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Abstract  1 

Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production 2 

is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, 3 

lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for 4 

biomass characterization is laborious and time consuming. In order to characterize biomass fast 5 

and efficiently, several high through-put technologies have been successfully developed. Among 6 

them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-7 

mbms) are complementary tools and capable of evaluating a large number of raw or modified 8 

biomass in a short period of time. NIR shows vibrations associated with specific chemical 9 

structures whereas Py-mbms depicts the full range of fragments from the decomposition of 10 

biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional 11 

groups and molecular structures. They provide complementary information of chemical insight 12 

of biomaterials. However, it is challenging to interpret the informative results because of the 13 

large amount of overlapping bands or decomposition fragments contained in the spectra. In order 14 

to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define 15 

the significant correlations among data variables, so that the large number of bands/peaks could 16 

be replaced by a small number of reconstructed variables representing original variation. 17 

Reconstructed data variables are used for sample comparison (principal component analysis) and 18 

for building regression models (partial least square regression) between biomass chemical 19 

structures and properties of interests. In this review, the important biomass chemical structures 20 

measured by NIR and Py-mbms are summarized. The advantages and disadvantages of 21 

conventional data analysis methods and multivariate data analysis methods are introduced, 22 

compared and evaluated. This review aims to serve as a guide for choosing the most effective 23 

data analysis methods for NIR and Py-mbms characterization of biomass.  24 

Keywords:   Biomass; Lignocellulosic biofuel; Cellulose, Lignin; S/G-lignin; Near infrared 25 

spectroscopy; Pyrolysis molecular beam; Mass spectrometry; Multivariate data analysis; High 26 

throughput; Chemometrics  27 

 28 
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Introduction for biomass chemical composition 1 

Biomass is a complicated mixture of organic and inorganic compounds. It is mainly composed of 2 

cellulose, hemicelluloses and lignins, as well as minor components, such as proteins, extractives, 3 

ash and other nonstructural mineral materials. Because of its renewable nature and chemical 4 

composition, biomass is an attractive feedstock for energy and chemical products (Ragauskas et 5 

al., 2006;Himmel et al., 2007;Wei et al., 2009;Sluiter et al., 2010). In order to provide an 6 

effective guide for feedstock selection and process development, it is very important to measure 7 

biomass chemical composition accurately and efficiently (Sluiter et al., 2010;Templeton et al., 8 

2010;Daystar et al., 2013). In this paper, we will review the use of two high-throughput 9 

techniques, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry 10 

(Py-mbms) in biomass characterization. The advantages and disadvantages of different data 11 

analysis methods, including band/peak assignment, tools for spectral treatments and resolution 12 

enhancement and multivariate data analysis methods, are introduced, compared and evaluated. 13 

Selected research publications are reviewed and categorized as ‘case studies’ according to the 14 

ways they analyzed data and the specific biomass properties that are evaluated.  15 

 16 

Conventional biomass characterization relevant to biofuel production 17 

Traditional biomass compositional analysis, based on two-stage sulfuric acid hydrolysis followed 18 

by gravimetric and instrumental analysis, has been used to measure lignin and carbohydrates for 19 

more than 100 years. These methods have been used by researchers for studies of wood materials, 20 

animal food, human health, bioenergy production, and many other areas related to biomaterials. 21 

The history and uses of these methods were reviewed in detail elsewhere (Sluiter et al., 2010). 22 

The analytical uncertainty for different methods was also evaluated by statistical analysis and 23 

reported as the standard deviation of measurement for each component (Templeton et al., 2010). 24 

Other wet chemical techniques also include: acidolysis, thioacidolysis, nitrobenzene oxidation, 25 

transesterification, acetyl bromide method, orcinol method, Van Soest method, etc. Routine 26 

procedures, a number of less common methods, and new analytical methods developed for 27 

research purposes in the field of wood chemistry are described in books (Browning, 28 

1967;Sjöström and Alen, 1999). These techniques quantify important chemical structure biomass, 29 

but they are time consuming and laborious.  30 

Separately, combustion-related properties are of interest for the utilization of biomass in biofuel 31 

and biopower production. There are three types of combustion-related properties: morphological, 32 

physical, and chemical properties (Braadbaart and Poole, 2008). Traditional fuel analysis of 33 

biomass includes ultimate analysis, proximate analysis, and thermogravimetric analysis. In 34 

addition, ash composition and sulfur can be determined and used to predict fuel indices, 35 

especially for slagging behavior, aerosol formation, and corrosion related risks (Obernberger, 36 

2014).  37 
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Use of spectroscopic tools in biomass characterization as high throughput techniques 1 

