis regulatory motifs are not well conserved although
they all bind to the same transcription regulators (see
Section 5). This is particularly the case for cis mo-
tifs of global transcription regulators such as the sigma
factors[141-142] in general or CRP[143-144] in E. coli.
This makes the prediction of co-regulated genes very
challenging, particularly at a genome scale. There have
been numerous attempts[145-148] gearing towards pre-
diction of regulons, using both sequence-conservation
information across promoters of the same genome
and conservation information of orthologous promot-
ers across related genomes. In addition, people have
tried to predict regulons using the assumption that
true cis regulatory motifs tend to cluster with other
cis motifs while false ones may not[149]. Even with all
these efforts, accurate prediction of regulons based on
genome sequences alone has been very challenging al-
though theoretically the problem should be solvable!

7 Metabolic Pathways — What Determines
Their Gene Arrangement in a Genome?

Each of the three intertwined cellular systems,
namely, metabolic, regulatory and signaling, is made
of a collection of molecular interactions, somewhat ar-
tificially partitioned into “pathways”. A pathway basi-
cally is a collection of functional molecules that work to-
gether to form a molecular complex or work in consecu-
tive steps in some chemical reactions. Interacting path-
ways form networks, which are capable of accomplish-
ing more complex functions. Often in the biological lit-
erature, pathways and networks are used interchange-
ably although networks tend to refer to more complex
pathways. The executions of pathways or networks are
generally referred as biological processes. As discussed
earlier, genes encoding a metabolic pathway tend to
group into operons[150]. A natural question is “Do
operons encoding a pathway tend to cluster together
in a genome?” Intuitively we would imagine so. How-
ever our simple analyses of the genomic distributions of
operons of all the well characterized 123 pathways of E.
coli K12 in KEGG[151] indicate otherwise as we found
that operons encoding a pathway are typically scattered
across the whole genome, as shown in Fig.8. So the
more interesting and more challenging question is “Are
there any rules that dictate the genomic arrangement of
operons across all metabolic pathway-encoding genes?”
Clearly this is a fundamental question about bacterial

genomes. To the best knowledge of the author, there
have not been any published studies that attempt to
address this question.

Fig.8. Distribution of the average distance between two “conse-

cutive” operons encoding a pathway across all KEGG metabolic

pathways.

We have recently carried out a study attempting to
address this issue[152]. We first noticed that many of
the E. coli operons are shared by multiple pathways.
For example, in E. coli K12, 56% of operons are shared
by at least two pathways and on average each operon
is shared by 2.09 pathways among all operons encoding
the 120+ metabolic pathways. So we speculate that it
is the overlaps among the pathways that might have
prevented, at least in part, operons of the same path-
ways from clustering together in a genome. We then
examined the expression patterns of all the 123 E. coli
K12 metabolic pathways on a large microarray gene-
expression dataset, collected under 380 experimental
conditions[137,151,153], which covers a wide range of con-
ditions under which E. coli can survive. We noted that
more frequently expressed (hence more frequently used
that we assume) pathways tend to have their operons
more closely clustered together, measured using a “scat-
tering” score of a pathway’s operons, than operons in
less frequently expressed pathways. Further analyses
led to a very interesting and potentially profound find-
ing — that is operons of the 123 known E. coli path-
ways are so arranged in the genome that the total ef-
fort to locate all operons in each pathway during its
transcription is very close to being minimized among
all alternative arrangements of the involved operons,
when taking into consideration of the frequencies of all
individual pathways being used during the life time of
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the cell; here we assume that our estimated activation
frequency of each pathway based on the 380 sets of mi-
croarray data is generally accurate. Fig.9 highlights
this discovery, which is detailed in [152].

Fig.9. Energy distribution over one million randomly permuted

arrangements of the operons covered by 123 E. coli pathways.

The vertical line shows the energy level of the current arrange-

ment of operons in E. coli genome.

This analysis result suggests the feasibility in study-
ing the global properties of bacterial genomes, which
has been rarely done before if ever. Using similar or
more general ideas, one can possibly start to address
other general issues about bacterial genomes (and pos-
sibly beyond): (a) what other factors, other than what
we outlined in this section, may have constrained the
genomic arrangement of operons? (b) how each cel-
lular subsystem is encoded in a bacterial genome and
why so? (c) whether the rules to-be fully derived for
the genomic arrangement of operons determine the as-
sembly rules of cellular (sub)systems in a bacterial cell,
just to name a few. We anticipate that computational
analyses of genomic sequence data as well as gene ex-
pression (and protein expression) could play key roles in
addressing these and other questions about the general
properties of bacterial genomes (and possibly beyond).

