CO₂-fixing one-carbon metabolism in a cellulosedegrading bacterium *Clostridium thermocellum*

Wei Xiong^a, Paul P. Lin^b, Lauren Magnusson^a, Lisa Warner^c, James C. Liao^{b,d}, Pin-Ching Maness^{a,1}, and Katherine J. Chou^{a,1}

^aBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401; ^bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095; ^cNational Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401; and ^dAcademia Sinica, Taipei City, Taiwan 115

Edited by Lonnie O. Ingram, University of Florida, Gainesville, FL, and approved September 23, 2016 (received for review April 6, 2016)

Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO₂ to formate. However, feeding the bacterium ¹³C-bicarbonate and cellobiose followed by NMR analysis showed the production of ¹³C-formate in *C. thermocellum* culture, indicating the presence of an uncharacterized pathway capable of converting CO₂ to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO₂ to formate serves as a CO₂ entry point into the reductive one-carbon (C1) metabolism, and internalizes CO₂ via two biochemical reactions: the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO₂ uptake, and provided physical evidence of a distinct in vivo "rPFOR-PFL shunt" to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO₂ fixation via the reductive C1 metabolic pathway in C. thermocellum. These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO₂ as well.

Clostridium thermocellum | pyruvate:ferredoxin oxidoreducase | formate | ¹³C-isotopic tracing | one-carbon metabolism

he gram-positive *Clostridium thermocellum* is a thermophilic and strict anaerobic bacterium. It has gained a great amount of interest due to its cellulolytic abilities. By taking advantage of an extracellular cellulase system called the cellulosome (1), C. thermocellum can depolymerize cellulose into soluble oligosaccharides. The latter are further transported into the cells and fermented through its glycolytic pathway to pyruvate, the precursor to an array of fermentation products (e.g., H₂, formate, lactate, acetate, ethanol, secreted amino acids) (2, 3). This capability makes C. thermocellum an attractive candidate for consolidated bioprocessing of lignocellulosic biomass, a process configuration that directly converts plant biomass into biofuels and chemicals without separate additions of enzymes (4). To date, there have been numerous works describing the molecular and genetic details of the cellulolytic system and fermentation pathways in C. thermocellum (5-9), whereas other metabolic characteristics of this species have not been adequately understood.

Currently, few details regarding inorganic carbon utilization are known for *C. thermocellum*. However, several investigators routinely add bicarbonate, a dissolved form of CO_2 , into the medium to promote *C. thermocellum* growth (6, 10–12), implying its ability to use CO_2 . This observation raises the questions of how CO_2 plays a role in promoting *C. thermocellum* growth (13), and whether CO_2 is incorporated into the metabolism. There is limited information on pathways relating to CO_2 uptake thus far. One proposed pathway involving CO_2 utilization in *C. thermocellum* is the malate shunt and its variant pathway (7, 14), in which CO_2 is first incorporated by phosphoenolpyruvate carboxykinase (PEPCK) to form oxaloacetate and then is released either by malic enzyme or via oxaloacetate decarboxylase complex, yielding pyruvate. However, other pathways capable of carbon fixation may also exist but remain uncharacterized.

In recent years, isotopic tracer experiments followed by mass spectrometry (MS) (15, 16) or NMR measurements (17) have emerged as powerful tools for metabolic analysis. This methodology traces the transit of isotopic atoms throughout the biochemical network and sheds light on active reactions as well as molecular fluxes in vivo. Coupled with classic genetic manipulations, this technology has been successfully applied to provide insights into novel metabolic pathways in bacteria (18), yet it has not been used to study *C. thermocellum*.

In several species of *Clostridium*, the one-carbon (C1) metabolism is initiated from CO₂ reduction to become formate via formate dehydrogenase (Fdh) (19). This pathway provides C1 units for many crucial reactions, including amino acids and purine biosynthesis. Formate serves as a precursor to the folate biosynthesis pathway that forms the "methyl" branch of the Wood–Ljungdahl pathway, yielding acetyl-CoA from CO₂ (19). However, *C. thermocellum* lacks the first key enzyme, Fdh, based on genome information. In the present study, we investigate CO₂-fixing pathway(s) in *C. thermocellum* involving C1 metabolism by using ¹³C-tracer experiments. We

Significance

High carbon yield in the bioengineering of heterotrophic bacteria is hindered by carbon loss to CO_2 production. We provide evidence showing *Clostridium thermocellum*, a cellulosedegrading bacterium and a model consolidated bioprocessing organism, can fix CO_2 while growing predominantly on cellobiose, a cellulose-derived disaccharide. By adding ¹³C-bicarbonate to the bacterial culture and tracking ¹³C-labeled metabolites, we discovered active reductive one-carbon (C1) metabolism in this bacterium. We further identified critical enzymes responsible for fixing CO_2 and channeling the fixed carbon to the C1 metabolic pathway. Our findings pave the way to future engineering of this bacterium to use cellulose and CO_2 simultaneously as a means to improve microbial carbon efficiency that is constrained by theoretical limitation and to reduce CO_2 in the environment.