Spectroscopic methods, such as Fourier transform infrared spectroscopy (FTIR), NIR, Raman 2 

spectroscopy (Raman), and nuclear magnetic resonance (NMR), are widely used to measure 3 

functional groups and chemical bonds in biomass. These measurements are faster and more 4 

convenient than most conventional chemical methods used for biomass characterization and fuel 5 

analysis. Besides, since there is no degradative chemical treatment used during analysis, the 6 

information gained from these tools is more representative of the chemical structures in original 7 

biomass. However, there are some drawbacks for using these spectroscopic tools. For example, 8 

data interpretation for FTIR, Raman and NMR is relatively complicated, sample preparation can 9 

be complex, and due to the mixed nature of biomass, peak assignment usually suffers from the 10 

overlap of many compounds. A good summary of spectroscopic tools used as high throughput 11 

techniques in biomass study can be found in a recent review (Lupoi et al., 2014) 12 

 13 

High throughput techniques coupled with multivariate statistical analysis 14 

Because of many chemical features included in a single spectrum, it is challenging to elucidate 15 

data directly for a group of samples. Therefore, multivariate analysis tools have been widely used 16 

in spectroscopic data analysis (Jin and Xu, 2011;Smith-Moritz et al., 2011;Xu et al., 2013;Lupoi 17 

et al., 2014). Among them, the two multivariate tools that have been widely used are: (1) 18 

Principal Component Analysis (PCA), and (2) Partial Least Square (PLS).  19 

 20 

PCA is mainly used for identifying outliers, sample comparison and screening. It relies on 21 

projecting original samples variables on several (usually less than six) reconstructed variables 22 

which are representative of original sample variation. Those reconstructed variables are known 23 

as principal components (PCs). Samples described with PCs can be plotted in scores plot, in 24 

which similar samples cluster together while samples different from each other are separated in 25 

two-, three- or n- dimensional coordinates. Together with the scores plot, PCA loadings plot 26 

allows for the determination of important chemical features responsible for the sample grouping. 27 

In the loadings plot, variables with large values are highly correlated with sample grouping 28 

(Sykes et al., 2009).  29 

 30 

PLS is used to build prediction correlation models between spectral data and the property of 31 

interest. In the application of NIR and Py-mbms, spectral data is regarded as ‘predictors’ for the 32 

biomass properties of interest. The properties of a new sample can then be estimated using a PLS 33 

model built from spectral data taken on a set of similar samples with known characteristics. In 34 

this way, time consuming experiments for new samples could be eliminated. Regression 35 
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coefficients are generated and can be used to relate chemical features in the spectra to the 1 

specific sample properties (Labbe et al., 2006).  2 

In summary, multivariate tools used in spectroscopic data analysis have three functions: (1) 3 

comparing sample similarities and differences and discovering outliers; (2) building prediction 4 

models between spectroscopic data and biomass properties of interest; and (3) discovering 5 

correlations between property data and spectral data. 6 

 7 

Biomass characterization by NIR spectroscopy 8 

NIR is normally considered to be in the range of electromagnetic spectrum from 12000 cm-1 to 9 

4000 cm-1 (Smith-Moritz et al., 2011). This wavelength region has two major advantages: first, 10 

the speed of spectral acquisition is high, which facilitates the real-time data collection for process 11 

control; secondly, the wide applicability to a diverse ranges of materials with little or no sample 12 

preparation (Schwanninger et al., 2011). This allows NIR to be effective for online monitoring 13 

and quality control of a wide variety of product properties and manufacturing processes 14 

(Workman, 2001;Kelley et al., 2004a;Tsuchikawa, 2007;Jin and Xu, 2011). Because of this, NIR 15 

has been extensively used as a high-throughput method to determine chemical, physical, 16 

mechanical, and fuel properties of woody biomass during the past 20 years.  17 

However, there are some disadvantages to NIR. Although NIR absorption spectra have similar 18 

patterns to those in the mid-IR, they have wider separation, more anti-symmetry, and weaker 19 

intensity due to the fact that it is the combination and overtone bands from fundamental 20 

vibrations involved in NIR region. Therefore, the interpretation of NIR spectra are much harder 21 

than mid-IR (Schwanninger et al., 2011;Lupoi et al., 2014).  22 

The utility of band assignments depends on the purpose of specific research or application. There 23 

is ongoing discussion around the necessity of interpreting NIR spectra in detail. 24 

Chemical/physical information contained in the NIR spectra can be used for detailed analysis 25 

