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Microbial diversity of cellulose hydrolysis
David B Wilson

Enzymatic hydrolysis of cellulose by microorganisms is a key

step in the global carbon cycle. Despite its abundance only a

small percentage of microorganisms can degrade cellulose,

probably because it is present in recalcitrant cell walls. There

are at least five distinct mechanisms used by different

microorganisms to degrade cellulose all of which involve

cellulases. Cellulolytic organisms and cellulases are extremely

diverse possibly because their natural substrates, plant cell

walls, are very diverse. At this time the microbial ecology of

cellulose degradation in any environment is still not clearly

understood even though there is a great deal of information

available about the bovine rumen. Two major problems that

limit our understanding of this area are the vast diversity of

organisms present in most cellulose degrading environments

and the inability to culture most of them.
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Introduction
A key step in the global carbon cycle is the hydrolysis of

the cellulose in plant cell walls, which is the most abun-

dant source of carbon on land [1]. The half-life of cellu-

lose at neutral pH in the absence of enzymes is estimated

to be several million years so that microbial activity is

responsible for most of the turnover of the carbon in

cellulose although fire also plays a role [2]. Originally it

was thought that only microorganisms produced cellu-

lases but it is now clear that some insects, mollusks,

nematodes, and protozoa also produce cellulases [3�].
Even when ruminants, shipworms or termites utilize

cellulose as an energy source, microorganisms usually

are involved in its degradation [4–6]. In the case of

ruminants, all of their cellulose hydrolysis is carried out

by anaerobic rumen bacteria, fungi, or protozoa, though

for some termites both microbial enzymes and termite

enzymes are utilized for cellulose hydrolysis.

Since cellulose is mostly present in plant cell walls, which

are very difficult to degrade, only a small fraction of all

microorganisms that are specialized for plant cell wall

degradation can hydrolyze cellulose [7]. Since bacteria

and fungi are unable to engulf particles, these organisms

need to secrete their cellulases and most anaerobic bac-

teria that produce cellulosomes attach them to their outer

surface. Because of the recalcitrance of plant cell walls

some cellulolytic microorganisms secrete up to 50% of

their total protein during growth on biomass or cellulose.

Cellulases
There are several different mechanisms that are used

by cellulolytic microorganisms to degrade cellulose,

although cellulases are used in all of them [8]. Cellulases

are the most diverse enzymes that catalyze a single

reaction, which is hydrolysis of the b-1,4 linkage joining

two glucose molecules in a cellulose molecule. There are

at least eleven cellulase families based on the similarities

of their amino acid sequence and structural studies of the

different families show that cellulases have eight differ-

ent protein folds [9�]. The diversity of cellulases may

result from the extreme diversity of their natural sub-

strates, plant cell walls. Individual cellulases have very

low activity on crystalline cellulose but they have a very

high catalytic enhancement due to the very long half-life

of crystalline cellulose. Cellulases are very different from

most enzymes, as they degrade an insoluble substrate.

This requires that the enzyme diffuses to the substrate

and then it has to move a segment of a cellulose molecule

from the insoluble particle into its active site, whereas

soluble substrates diffuse to the enzyme and bind into the

active site by themselves.

Almost all enzymes that degrade insoluble substrates con-

tain a substrate binding domain, which is usually joined to

the catalytic domain (cd) by a flexible linker peptide [10�].
In the case of cellulases, where this type of domainwas first

discovered, the domain was originally called a cellulose

binding domain and then the name was changed to carbo-

hydrate binding module (CBM), so as to include the many

other types of polysaccharide binding domains. It is clear

that one role of the CBM is to bind the enzyme to the

cellulose so that the cd spends less time away from the

substrate and it also gives the cd time to move the chain

into its active site before the enzyme diffuses away from

the cellulose particle. It is still not clear whether the CBM

also can modify cellulose or otherwise assist cellulose

hydrolysis by the catalytic domain [11].

There are a number of forms of cellulose that are used to

assay cellulases; carboxymethylcellulose (CMC) is a
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soluble form that is an excellent substrate for endocellu-

lases and its hydrolysis does not require a CBM. Amor-

phous cellulose, which is produced by concentrated acid

treatment of crystalline cellulose is a good substrate for

most cellulases and its hydrolysis is usually not affected

by the CBM. Crystalline cellulose (Avicel, bacterial cel-

lulose or filter paper), which is the main form of cellulose

in most plant cell walls, requires a CBM for effective

hydrolysis [12,13].