Author contributions: W.X., P.P.L., L.M., L.W., J.C.L., P.-C.M., and K.J.C. designed research; W.X., P.P.L., L.M., L.W., and K.J.C. performed research; W.X., P.P.L., L.M., L.W., J.C.L., P.-C.M., and K.J.C. analyzed data; and W.X., P.P.L., L.M., L.W., J.C.L., P.-C.M., and K.J.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

¹To whom correspondence may be addressed. Email: katherine.chou@nrel.gov or pinching. maness@nrel.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1605482113/-/DCSupplemental.

measure the isotopomers of fermentation products and proteinogenic amino acids using NMR and GC/MS, and uncover a route *C. thermocellum* employs to fix CO_2 when grown in a primarily heterotrophic mode supplemented with sodium bicarbonate.

Results

Effects of Bicarbonate on C. thermocellum Growth and Metabolism. To examine C. thermocellum's ability to use inorganic carbon, we compared cell growth and metabolic product formation during cellobiose fermentation with and without bicarbonate supplementation (20 mM). To eliminate any potential buffering effect exerted by bicarbonate, fermentation was performed in batch mode with pH controlled at 7.0 throughout. Upon consumption of all cellobiose, cultures with added bicarbonate yielded $\sim 40\%$ more cell biomass than in its absence (Table 1). Without accounting for the excreted amino acids that have been observed in overflow metabolism (3), this result increased the possibility that extra total carbon output (i.e., cell biomass, lactate) could emerge from incorporation of the inorganic carbon (bicarbonate) as suggested by the calculated apparent carbon efficiency (65.7% without bicarbonate and 75.5% with bicarbonate; Table 1). We also observed higher apparent carbon efficiency in bicarbonate-fed cultures in non-pH-controlled fermentation (Table S1) buffered with 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS).

Reduction of Bicarbonate to Formate as Revealed by NMR Analysis Using ¹³C-Tracer. To track how bicarbonate could be metabolized by the bacterium, we fed C. thermocellum ¹³C-bicarbonate (20 mM) and unlabeled cellobiose (14.6 mM) and analyzed the labeled fermentation products that were excreted into the medium with ¹³C-NMR. Data from Fig. 1A show 1D ¹³C spectra of the culturespent medium after cells were grown to late log phase. In the medium, we detected small peaks at 160.3 and 128.0 ppm (Fig. 1A, double asterisks), which correspond to residual bicarbonate and CO₂, respectively (Fig. 1A, Top and Middle), and a signature formate carbonyl peak with a chemical shift at 171.1 ppm (Fig. 1A, *Middle* and *Bottom*). To confirm the formation of 13 C-formate further, common fermentation products were also assessed for the assignment of the new peak at 171.1 ppm. Organic acids, including succinate, malate, butyrate, citrate, and isocitrate, have carbonyl carbons with chemical shifts that do not match the observed peak. One class of doubtable compounds is alpha-keto acids (i.e., pyruvate, 2-oxoglutarate), which have a carboxylic carbon linked to a keto group, appearing at around 170 ppm. To validate further, the ¹H decoupling was inactivated during signal acquisition. A one-bond carbon-hydrogen scalar coupling, $J_{\rm HC}$, of 195-Hz splits the peak at 171.1 ppm (Fig. 1B) due to a hydrogen directly bound to the carbonyl carbon. Pyruvate and 2-oxoglutarate, however, do not have directly bound ¹H on their respective carbonyl carbons, leading to the conclusion that the new peak at 171.1 ppm is indeed derived from formate. In addition to ¹³C-formate, two small peaks at 182.5 and 174.4 ppm (Fig. 1A, marked with asterisks) correspond to other fermentation products that may also be derived from ¹³C-bicarbonate labeling but in very small amounts. Other peaks from 5 to 65 ppm likely arose from natural abundance components in the defined media and did not change in relative intensity from sample to sample.

Putative Reductive C1 Metabolism Based on Genome Annotation. The above labeling experiments provided evidence of a significant CO₂-to-formate reduction pathway that remains to be characterized. To identify genes that are putatively responsible for this conversion, we reconstructed the C1 metabolic pathway de novo, based on the genomic information of *C. thermocellum* DSM1313 strain (20). Its genome sequence suggests that *C. thermocellum* is capable of converting formate to methionine, serine, and pyruvate via the methyl branch of the Wood–Ljungdahl pathway (Fig. 2). However, it lacks Fdh, the enzyme microbes typically use to convert CO₂ to formate (Fig. 2).