(Schwanninger et al., 2011). However, it is not necessary to fully understand the chemical details 26 

for NIR to be useful for quantitative analysis. If NIR is used as a fast tool in distinguishing 27 

samples and in building prediction models for biomass properties, the detailed assignments are 28 

generally not needed. Statistical analysis for extracting useful information is essential for this 29 

purpose (Xu et al., 2013). Meaningful scientific insight of structural information could be better 30 

gained with the help of both statistical analysis and band assignments. 31 

NIR band assignment and data processing 32 

In NIR analysis, data points are usually collected in reflectance form (R) and converted to 33 

log10(1/R) form, which is equivalent to an absorbance spectrum.  34 
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As stated above, knowledge regarding band assignment is important for the understanding of 1 

chemical structures in biomass and there are several references on NIR band assignments 2 

(Tsuchikawa et al., 2003;Schwanninger et al., 2011;Via et al., 2013). Commonly assigned 3 

vibrations in the NIR spectra of woody biomass include (Schwanninger et al., 2011):  4 

 5 

1370nm – 1471nm: First and second overtones of O-H stretching vibrations from free or 6 

weakly bonded O-H in carbohydrates and first overtones of C-H, Caromatic-H stretching 7 

vibrations, such as first overtone of O-H stretching in free OH group or OH group with a 8 

weak H-bond from cellulose, xylan and glucomannan (1386, 1414, 1428, 1471, 1477-9 

1484), first overtone of O-H stretching in phenolic hydroxyl groups from extractive or 10 

lignin (1410, 1447, 1448), first overtone of C-H stretching and bending in aromatic 11 

associated C-H from lignin (1417,1440).  12 

1471nm – 1632nm: first overtone of O-H stretching from strong O-H bonded group, 13 

semi-crystalline and crystalline region of cellulose (1473-1632) or intramolecular H-bond 14 

in glucomannan (1471, 1493). 15 

1666nm – 2000nm: first overtone of aliphatic and aromatic C-H stretching vibrations and 16 

O-H combination bands from extractives/lignin (e.g. 1668, 1674, 1684, 1726), 17 

hemicellulose (e.g.1720, 1724), cellulose (e.g. 1723, 1731), which are overlapped with 18 

each other and water band (e.g.1887-2000). 19 

Above 2000nm: Assignment in this region is difficult due to high number of possibilities 20 

for the coupling of vibrations. 21 

There are a number of well-established NIR spectra preprocessing techniques that can be used to 22 

achieve resolution enhancement and to more precisely locate band position. Methods for spectral 23 

data preprocessing include: (1) smoothing and derivatization (Dodd, 2002;Rousset et al., 2011) 24 

such as using the algorithm based method used by Savitzky and Golay (Savitzky and Golay, 25 

1964), (2) calculation of differential spectra (Rousset et al., 2011), and (3) Fourier self de-26 

convolution, curve fitting (Ozaki et al., 2001) with more advanced techniques involving principal 27 

component analysis (Fackler and Schwanninger, 2010) and two dimensional correlation analysis 28 

(Ozaki et al., 2001;Schwanninger et al., 2011). 29 

Among those preprocessing methods, derivatives are widely used to reduce the impact of 30 

overlapping peaks and baseline variation. However, there is a concern that generating derivatives 31 

can possibly generate false information. Both the shape of the spectrum and the data processing 32 

algorithms have an impact on band shape and location. Differences between the location of the 33 

bands between the raw and the second derivative spectrum can be more than 20 cm-1 (5 nm). 34 

Researchers have also reported that the second derivative form was not always more precise than 35 

the normal form for the prediction of lignin in wood (Michell, 1995;Xu et al., 2013). Therefore, 36 

when spectral data is processed with the second derivative, possible peak shifts should be taken 37 
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into consideration. The same consideration is also important for deriving conclusions from 1 

processing spectra of PCA and regression coefficients from PLS (Schwanninger et al., 2011).  2 

NIR spectroscopy coupled with PCA 3 

The primary application of NIR coupled with PCA is to classify biomass samples of various 4 

origins or from different pretreatments without conducting laborious traditional wet chemistry 5 

techniques on all samples. Related areas of this application are summarized below:  6 

(1) Related to species/plant fractions (Michell, 1995;Kelley et al., 2004a;Labbe et al., 7 
2008a;Labbe et al., 2008b;Nkansah et al., 2010); 8 
 9 

(2) Related to genetic engineering of feedstock crops (Baillères et al., 2002;Sandak and 10 

Sandak, 2011;Zhou et al., 2011); 11 
 12 

(3) Related to chemical/thermal/biological treatments (Kelley et al., 2004b;Yang et al., 13 
2007;Houghton et al., 2009;Krongtaew et al., 2010). 14 