8 Identification of Mobile Elements —
Understanding the Dynamic Nature of a
Genome

Genomes are not static; actually they change
constantly in terms of the composition of their ge-
netic material as well as the genomic locations of the
genetic materials. There are two basic mechanisms
for a genome to change: (a) having foreign genetic

material inserted into the genome, through horizontal
gene transfers[57-58]; and (b) having one piece of genetic
material to move from one location to another within
the same genome. For either class, a mobile genetic el-
ement (MGE) needs to be first excised or transcribed
from the host genome into either an RNA or a DNA;
and then it may be transmitted and integrated into an-
other location within the genome for the second class
or from the host genome to another genome through
horizontal gene transfers for the first class[154]. The
transposition activities of these MGEs alter the organi-
zation as well as the composition of the host genome,
which may affect the functionalities and/or the liveli-
hood of the host organism. It is the selection process
of evolution that determines which cells with altered
genomes may survive.

Identification of horizontally transferred genes
(HTGs) in a host genome represents a highly impor-
tant problem as it will not only inform which genes are
from foreign species but also, more importantly, pro-
vide the key information about how organisms on Earth
have evolved[155] as well as a theoretical basis for infer-
ence of orthologous genes in general. Various models
have been proposed to infer HTGs, among which two
are the most popular ones: (a) surrogate methods that
infer HTGs based on their atypical nucleotide composi-
tions compared to the other genes in the same genome;
and (b) phylogenetic-incongruence-based methods that
infer HTGs based on their atypical gene trees com-
pared to the gene trees of the “typical” genes in the
genome. Generally speaking, the first class of methods
is more suited for finding recent HTGs with the ad-
vantage being that they require only relatively simple
computational procedures and associated data analy-
ses. The second class of methods is generally more ac-
curate in identification of HTGs but requires expensive
computation of phylogenetic trees and associated tree
analyses[155]. While much of the fundamental work on
inference of HTGs has been done by evolutionary biolo-
gists, a challenging problem to computational scientists
is how to convert such evolutionary work to effective
computer algorithms and computer programs that are
accessible to biologists in general.

Transposable elements (TEs) represent the majori-
ty of the second class of MGEs, and they gene-
rally fall into two classes: DNA transposable elements
and (RNA) retrotransposable elements[19-20,52,156-159].
As of today only DNA transposable elements have
been found in bacterial genomes[159]. Different from
the retrotransposable elements that utilize a “copy
and paste” strategy to increase their population in a
genome, DNA transposable elements employ a “cut and
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paste” strategy to create a new copy while losing the
old one. However sometimes, a DNA TE may create
a new copy while keeping the original one by accident,
i.e., the removed original copy might be brought back
by the cellular DNA repair mechanism[160]. A direct
result in having different transposition mechanisms is
that while a (eukaryotic) genome may have thousands
up to hundreds of thousands of copies of the same retro-
transposable element, a DNA transposable element in
general has substantially lower number of copies in a
genome if any.

Identification of TEs in a genome represents a rela-
tively simple problem compared to the identification of
HTGs since TEs have more identifiable signals. Speci-
fically each TE generally has inverted repeats (though
possibly degenerative) at its two terminals, and it en-
codes a transposase and possibly other genes between
the two terminal signals. One computational challenge
lies in deriving the roles that the TEs have played dur-
ing the evolution of the host genome, particularly in
gaining or losing functionalities due to the transposi-
tions of genetic materials caused by the TEs.

9 Developing Tools to Facilitate Experimental
Biologists to Mine Genomes — a Practical
Consideration

Sequencing technology has advanced to such a level
that large sequencing centers such as the Joint Genome
Institute can sequence a bacterial genome in a day. To
date, 800+ bacterial genomes have been sequenced and
2000+ are in the pipeline being or to be sequenced. It
is foreseeable that we could see over 10 000 sequenced
bacterial genomes within the next few years. While the
rapidly increasing genomic sequence data have provided
unprecedented opportunities for biologists to study the
underlying organisms, it has also raised some very
challenging problems to the computational scientists
as there is clearly a large and widening gap between
what is available or easily derivable from the anno-
tated genomes and what a typical experimental biol-
ogist can realistically get from the annotated genomes.
This gap has slowed down the information transmis-
sion from the genome sequencing and annotation cen-
ters to experimental biologists in general, posing an ur-
gent need for development of more effective computa-
tional techniques that can help to close the gap. The
need for biologists to directly mine the genomes is clear
as directly working on the genomes and seeing returned
intermediate results on computer screens could inspire
a biologist to ask related, broader and deeper questions,
which may not happen by working through some com-
puter programmers.