Lacking the *fdh* gene, the only other gene encoding formate production found in C. thermocellum genome is pyruvate-formate lyase (PFL), catalyzing the conversion of pyruvate and CoA to acetyl-CoA and formate (21). We thereby hypothesize that a bypass consisting of two reactions catalyzed by pyruvate:ferredoxin oxidoreductase (PFOR) in the reversed direction and PFL may realize the CO₂-to-formate conversion. Presumably, the reversed PFOR activity fixes CO₂ by catalyzing the formation of pyruvate using CO₂ and acetyl-CoA as cosubstrates. The fixed carbon atom from CO_2 forms the carboxylic group of pyruvate, which was then split to make formate by PFL (Fig. 2), with the remaining two carbons in pyruvate making up the acetyl group in acetyl-CoA. Both *pfl* and *pfor* genes are annotated in the *C. thermocellum* genome. Genes for pyruvate formate lyase (pflB, clo1313_1717) and its activating enzyme (pflA, clo1313_1716) are adjacent to each other on the genome. Several putative genes encoding for PFOR (clo1313 0673, clo1313 0020-0023, clo1313 0382-0385, and clo1313_1353-1356) were also annotated, hence making our hypothesis genetically feasible.

¹³C-Tracer Data Demonstrated the Reversed PFOR Activity. To investigate this hypothesized pathway, we first test if a reversed PFOR (rPFOR) activity exists in vivo. We set up a steady-state tracer experiment by feeding ¹³C-bicarbonate (20 mM) along with unlabeled cellobiose (14.6 mM) to the cells and detecting the labeling pattern of proteinogenic amino acids by GC/MS. The isotopomer fingerprint of pyruvate can be traced by the isotopomer fingerprint of alanine, which is a direct transaminated product of pyruvate. As shown in Fig. 3A, M ala 085 is a GC/MS fragment of alanine and reveals the labeling pattern of a pyruvate fragment with carbon atoms at positions 2 and 3 (Pyr2-3). For Pyr2-3, a dominant peak at m0 accounted for 95% (n = 3, SE $\leq 1\%$) of total isotopes, suggesting that the carbon atoms at positions 2 and 3 remained almost entirely unlabeled. M ala 057 is another MS fragment of alanine, representing the isotopomer pattern of pyruvate with all carbon atoms (Pyr1-3). The detected m0 and m1 signals accounted for 55% and 43% of total isotopes, respectively. indicating that a significant portion of this MS fragment either remained fully unlabeled or had only one ¹³C-carbon (~43%). These results led us to conclude that the labeled carbon is predominantly at position 1 (carboxylic group) of pyruvate, which is consistent with the hypothesized rPFOR reaction to fix CO₂

Table 1. Carbon input and output in pH-controlled bioreactors (pH 7.0) with and without bicarbonate

HCO ₃ , 20 mM	Cellobiose consumed, mM	Lactate, mM	Formate, mM	Acetate, mM	Ethanol, mM	Final OD ₆₀₀	C _{biomass} ,* mM	Apparent carbon efficiency [†]
With bicarbonate	17.2 ± 0.6	10.3 ± 1.1	3.1 ± 0.6	9.1 ± 0.4	19.9 ± 0.5	$\begin{array}{c} 1.4 \pm 0.2 \\ 1.0 \pm 0.3 \end{array}$	63.8 ± 8.8	75.5 ± 3.0%
Without bicarbonate	17.3 ± 0.3	8.3 ± 0.1	3.8 ± 1.2	11.1 ± 0.6	21.3 ± 0.4		42.9 ± 12.1	65.7 ± 5.5%

*Carbon molarity in cell biomass ($C_{biomass}$) is calculated based on the *C. thermocellum* formula $C_{s}H_{8}O_{2}N$ and the measured OD_{600} values ($OD_{600} = 1.04$ g/L cell dry weight).

[†]Apparent carbon efficiency is defined as the ratio of produced organic carbons to consumed organic carbons following the calculation: ($C_{lactate} + C_{formate} + C_{acetate} + C_{ethanol} + C_{biomass}$)/ $C_{cellobiose}$. Data are representative biological replica (mean \pm SD, n = 2).

Fig. 1. ¹³C-NMR analysis of supernatant from *C. thermocellum* (Ct) culture fed with 20 mM ¹³C-bicarbonate and 14.6 mM unlabeled cellobiose. (A) ¹³C-NMR signal at 171 ppm is consistent with a formate carbonyl carbon that is observed in the spent medium of *C. thermocellum* (red spectrum). Defined medium supplemented with 20 mM ¹³C-bicarbonate (green spectrum) and 20 mM ¹³C-formate (black spectrum) was analyzed as the references. The single asterisk indicates other products of bicarbonate metabolism. The double asterisks indicate a contaminant in the ¹³C-bicarbonate. The signals within the braces indicate natural abundance of aliphatic and methyl carbons from the medium or metabolites. (*B*) *J*_{HC} dipolar coupling of 195 Hz further confirms the identification of the peak at 171 ppm as formate.

(Fig. 3*B*) and strongly supports the existence of rPFOR activity in vivo under the tested physiological condition. We also detected ¹³C-lactate with a labeling pattern consistent with the labeling pattern of pyruvate (Figs. 2 and 3), presumably propagated from pyruvate.