 15 
For example, in order to evaluate the impact of biomass pretreatments (including acid and 16 
alkaline pretreatments, some in combination with hydrogen peroxide) on the change of 17 
cell wall compositions of wheat and oat straw, FT-NIR was utilized to characterize raw 18 
and pretreated straw (Krongtaew et al., 2010). Second derivatives from NIR absorption 19 
bands were generated and evaluated to show the changes in properties related to biomass 20 
recalcitrance during subsequent bioethanol production. These properties include the 21 
change of lignin, hemicelluloses; as well as amorphous, semi-crystalline, and crystalline 22 
regions of cellulose moieties of pretreated sample. PCA of derivative data was efficiently 23 

utilized to differentiate the alterations in chemical structure of straw due to different 24 
pretreatment methods as shown in Figure 1. It was demonstrated that FT-NIR coupled 25 
with PCA is a powerful tool to assess biomass digestibility, with a potential to be used in 26 
process control in the area of biomass utilization or energy conversion.  27 
 28 

NIR spectroscopy coupled with PLS 29 

One of the main applications of NIR coupled with PLS is to build regression models for the 30 

prediction of biomass properties, such as lignin content, S/G-lignin ratio, moisture content, 31 

heating value (Kelley et al., 2004a;Rousset et al., 2011;Schwanninger et al., 2011).  32 

Related areas of the application of NIR coupled with PLS in existing literatures are summarized 33 

below: 34 

(1) Prediction of cell wall components (Michell, 1995;Sanderson et al., 1996;Tucker et al., 35 
2001;Baillères et al., 2002;Kelley et al., 2004a;Lovett et al., 2004;Yeh et al., 2004;Jin and 36 

Chen, 2007;Labbe et al., 2008b;Philip Ye et al., 2008;Wolfrum and Sluiter, 37 

2009;Nkansah et al., 2010;Hou and Li, 2011;Sandak and Sandak, 2011;Smith-Moritz et 38 
al., 2011;Zhou et al., 2011). 39 
 40 
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For example, in order to identify specific monosaccharide outliers from a plant mutant 1 

population, FT-NIR coupled with PLS regression was utilized to analyze plant leaves of 2 
Arabidopsis (Smith-Moritz et al., 2011). Various Arabidopsis cell wall mutants were 3 
analyzed for prediction model building. PCA was performed on pre-processed and area-4 
normalized NIR spectra, followed by calculation of the Mahalanobis distance, a linear 5 
discriminate analysis technique to identify outliers using PCA results. By using this 6 
technique, a pilot study was conducted which consisted of 550 mutant lines (3590 leaf 7 
samples), resulting in a set of 235 leaf samples as Mahalanobis outliers. Quantitative 8 
information about monosaccharide composition is gained by means of PLS modeling 9 
with known biochemical values and FT-NIR spectra. The correlation between predicted 10 
and experiment determined monosaccharide composition (mol%) of 226 rice leaf samples 11 
are shown in Figure 2 with R2 = 0.98 (Smith-Moritz et al., 2011).  12 

 13 

(2) Prediction of other physical properties (Thygesen, 1994;Hoffmeyer and Pedersen, 1995), 14 
mechanical properties (Kelley et al., 2004a;André et al., 2006), fuel properties (Lestander 15 
and Rhen, 2005;Labbe et al., 2008a):  16 
 17 

For example, NIR coupled with PLS has been used to predict cell wall chemistry and 18 
mechanical properties of loblolly pine from different radial locations and heights of trees 19 
grown in Arkansas (Kelley et al., 2004a). Mechanical properties include three point 20 
bending test and related microfibril angle. The correlation between experimental data and 21 
predicted data from PLS modeling is very strong with correlation coefficients (r) as high 22 
as 0.80. A reduced spectral range (650 nm – 1150 nm) usually available in handheld NIR 23 
spectrometers was also demonstrated to be useful for predicting mechanical properties.  24 

 25 

Biomass characterization by Py-mbms  26 

Py-mbms has been intensively used for studies of biological and synthetic macromolecules, such 27 

as wood, grasses, carbon in soil and chars. It has proved to be an efficient and powerful 28 

analytical tool (Evans and Milne, 1987;Kelley et al., 2002;Labbe et al., 2005;Magrini et al., 29 