We envision that some novel, effective and easy-to-
use computational problem-solving environments are
needed to assist experimental biologists to mine and an-
alyze annotated bacterial genomes without the need of
them knowing any computer programming languages.
Such a computational problem-solving environment
should allow a biologist user to directly send instruc-
tions to the system to carry out desired data mining
analyses of genomes, particularly comparative genome
analyses, using a language general and flexible enough
that can represent sophisticated queries and are inter-
pretable by a computer system. Because of the flexi-
bility needed for such a capability, a query may need
to be interpreted as a workflow consisting of low-level
prediction, analysis and utility tools that have been
pre-implemented within the system. We would imag-
ine that mapping a query to a workflow will require an
ontology that defines the basic operations (by compu-
tational tools) and the relationships among the desired
results and the available tools. Using such ontology,
a query can be possibly automatically translated into
a dynamically composed workflow, which will be ulti-
mately executed through calling pre-implemented ana-
lysis and utility tools and database retrievals. The fol-
lowing could represent a scenario of a user using such a
problem-solving environment for genome mining, which
could potentially guide the development of such a sys-
tem.

Suppose an experimental biologist Steve is interested
in studying why Lactococcus is pathogenic and its re-
lative Streptococcus is not through an integrated com-
putational and experimental study. He wants first to
mine the annotated genomes, including these two, us-
ing the planned problem-solving environment to col-
lect as much information as possible before he designs
his experimental research plan. Through our planned
user interface, Steve may pose the following query to
get things started: “Give me all the unique genes that
Streptococcus has but none of the genomes in the same
genus of Lactococcus have”.

The system should know how to interpret the term
“genes” and “orthologous genes” in another organism
implied in this query based on the to-be-developed on-
tology. The term “genus” will need to be included in
the ontology so the system will be able to interpret
“in the same genus of Lactococcus” as all the genomes
that are from the same genus of Lactococcus. The term
“unique” will be interpreted through applying a utility
tool, which will check if genomes other than Streptococ-
cus have the equivalents of Streptococcus genes. After
looking through the returned unique genes, Steve may
pose the following query: “What metabolic pathways do
these genes encode?”
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This query may first trigger a pathway-assignment
tool to assign all the KEGG metabolic pathways to the
Streptococcus genome. Then a utility tool will be called
to find all the “matched” pathways based on the found
unique genes. All the matched pathways will be dis-
played on the user interface. After Steve goes through
the displayed pathways, he might start thinking about
his experimental design. He might want to block one
particular pathway from functioning through knocking
out the main transcription regulator of the pathway
to check if this pathway is possibly responsible for the
pathogenicity. To do that, Steve might want to find
out if genes in the target pathway might be transcrip-
tionally co-regulated by asking: “Give me the operons
covered by this pathway”, which will trigger an operon
prediction tool.

After looking through the returned operons, Steve
may follow with another query: “Give me the possible
cis regulatory sites that appear in the promoter regions
of these operons”. This may trigger invocation of a
program to extract all the promoter sequences of the
relevant operons and then calling a motif-finding tool
to find the highest scoring conserved cis regulatory mo-
tif among the collected promoters. Since a substan-
tial portion of the transcription regulators in bacterial
genomes are self-regulated, Steve may want to try his
luck to see if the relevant transcription regulator is also
self-regulated by posing the following query: “Give me
all transcription regulators that share the same cis regu-
latory element just found”.

This will trigger a set of tools that will first search
for matching motifs in all promoter regions in the tar-
get genome, and then select the ones that are followed
by a transcription-regulator gene (or an operon con-
taining such a gene). Assuming that Steve is lucky,
the program returns two such transcription regulators.
Through further investigation of the literature, Steve
decides to knock out one transcription regulator to
check if knocking it out will affect the pathogenicity
of the organism.

We believe that a capability like this could sub-
stantially improve our ability to transmit the informa-
tion retrievable and easily derivable from the annotated
genomes. Computer scientists have to help to develop
such a sophisticated system.

10 Concluding Remark

Very little is known about the general rules that go-
vern the genomic arrangements of genes in a bacterial
genome. With our current knowledge about a large
number of detailed pathways in model organisms like
E. coli, as well as the availability of a large number of
bacterial genomes and functional data collected under

many conditions, we believe that it is the right time to
study bacterial genomes gearing towards understanding
of their global properties and the associated governing
rules. This is a different kind of biology compared with
the biology that we have been learning from text books
in the past decades. In a sense this is really an infor-
mation science as our goal is really about finding out
how information is encoded in a genome, the popularly
known genome deciphering problem.
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