To confirm rPFOR activity as the main mechanism contributing to the labeled pyruvate (position 1), and not to the label exchange reaction, we fed *C. thermocellum* [2-¹³C]acetate (40 mM) supplemented with unlabeled bicarbonate (20 mM) when cells were grown primarily in cellobiose (5 g/L). Results showed labeled carbons at the expected position in pyruvate (position 3) and acetyl-CoA (position 2) in both wild type (Δhpt ; Fig. 3*C*) and PFL-inactivated mutant ($\Delta hpt\Delta pflA$; Fig. S1). For confirmation and characterization of the $\Delta hpt\Delta pflA$ mutant, see Fig. 5 and Figs. S2 and S5*A*. These results also ruled out the possibility of labeled pyruvate transiting from acetyl-CoA via reversed PFL activity. Results are described in greater detail in *SI Results*. The observed labeled carbon at position 3 of pyruvate is independent of the label exchange carbon specific to the carboxyl group, unlike previously reported in *Clostridium acetobutylicum* (22).

To determine which pathway(s) may also lead to 13 C-labeled pyruvate at the carboxylic carbon, we examined the fate of carbon atoms among all possible candidate pathways, including the malate shunt (7, 14) which is known to assimilate and release CO₂ in *C. thermocellum.* As shown in Fig. 3*B*, CO₂ fixation is catalyzed by PEPCK, resulting in 13 C-labeling at position 4 of oxaloacetate. This labeled carbon is propagated to position 4 of malate via malate dehydrogenase and is subsequently lost as

 13 CO₂ by malic enzyme. Therefore, malate shunt, per se, does not contribute to the 13 C-labeling at the carboxylic group of pyruvate. Another possible carboxylase enzyme that could presumably result in the labeling at the carboxylic group of pyruvate is ribulose bisphosphate carboxylase/oxygenase (RuBisCO). However, genes encoding for the highly conserved RuBisCO enzyme are not present in the *C. thermocellum* genome or in other sequenced *Clostridium* species. Thus, RuBisCO was ruled out.

We also considered the possibility of a reversible conversion between malate and fumarate catalyzed by malate hydrolyase (Clo1313_0640). The symmetry of the fumarate molecule can interchange labeling on carbon atoms in positions 1 and 4; hence, it could contribute to the resulting ¹³C-carboyxlic group in pyruvate. Although the alanine labeling pattern (Fig. 3*A*) cannot rule out the malate hydrolyase reaction, data from genetic KOs (Fig. 4) presented below are consistent with rPFOR activity and not malate hydrolyase activity.

We also investigated the isotopomer pattern for serine, which could be derived from phosphoglycerate, a triose phosphate interconverted with pyruvate in the glycolytic pathway (Fig. 2). Assuming that serine is exclusively derived from glycolysis and shares an identical synthetic route with alanine, the labeling pattern of serine and alanine should be very similar. However, in contrast to mostly unlabeled Pyr2–3, we observed a nonnegligible m1 peak of Ser2–3 with 12% enrichment (Fig. 3*A*). One carbon labeled at Ser2–3 implies a distinct serine pathway from pyruvate, consistent with the metabolic pathway in which a ¹³C-methylene-THF from reductive C1 metabolism is combined with glycine by glycine hydroxymethyltransferase (*glyA*, *clo1313_1155*) and forms the hydroxylmethylene group of serine at position 3

Fig. 2. Schematic of reductive C1 metabolism initiated from rPFOR and reversed PFL. The question mark indicates a missing reaction in *C. thermocellum* DSM1313 genome annotations. Pink-shaded pathways illustrate the reduction of CO₂ to formate and CO₂ to pyruvate. Yellow-shaded pathways include steps of serine and methionine biosynthesis. Fdh is not annotated in *C. thermocellum* genome. Fhs, formyl-tetrahydrofolate synthase (*clo1313_0030*); FoID, methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (*clo1313_0030*); GlyA, glycine hydroxymethyltransferase (*clo1313_1155*); MetF, methylene-tetrahydrofolate reductase (*clo1313_1531_155*); MS, methionine synthase (*clo1313_1587-1588*, *clo1313_1581-1582*, *clo1313_0372*). Dotted lines indicate multistep catalysis. Carbons in red indicate ¹³C-isotopes propagated from ¹³C-bicarbonate or ¹³C-formate in the tracer experiments.

Fig. 3. Isotopomer analysis of proteinogenic amino acids and lactate in cultures grown on 20 mM ¹³C-sodium bicarbonate and 14.6 mM unlabeled cellobiose. (*A*) Relative abundance of mass isotopomers for pyruvate, serine, and lactate (n = 3, SD < 1%) in wild type (Δhpt). (*B*) Schematics of carbon atom transits via the reversed PFOR (pink box) and the malate shunt (gray box). OAADC, oxaloacetate decarboxylase complex; MDH, malate dehydrogenase; ME, malic enzyme. The labeled (¹³C) and unlabeled (¹²C) carbon atoms are represented by closed and open circles, respectively. (*C*) Isotopomer analysis of proteinogenic alanine and leucine in Δhpt in cultures fed with [2-¹³C]acetate and unlabeled bicarbonate (20 mM) when the bacteria were grown primarily in 14.6 mM (5 g/L) cellobiose. Carbons at positions 1 and 2 of *N*-tert-butyldimethylsilyl-*N*-methyltrifluoroacetamide–derivatized leucine can be fragmented by GC/MS and are directly derived from acetyl-CoA.