2007;Sykes et al., 2008;Mann et al., 2009;French and Czernik, 2010). Detailed description of 30 

this technology is available in the above references. In short, the Py-mbms is composed of a 31 

pyrolysis furnace and a free-jet molecular beam mass spectrometer (mbms). Typically the 32 

furnace is preheated to 500oC before ground sample of biomass is inserted into the inert 33 

atmosphere of the furnace. Pyrolysis products from biomass in the furnace are swept out of the 34 

furnace into the mbms by an argon gas stream. Molecular fragments contained in the pyrolysis 35 

vapor are expanded in a series of vacuum chambers to be quenched; so that intermolecular 36 

collisions are prevented. A low-energy electron beam (17eV – 23 eV) in the triple quadruple 37 

mass spectrometer is employed to produce a positive ion mass spectrum. The positive ion stream 38 

is magnified and collected by the detector.  39 

Mass peaks were assigned to chemical fragments produced from fast pyrolysis of biomass for 40 

direct interpretation (Evans and Milne, 1987). The spectra from Py-mbms is also interpreted with 41 
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the help of multivariate analysis tools, especially PLS and PCA (Hoover et al., 2002;Kelley et al., 1 

2002;Kelley et al., 2004b;Labbe et al., 2005;Magrini et al., 2007;Mann et al., 2009).  2 

 3 

Py-mbms peak assignment and data processing 4 

During data acquisition of Py-mbms, amplified positive ions from biomass pyrolysis vapor are 5 

scanned continuously; then the signal is collected by a computer. Approximate evolution time of 6 

fast pyrolysis for a sample of 4 mg is less than 1min. During the evolution time there are 7 

typically 50 single scans collected. Biomass with larger sample size will need longer evolution 8 

time and more scans during fast pyrolysis. Together with single scan spectrum, time resolved 9 

profile and averaged spectrum can be collected by the computer acquisition software (Evans and 10 

Milne, 1987).  11 

Average spectra are also known as spectral ‘fingerprints’. Spectral fingerprints gained at 12 

analytical pyrolysis temperature of 500 to 550 oC and the molecular beam free jet expansion 13 

represent primary products from biomass pyrolysis. Studies shown that at this temperature range, 14 

molecular structure of the original biomass is well preserved and there is no interaction observed 15 

among organic components during pyrolysis, although inorganics may alter the pyrolysis 16 

pathways of the carbohydrates (Evans and Milne, 1987). Thus, with known peak assignment, 17 

spectral ‘fingerprints’ generated could be used to depict the molecular structure of chemical 18 

composition in biomass. A summary of important peak assignment in biomass is shown in Table 19 

1 (Evans and Milne, 1987;Sykes et al., 2008). Characteristic spectral fingerprints of whole 20 

biomass samples and separated constituents of biomass are shown in Figure 3 (Evans and Milne, 21 

1987).  22 

Py-mbms has been successfully applied in many biomass-related studies, including the research 23 

of cellulose, cellulose with inorganics, many woods, xylan, milled wood lignin,  bagasse, (Evans 24 

and Milne, 1987), herbaceous biomass under different storage environments (Agblevor et al., 25 

1994), hardwood sawdust and its torrefaction products (Nimlos et al., 2003), and poplar grown 26 

under different nitrogen conditions (Sykes et al., 2009).  27 

For example, in the study of bark phenolysis conducted by Alma and Kelley, bark and its 28 

phenolysis products from Calabrian pine, Lebanon cedar, acacia, and European chestnut were 29 

characterized using Py-mbms (Alma and Kelley, 2002). From the results of Py-mbms averaged 30 

spectra, it was shown that bark (1) has less common lignin peaks at m/z 180, 194, 210 assigned 31 

to coniferyl alcohol/vinylsyringol, 4-propenylsyringol/ferulic acid, and sinapyl alcohol, 32 

respectively; (2) has unique triplet of peaks at m/z of 96, 97, 98 assigned to furans; and (3) has 33 

more phenols, such as peaks at m/z of 110, 124, 150, and 164 assigned to catechol, guaiacol, 34 

vinyl guaiacol, and isoeugenol. In softwood bark, extractives and lignin dimers can be identified 35 

at m/z of 298, 300, 302, and 272 assigned to didehydro abeitic acid, dehydro abeitic acid, abeitic 36 
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acid, and lignin dimer, respectively (Alma and Kelley, 2002). These results are consistent with 1 

known differences between bark and wood.  2 

Selected peaks from Py-mbms raw data 3 

As summarized above, certain Py-mbms peaks can be unambiguously assigned to specific 4 

biomass components. Lignin fragments are particularly easy to identify. Because of this, Klason 5 

lignin content of biomass can be directly estimated from Py-mbms spectral fingerprints. Firstly, 6 

spectral fingerprints of samples are area/mean normalized for the mass of the original sample. 7 

Then, the total intensity of lignin related peaks from the normalized spectrum is calculated. After 8 

that, a correction factor is calculated by dividing the known Klason lignin value by the summed 9 

intensity of a NIST standard material. The correction factor can be used to convert the total 10 

intensity of lignin related peaks to Klason lignin content (Davis and Lagutaris, 2002;Sykes et al., 11 

2008;Sykes et al., 2009;Ziebell et al., 2013). Similarly, S/G ratios were determined by dividing 12 

the sum of S-lignin peaks by the sum of G-lignin peaks excluding peaks associated with both S 13 

and G fragments (Davis and Lagutaris, 2002;Sykes et al., 2008;Mann et al., 2009;Sykes et al., 14 

2009;Ziebell et al., 2013).   15 

For example, corrected lignin values and S/G-lignin ratio were determined from Py-mbms for 16 

800 greenhouse-grown poplar trees grown under atmosphere containing different amount of 17 

nitrogen (Sykes et al., 2009).  Lignin contents ranged from 13 to 28% whereas S/G ranged from 18 

0.5 to 1.5. It was shown that the variations in cell wall composition were larger in the plants 19 

grown under high nitrogen conditions than those grown under low nitrogen conditions.   20 

Similarly, ‘within-tree’ variability in lignin content and S/G ratio with increasing height and 21 

increasing ring for poplars was determined by Py-mbms (Sykes et al., 2008). Wood disks from 22 

seven different poplar trees, which were seven years old, were sampled at five different heights 23 

of 0.3, 0.6, 1.2, 1.8, and 2.4 m from base to stem. Samples were collected from the north side of 24 

each wood disk taken at height of 1.2 m to study difference between growth rings. According to 25 

results from Py-mbms, ring effect on lignin content was significant while the effect of height was 26 

small. Higher S/G ratio was observed with increasing ring size, whereas lignin content decreased. 27 

S/G ratio was determined for switchgrass grown under different environment using the same 28 

methodology (Mann et al., 2009).  29 

 30 

Py-mbms coupled with PCA 31 

Py-mbms coupled with PCA provides a fast analytical method to distinguish a large number of 32 

biomass samples. It has been used to study biomass compositional variations due to species 33 

(Evans and Milne, 1987;Agblevor et al., 1994;Alma and Kelley, 2002;Kelley et al., 2004b), 34 

genetic engineering (Labbe et al., 2005;Davis et al., 2006), different growth environments (Mann 35 

et al., 2009;Sykes et al., 2009), thermal (Nimlos et al., 2003)/chemical (Alma and Kelley, 36 
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2002;Kelley et al., 2004b)/biological (Kelley et al., 2002;Arantes et al., 2009) treatments, and 1 

various storage/collection (Agblevor et al., 1994) methods.  2 

For example, Py-mbms coupled with PCA has been used to measure the overall composition 3 

between and within a series of original and transgenic aspens (Labbe et al., 2005). Two clones 4 

were transformed with GRP-iaaM gene (N1-17-26 and N1-2-1) and GRP-iaaM/35S-ACCase 5 

(N2-4-9 and N2-5-5). PCA analysis was conducted for data analysis with an attempt to identify 6 

chemical differences between the modified and control aspens. Figure 4 shows PCA scores plots 7 

with four replicate samples from five different aspen samples. Figure 4a shows a plot of PC1 8 

versus PC2, while Figure 4b shows a plot of PC2 versus PC3. In Figure 4a, there is clear 9 

separation between the two N1 samples while two N2 samples are indistinguishable. Moreover, 10 

two N2 samples are clearly separated from each other along PC3 as shown in Figure 4b. The 11 

loadings from PCA are shown in Figure 5. Using PC1 loadings as an example, C5 carbohydrates 12 

(m/z 85 and 114) and lignin (m/z 137, 180, 210, and 272) are highlighted for PC1. This suggests 13 

there are more C5 sugars and less lignin in controls than those in N1 and N2 samples (Labbe et 14 

al., 2005).  15 

 16 

Py-mbms had been also used to study the impact of storage environment on herbaceous material. 17 