(Fig. 2). These results implied that 13 C isotope propagated to pyruvate was able to flow into the C1 pathway via formate, contributing to the biosynthesis of serine in *C. thermocellum*.

Knocking Out PFOR Genes Impairs Pyruvate Synthase Activity for CO₂ Fixation. The CO₂-fixing C1 pathway initiated by PFOR in the reductive direction was further examined through the deletion of putative PFOR genes and the analysis of altered labeling patterns in the KO mutants. Multiple genes or gene clusters are annotated as PFOR (clo1313 0020-0023, 1353-1356, 0673, and 0382-0385) or indole pyruvate ferredoxin oxidoreductase (clo1313 1615-1616) in the C. thermocellum genome. These genes were respectively deleted via homologous recombination following the schemes shown in Fig. S2A, and validation of the genotype via colony PCR is shown in Fig. S3 and Table S2. All PCR products were further confirmed by commercial sequencing. The resulting mutants, ΔhptΔclo1313 0020-0023, ΔhptΔclo1313 1353-1356, ΔhptΔclo1313 1615-1616, ΔhptΔclo1313 0673, and $\Delta hpt \Delta clo1313 \ 0382-0385$, were fed with 20 mM ¹³C-bicarbonate and 14.6 mM unlabeled cellobiose for isotope tracer experiments. The relative abundance of m0 and m1 shown for Pyr1-3 (M ala 057; Fig. 4) and for Pyr2-3 (M ala 085; Fig. S4) indicates that the carbon is labeled predominantly on the carboxylic group in pyruvate in both wild type (Δhpt) and mutants, but the relative abundance of m1 is significantly lower in mutants ΔhptΔclo1313 0020-0023 and ΔhptΔclo1313 1353-1356 (Fig. 4). By taking the ratio of pyruvate labeled at the carboxylic group (m1) to unlabeled ones (m0), data showed that m1/m0 ratios are not significantly different in individual PFOR deletion mutants $\Delta hpt \Delta clo1313$ 1615-1616 and $\Delta hpt \Delta clo1313$ 0673, or exhibited little difference in mutant $\Delta hpt \Delta clo1313$ 0382-0385. However, the m1/m0 ratios are significantly lower in $\Delta hpt \Delta clo1313$ 0020-0023 and $\Delta hpt \Delta clo1313$ 1353-1356, with reduced labeling at the carboxylic group. The results identified Clo1313 0020-0023 and Clo1313 1353-1356 functioning as a pyruvate synthase, catalyzing the incorporation of CO₂ originating from ¹³C-bicarbonate to form pyruvate. Based on the relative ratios of m1 to m0, Clo1313 0020-0023 and Clo1313 1353-1356 account for ~50% and 30% (Fig. 4) of pyruvate synthase activity, respectively, for carbon fixation. The differential m1/m0 ratios in these mutants also suggest that rPFOR contributes to the ¹³C-carboxylic carbon labeling in pyruvate, which cannot originate from the interconversion between malate and fumarate alone. However, potential interplay between the putative PFORs and the interconversion between malate and fumarate is beyond the scope of this study, and hence is not addressed here.

involvement of PFL in reductive C1 metabolism, we inactivated PFL by deleting the *pflA* gene as illustrated in Fig. S2B, adapting a scheme developed previously (23). Deletion of the *pflA* gene was confirmed by PCR analysis (Fig. S5A) and commercial sequencing of the PCR products. Mutant $\Delta hpt\Delta pflA$ grew slower than the wild type in defined medium, consistent with previous observations (12). We also measured the batch fermentation products when all substrates were consumed (Fig. S5B). As expected, although the wild type produces 2.3 mM formate, formate is no longer detected in the $\Delta hpt\Delta pflA$ culture-spent medium (Fig. S5B), confirming complete inactivation of PFL and the fact that PFL is the only enzyme responsible for formate production from pyruvate.

PFL KO Mutant Is Deficient in Reductive C1 Metabolism. To assess the

To investigate how PFL deficiency affects carbon flux toward C1 metabolism, we compared the labeling pattern of isotopomers in both $\Delta hpt\Delta pflA$ and wild type by feeding ¹³C-formate (20 mM) and ¹³C-bicarbonate (20 mM), respectively (Fig. 5). In either case, unlabeled cellobiose (14.6 mM) was added to the cell culture. We collected isotopomer data for proteinogenic amino acids that may be synthesized from this pathway, including alanine, serine, and methionine. With the addition of ¹³C-formate, an m1 peak with 16% enrichment in Pyr1–3 was observed for wild type, whereas the corresponding m1 ratio was merely 4% in $\Delta hpt\Delta pflA$. In the isotopomer of Pyr2–3, we observed no

Fig. 4. Isotopomer analysis of proteinogenic alanine in Δhpt and in individual deletions of all five putative PFORs. All strains were grown on 20 mM ¹³C-sodium bicarbonate and 14.6 mM unlabeled cellobiose. (*Inset*) Ratio of m1/m0 in individual putative PFOR deletion mutants is plotted. wt, wild type.

significant difference in labeling pattern between the strains. Taken together, the results supported that the ¹³C-carbon atom in formate was internalized by the cells and became the carboxylic carbon of pyruvate, which was catalyzed by the reversed PFL activity. We next analyzed the Ser and Met isotopomers that could be synthesized from the C1 pathway downstream of ¹³C-formate. Based on the labeling patterns of Ser1–3, Ser2–3, and Ser1–2 (Fig. 5*A*), we deduced that the ¹³C-carbon propagated from ¹³C-formate is mainly at position 3 of Ser (hydroxylmethylene group), consistent with our constructed de novo C1 metabolic pathway toward serine biosynthesis (Fig. 2). As for the isotopomer of Met shown in Fig. 5*A*, both $\Delta hpt\Delta pflA$ and wild type indeed demonstrated a dominant peak at m1 upon ¹³C-formate addition, validating the incorporation of the methyl group propagated from ¹³C-formate into Met. Detailed descriptions of Ser and Met isotopomer labeling analyses are provided in *SI Results*.

We also analyzed the isotopomers of proteinogenic amino acids for ¹³C-bicarbonate labeling experiments in $\Delta hpt \Delta pflA$. Based on our hypothesized "rPFOR-PFL shunt," incorporation of the ¹³C-carbon from bicarbonate into the C1 metabolism is mediated by PFL, which could be validated by comparing ¹³Cinflux into the C1 metabolism in the presence and absence of an active PFL. Similar pyruvate labeling patterns were observed for wild-type and $\Delta hpt \Delta pflA$ strains, both of which showed m0 and m1 dominant peaks for Pyr1-3 and m0 signal for Pyr2-3 fragment. Results suggest that pflA deletion does not affect CO₂ incorporation catalyzed by the pyruvate synthase activity. As for serine labeling, both Ser1–3 and Ser2–3 fragments containing the hydroxyl methylene group had a lower labeling ratio in $\Delta hpt \Delta pflA$ mutant than in wild type. For Ser2–3, mutant $\Delta hpt \Delta pflA$ had a much lower m1 peak (2.6%) than the control (12.7%). Correspondingly, the unlabeled m0 peak of Ser2–3 for $\Delta hpt \Delta pflA$ strain is 10.1% higher than in the parental strain (97.4% vs. 87.3%). Collectively, reduced isotope enrichment in the mutant strongly supports that C1 metabolism originating from ¹³C-bicarbonate is disrupted by knocking out pflA. It is also evident that PFL activity is essential in internalizing the ¹³C-carbon in bicarbonate in C. thermocellum, and our hypothesis that PFL coupled with the rPFOR activity initiates the reductive C1 pathway in C. thermocellum was corroborated. We observed a lower extent of fractional labeling of methionine in the $\Delta hpt\Delta pflA$ mutant than in wild type, which is described in greater detail in SI Results.

Discussion

This study reveals that during cellobiose metabolism, *C. thermocellum* also assimilates CO_2 via a reductive C1 metabolic pathway that is initiated by the dual actions of reversed PFOR and PFL. PFOR has been greatly considered in the forward direction in *C. thermocellum*, catalyzing the oxidative decarboxylation

Fig. 5. Isotopomer analysis of GC/MS fragments for proteinogenic amino acids in $\Delta hpt\Delta pflA$ mutant (white columns) and wild type (Δhpt , black columns) grown on 14.6 mM unlabeled cellobiose with 20 mM ¹³C-formate (A) or 20 mM ¹³C-sodium bicarbonate (B). Panels for each GC/MS fragment represent the labeling pattern of the amino acid or its precursor with indicated C atoms. The technical variance is less than 1% in tracer experiments.

of pyruvate to acetyl-CoA and CO2 and generating reduced ferredoxin (Fd_{red}). The PFOR activity in C. thermocellum has been associated with the oxidative decarboxylation of pyruvate to acetyl-CoA. Uyeda and Rabinowitz (24, 25) and Raeburn and Rabinowitz (26) demonstrated in vitro that low potential electron donors, such as Fd_{red}, can drive PFOR to catalyze the reductive carboxylation of acetyl-CoA as a pyruvate synthase. The rPFOR serves as a key enzyme for autotrophic CO₂ fixation via the Wood-Ljungdahl pathway in acetogens (27). In this work, the in vivo isotopomer data measured postfeeding *C. thermocellum* ¹³C-biocarbonate and [2-¹³C] acetate double-confirmed rPFOR activity and revealed that rPFOR activity accounted for over 40% of the labeled carbon in pyruvate. Measurements in individual PFOR mutants further identified rPFOR activity predominantly catalyzed by Clo1313 0020-0023 and Clo1313_1353-1356. Consistent with previous global expression studies, Clo1313 0020-0023 is the most highly expressed PFOR based on proteomics (28) and transcriptomics (29) analyses. Clo1313 1353-1356 is the third most highly expressed PFOR based on proteomics data, but it has a low transcript level based on microarray data, and the difference could be due to different growth conditions in these studies.