Weathered and unweathered fractions of three types of herbaceous biomass after storage at 18 18 

different conditions for 6 to 9 months were analyzed by Py-mbms coupled with PCA (Agblevor 19 

et al., 1994). Two major trends in the data were shown by PCA (factor analysis): major clusters 20 

were distinguished by relative nitrogen contents between switchgrass and the other two 21 

herbaceous biomass samples; subgroups of weathered and unweathered materials are clearly 22 

separated as subgroups within the major clusters. According to the variance diagram (similar to 23 

loadings plot), lower amount of carbohydrates constituted the major chemical difference between 24 

weathered and unweathered samples (Agblevor et al., 1994).  This observation is consistent with 25 

results from traditional wet chemical analysis and Py-GC/MS.  26 

In some cases, there is no separation of clusters in PCA scores plot. This indicates that there is no 27 

comprehensive difference among samples for the specific chemical features included in those 28 

particular PCs.  29 

For example, three transgenic clones of populous wood were analyzed by Py-mbms, GC/MS, 30 

and traditional wet chemical techniques to screen for possible variations in cell wall composition 31 

due to genetic engineering (Davis et al., 2006). Various Bacillus thuringiensis (Bt) gene-32 

containing constructs were used to transform poplar genotypes. Transgenic poplar was then 33 

compared with non-transgenic control. PCA results showed that there were generally no distinct 34 

groupings of individual transgenic lines or non-transgenic controls, indicating no significant 35 

differences in cell wall composition between control and transgenic poplars (Davis et al., 2006).  36 

Py-mbms coupled with PLS 37 
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One of the primary applications of Py-mbms has been the development of prediction models for 1 

biomass compositional properties. Results from conventional methods of cell wall compositional 2 

analysis were used as references to build calibration models with capability for predicting the 3 

composition for future samples. As a result, laborious wet chemistry techniques can be 4 

eliminated. PLS regression is widely used in this arena for both woody (Tuskan et al., 5 

1999;Labbe et al., 2005) and herbaceous biomass (Agblevor et al., 1994;Kelley et al., 6 

2004b;Mann et al., 2009).   7 

For example, the effectiveness of NIR and Py-mbms in predicting cell wall composition of 8 

various agricultural residues was tested (Kelley et al., 2004b). 41 samples from 14 species with 9 

known content of lignin and six individual sugars were analyzed by NIR and Py-mbms. 10 

Prediction models were built between spectral data from both techniques and cell wall 11 

compositional data. Correlation coefficient and root mean square error data for each calibration 12 

and validation model was presented and compared. Good correlations between the predicted and 13 

measured value of major components (lignin, glucose, xylose, and mannose) were obtained 14 

(correlation coefficients of both calibration and validation model are above 0.80 for both NIR 15 

and Py-mbms), while correlations for minor sugars (mannose, galactose, arabinose, and 16 

rhamnose) were not as good. A summary of PLS prediction of chemical composition from Py-17 

mbms is presented in Table 2. According to the author, more samples for specific feedstocks are 18 

needed for building improved models.  This work also did a thorough comparison between NIR 19 

and Py-mbms (Kelley et al., 2004b).  20 

 21 

Other than being used to predict cell wall composition of biomass, PLS has been applied in 22 

predicting other biomass properties and processing parameters. The acidic phenolysis condition 23 

of bark (Alma and Kelley, 2002), weight loss during fungal degradation of spruce (Kelley et al., 24 

2002) and carbon content/fraction of different soils (Hoover et al., 2002;Magrini et al., 2007) 25 

were also predicted by Py-mbms coupled with PLS. 26 

For example, NIR and Py-mbms were utilized to monitor the chemical changes of wood 27 

undergoing brown-rot degradation. In this case, spruce blocks were infected by Postia placenta 28 

or Glaoeophyllum trabeum for 0, 2, 4, 8, and 16 weeks (Kelley et al., 2002). Weight losses over 29 

the time period were monitored and recorded. PLS models were built to predict weight loss. 30 

Strong correlation between recorded weight loss and predicted weight were obtained (correlation 31 

coefficients of calibration model reached 0.98, while those of test model reached 0.96 for both 32 

NIR and Py-mbms). The regression coefficients for PLS model from Py-mbms data show that 33 

weight loss during decay is positively correlated to carbohydrates (m/z 85, 114, and 126) and 34 

negatively correlated to monomethoxylated lignin fragments (m/z 123, 138, and 151) (Kelley et 35 

al., 2002).  36 

Conclusions 37 
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Compared to traditional techniques in biomass characterization, high-throughput analytical 1 

techniques, such as NIR and Py-mbms have been proved to be efficient tools in exploring the 2 

chemical features of different biomass samples with minimal sample preparation. These high-3 

throughput techniques coupled with multivariate analysis (MVA) have been demonstrated to be 4 

efficient in identifying outliers, comparing samples (using PCA), and building prediction models 5 