By feeding ¹³C-bicarbonate to the PFL-inactivated mutant and the wild type, we confirmed the incorporation of these tracers into formate (Fig. 1), lactate (Fig. 3A), and the downstream amino acids linked to C1 metabolism (Figs. 3 and 5). We provided multiple lines of evidence showing that the fixed CO_2 was channeled to the C1 metabolism through PFL, which could operate reversibly (21, 30) and contribute to the biosynthesis of essential amino acids, including serine and methionine. In addition, the reductive C1 pathway mediated by PFL may play a critical role in nucleotide biosynthesis (reconstructed purine biosynthesis pathway in C. thermocellum shown in Fig. S6). The impaired growth observed in PFL-inactivated mutant is consistent with a previous finding (12) and underscores PFL's importance. A transcriptome study reported that folate-dependent enzymes are in the most highly expressed category, which also suggests an active C1 metabolism in vivo (31).

Carbon loss in the form of CO_2 from the conversion of pyruvate to acetyl-CoA across a wide range of bacterial heterotrophs reduces the theoretical maximum yield of a carbon product of interest per carbon consumed (carbon efficiency) downstream of acetyl-CoA. A synthetic nonoxidative glycolysis has been shown to bypass the loss of CO_2 in the conversion of pyruvate to acetyl-CoA (32). The rPFOR activity shown here allows some of the lost CO_2 to be recaptured into pyruvate, a critical branch point and precursor to numerous natural and nonnatural products. Based on our data, CO_2 utilization has increased the titers of organic carbon compounds (Table 1) by incorporating CO_2 into the biomass formula, as detected in proteinogenic serine and methionine, and, as such, supplementing cell growth.

It is interesting that C. thermocellum uses the rPFOR-PFL shunt for CO₂ uptake in the absence of Fdh. We speculate that although pyruvate is a key branching point in central carbon metabolism and a key node connecting glycolysis and the C1 metabolic pathway, the rPFOR-PFL route for CO₂ uptake may provide added metabolic flexibility and versatility to cells in response to environmental changes affecting their carbon and energy (redox) needs. To gain insights into how widespread the rPFOR-PFL shunt could be for CO₂ uptake, we surveyed the presence of PFOR, PFL, and Fdh in 67 sequenced Clostridium species. We discovered that only 20 species have Fdh, whereas 51 species have both PFOR and PFL (Fig. S7). Although the in vivo reversibility of PFOR can be organism- and/or growth condition-specific, and information as to whether these bacteria can use inorganic carbon during organic substrate feeding may not be readily available, the presence of these genes renders it genetically feasible.

It should be noted that carbon fixation via the rPFOR-PFL shunt requires Fd_{red} as an electron donor. On the other hand, PFOR functioning in the oxidative direction serves as a major pathway for generating Fd_{red} to yield reduced biofuels and chemicals. Thus, the metabolic flux toward biosynthesis may be a trade-off of the flux toward electron generation. We speculate that CO₂ enhances growth by regenerating oxidized Fd, which, in turn, provides a driving force for faster cellobiose consumption. Feeding CO₂ may also enhance the "transient" CO₂ fixation via the malate shunt, with GTP produced via PEPCK promoting *C. thermocellum* growth. The biosynthesis vs. energy requirement at the pyruvate node needs to be evaluated comprehensively with

- Gold ND, Martin VJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189(19):6787–6795.
- Ellis LD, et al. (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103(1):293–299.
- Holwerda EK, et al. (2014) The exometabolome of *Clostridium thermocellum* reveals overflow metabolism at high cellulose loading. *Biotechnol Biofuels* 7(1):155.
- Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405.
- Nataf Y, et al. (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci USA 107(43):18646–18651.
- Zhou J, et al. (2013) Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol 79(9):3000–3008.
- 7. Deng Y, et al. (2013) Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in *Clostridium thermocellum*. *Metab Eng* 15:151–158.
- Zhang YH, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: Bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA 102(20): 7321–7325.
- Lu Y, Zhang YH, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci USA 103(44):16165–16169.
- Lin PP, et al. (2015) Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 31:44–52.
- Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197(8):1386–1393.
- Rydzak T, Lynd LR, Guss AM (2015) Elimination of formate production in Clostridium thermocellum. J Ind Microbiol Biotechnol 42(9):1263–1272.
- Zertuche L, Zall RR (1982) A study of producing ethanol from cellulose using Clostridium thermocellum. Biotechnol Bioeng 24(1):57–68.
- Taillefer M, Rydzak T, Levin DB, Oresnik IJ, Sparling R (2015) Reassessment of the transhydrogenase/malate shunt pathway in *Clostridium thermocellum* ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase. *Appl Environ Microbiol* 81(7):2423–2432.
- Xiong W, Liu L, Wu C, Yang C, Wu Q (2010) ¹³C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga *Chlorella protothecoides. Plant Physiol* 154(2):1001–1011.
- Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from ¹³Cexperiments and gas chromatography-mass spectrometry data: Protocol and principles. *Methods Mol Biol* 358:177–197.
- Szyperski T, et al. (1999) Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional ¹³C labeling and two-dimensional NMR spectroscopy. *Metab Eng* 1(3):189–197.
- Xiong W, et al. (2015) Phosphoketolase pathway contributes to carbon metabolism of cyanobacteria. Nat Plants 2:15187.

other major redox pathways (i.e., H_2 production) to enhance the carbon economy without causing redox imbalance. To satisfy our curiosity, we tested *C. thermocellum* autotrophic growth by feeding either bicarbonate plus 100% H_2 or an 80% $H_2/20\%$ (vol/vol) CO₂ gas mixture, but detected no growth (Fig. S8). Nevertheless, the rPFOR-PFL shunt uncovered in this study may have important ramifications in the metabolic plasticity of a cellulose degrader and in other heterotrophs, and hence warrants more in-depth investigations.

Materials and Methods

A more complete discussion is provided elsewhere (15, 16, 23, 33–35), as well as in *SI Methods*.

Unless otherwise noted, *C. thermocellum* DSM1313-derived strains, Δhpt (*hpt* encoding for hypoxanthine phosphoribosyl transferase is used for counterselection), and other mutants were routinely grown anaerobically at 55 °C on 5 g/L cellobiose. The *hpt* gene deleted strain is used as the wild type for the studies herein. To test the inorganic carbon utilization, 20 mM so-dium bicarbonate was added to cell cultures also fed with cellobiose. We used the DSM122-defined medium referred to as CTFUD medium (36). Full details on strain construction, fermentation conditions, and ¹³C-tracer experiments are provided in *SI Methods*.

ACKNOWLEDGMENTS. We thank Chris Urban, Maria Chun, Sawako Konishi, and Sharon C. Xu for their technical assistance. This work was supported by the National Renewable Energy Laboratory (NREL) Director's Fellowship (Laboratory Directed Research and Development Subtask 06271403) (to W.X.), and the US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office (K.J.C., L.M., and P.-C.M.) under Contract DE-AC36-08-GO28308. L.W. and research conducted at the University of California, Los Angeles (P.P.L. and J.C.L.) were supported by the BioEnergy Science Center (BESC), a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

- Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. *Nat Rev Microbiol* 12(12): 809–821.
- Feinberg L, et al. (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193(11):2906–2907.
- 21. Thauer RK, Kirchniawy FH, Jungermann KA (1972) Properties and function of the pyruvate-formate-lyase reaction in clostridiae. *Eur J Biochem* 27(2):282–290.
- Amador-Noguez D, et al. (2010) Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in *Clostridium acetobutylicum*. J Bacteriol 192(17):4452–4461.
- Argyros DA, et al. (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. *Appl Environ Microbiol* 77(23): 8288–8294.
- Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol Chem 246(10):3120–3125.
- Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. 3. Purification and properties of the enzyme. J Biol Chem 246(10):3111–3119.
- Raeburn S, Rabinowitz JC (1971) Pyruvate: Ferredoxin oxidoreductase. II. Characteristics of the forward and reverse reactions and properties of the enzyme. Arch Biochem Biophys 146(1):21–33.
- Furdui C, Ragsdale SW (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem 275(37):28494–28499.
- Rydzak T, et al. (2012) Proteomic analysis of *Clostridium thermocellum* core metabolism: Relative protein expression profiles and growth phase-dependent changes in protein expression. *BMC Microbiol* 12:214.
- Raman B, McKeown CK, Rodriguez M, Jr, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134.
- Zelcbuch L, et al. (2016) Pyruvate formate-lyase enables efficient growth of *Escherichia coli* on acetate and formate. *Biochemistry* 55(17):2423–2426.
- Riederer A, et al. (2011) Global gene expression patterns in *Clostridium thermocellum* as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. *Appl Environ Microbiol* 77(4):1243–1253.
- Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. *Nature* 502(7473):693–697.
- Kruger NJ, Masakapalli SK, Ratcliffe RG (2014) Optimization of steady-state ¹³C-labeling experiments for metabolic flux analysis. *Methods Mol Biol* 1090:53–72.
- Delaglio F, et al. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293.
- Helmus JJ, Jaroniec CP (2013) Nmrglue: An open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55(4):355–367.
- Olson DG, Lynd LR (2012) Transformation of Clostridium thermocellum by electroporation. Methods Enzymol 510:317–330.