(using PLS). Both NIR and Py-mbms coupled with MVA could be used not only for 6 

characterizing the cell wall chemistry, but also for predicting other chemical, physical, 7 

mechanical, and fuel properties. In comparison with Py-mbms, NIR has the advantages of low 8 

cost and simple instrumentation, field-portable, and nondestructive, whereas Py-mbms provides 9 

superior information of molecular structural information.  10 

Thus, we recommend that NIR and Py-mbms coupled with multivariate analysis should be 11 

widely employed for biomass characterization. Additional fundamental work on assigning NIR 12 

vibrations band and Py-mbms peaks for modified biomass or biomass related products are 13 

recommended since current assignment are mainly based on the study of unmodified biomass. 14 

Lack of assignments for new bands/peaks in modified biomass limit the application of these two 15 

techniques in exploring the fundamental changes of chemical composition of modified biomass. 16 

Also, comparison and correlation between analytical results from Py-GC/MS and Py-mbms 17 

should be encouraged because of the important similarity and differences in these two techniques 18 

are critical for using those techniques for the characterization of biomass molecular structure. 19 

 20 
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Figure 1. PCA scores plot of untreated wheat straw samples (●) and samples treated with acid 4 

(▼), alkali (■), acid/H2O2 (□), and alkali/H2O2 (Δ) as reproduced from literature (Krongtaew 5 

et al., 2010). 6 
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 3 

Figure 2. A correlation analysis predicted (PLS model of FT-NIR) versus experimentally 4 
determined monosaccharide composition (mol%) of rice leaf samples. The correlation 5 
coefficient between experimental and predicted values was calculated to be R2 = 0.98 as 6 
reproduced from literature (Agblevor et al., 1994;Smith-Moritz et al., 2011).  7 
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Figure 3. Characteristic mass spectral patterns of primary pyrolysis products for several whole biomass 4 
samples and for separated constituents of biomass (Evans and Milne, 1987).  5 
 6 
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 2 

Figure 4. Scores plot of PCA of Py-mbms data for original and transgenic aspens; (a) PC1 3 

versus PC2; (b) PC2 versus PC3; N1 samples are clearly separated from control samples in (a) 4 

while two N2 samples are not distinguishable; In (b) two N2 samples are clearly separated by 5 

PC3 as reproduced from literature (Labbe et al., 2005).  6 
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Figure 5. Loadings from PCA of Py-mbms data for original and transgenic aspens; from top to 3 

bottom: PC3, PC2, PC1; C5 carbohydrates (m/z 85 and 114) and lignin (m/z 137, 180, 210, and 4 

272) are highlighted for PC1 as reproduced from literature (Labbe et al., 2005). 5 
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Table 1. Peak assignments associated with Py-mbms spectrum for Populus wood based on 1 

literature (Evans and Milne, 1987;Sykes et al., 2008) 2 

Mass peaks (m/z) Assigned products S or G precursor 
57, 73, 85, 96, 114 from C5 sugar 

 57, 60, 73, 98, 126, 144 from C6 sugar 
 94 Phenol, dimethylcyclopentene 
 108 Methyl phenol (o-cresol, m/p-cresol) 
 110 Dihydroxybenzene, 5-methylfurfural 
 120 Vinylphenol 
 122 Ethylphenol, ethylphenol, benzoic acid 
 124 Guaiacol (2-methoxyphenol), 

trimethylcyclopentenone G 

137* Ethylguaiacol, homovanillin, coniferyl alcohol G 
138 Methylguaiacol G 
150 p-inylguaiacol, coumaryl alcohol G 
152 4-ethylguaiacol, vanillin G 
154 Syringol (2,6- dimethoxyphenol) S 
164 Isoeugenenol, eugenol G 
167* Ethylsyringol, syrinylacetone, propiosyringone S 
168 4-methyl-2,6-dimethoxyphenol S 
178 Coniferyl aldehyde G 
180 Coniferyl alcohol, syringylethene S, G 
182 Syringaldehyde S 
194 4-propenylsyringol S 
208 Synapyl aldehyde S 
210 Synapyl alcohol S 
* Fragment ion 

  m/z: mass to charge ratio 
  S: Syringyl lignin 
  G: Guaiacol lignin 
   3 

 4 

 5 

 6 
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Table 2. Summary of the PLS-2 predictions of chemical composition from Py-mbms (6 PCs) 1 

(Kelley et al., 2004b) 2 

  Lignin Glucose Xylose Mannose Galactose Arabinose Rhamnose 
r(CALB) 0.85 0.85 0.87 0.92 0.83 0.70 0.80 
r(VALD) 0.77 0.75 0.81 0.86 0.65 0.54 0.71 
RMSEC 4.60 6.20 3.40 1.40 0.40 0.50 0.10 
RMSEP 5.50 8.00 4.10 1.80 0.50 0.60 0.10 
 3 
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