Cellulases have nonlinear kinetics on polymeric sub-

strates, which appear to be due to substrate heterogeneity

but they show Michaelis–Menten kinetics on small

soluble substrates [14]. Most cellulases are endocellul-

lases, which have an open active site so they can bind and

cleave a cellulose molecule at any accessible point along

the chain [15]. Endocellulases bind randomly along a

cellulose molecule, make a few cleavages and then dis-

sociate from the chain, thus they rapidly decrease the

viscosity of CMC. All exocellulases have their active site

inside a tunnel and they bind only at one end of a

cellulose chain. They cleave off cellobiose processively

from the chain end [16]. Thus exocellulases have low

activity on CMC and do not decrease its viscosity. They

remain bound to a cellulose chain, processively cleaving

cellobiose residues from the chain end until they dis-

sociate. There are two types of exocellulases, one class

attacks the reducing end of cellulose molecules while the

other attacks the nonreducing end [17]. Finally there is a

third class of cellulases, processive endoglucanases that so

far are found only in bacteria. Most processive endoglu-

canases have a unique domain structure in which the C-

terminus of a family 9 cd is rigidly attached to a family 3c

CBM domain [18,19]. These enzymes carry out an initial

endocellulytic attack on a cellulose chain but then they

processively attack the nonreducing end of the initially

cleaved chain, releasing cellotetraose. Some family 5

processive endocellulases also have been identified in

Saccharophagus degradans.

Cellulolytic mechanisms
Many aerobic microorganism use the free cellulase mech-

anism in which they secrete a set of individual cellulases,

most of which contain a carbohydrate binding module

(CBM) joined by a flexible linker to one end of the

catalytic domain. The cellulases in the mixture act syner-

gistically to degrade crystalline cellulose [20]. Cellulase

synergism can result in increases in the specific activity of

appropriate mixtures that are up to fifteen fold higher

than that of any individual cellulase [21].

Many anaerobic microorganisms use cellulosomes, large

multienzyme complexes (multimillion molecular

weight), to degrade cellulose [22�]. Only a few of the

enzymes in cellulosomes contain a CBM, but the protein

to which they are attached (called scaffoldin) does contain

a CBM, which binds the complex to cellulose. In general

the cellulases produced by aerobic and anaerobic micro-

organisms belong to the same families, except that only

aerobic fungi produce GH-7 cellulases and cellulosomes

do not appear to contain family 6 exocellulases. A few

anaerobic cellulolytic thermophillic bacteria such as Cal-
dicellulosiruptor species secrete multidomain cellulases

that contain CBMs. These organisms have a very effec-

tive plant cell wall degradation system that can hydrolyze

unpretreated plant biomass unlike most other cellulolytic

microorganisms [23].

Some aerobic fungi that degrade cellulose but not lignin,

such as Trichoderma reesei, the source of most commercial

cellulase, use the free enzyme mechanism while true

brown rot fungi secrete both cellulases and peroxidases

[24]. The peroxide and OH– radicals produced by the

peroxidases and iron partially oxidize the cellulose, mak-

ing it much easier for the cellulases to degrade it. There-

fore brown rot fungi are able to use a set of cellulases that

lack both CBMs and processive cellulases, which are

needed to degrade unmodified crystalline cellulose. Both

CBMs and processive cellulases are produced by aerobic

microorganisms that use the free cellulase mechanism

and also by anaerobic micoorganisms that produce cellu-

losomes. In fact, the brown rot fungus Postia placenta only
secretes a single endoglucanase whereas free cellulolytic

organisms secrete six or more cellulases and cellulosomes

contain even more cellulases [25�,26,27].

There are two cellulolytic bacteria, Fibrobacter succino-
genes an anaerobe, that is a major cellulolytic rumen

bacterium and Cytophaga hutchinsonii, an aerobic soil

bacterium, whose genome sequences contain a number

of cellulase genes most of which lack CBMs and all of

which are endocellulases [28,8]. Furthermore, none of

these cellulases have much activity on crystalline cellu-

lose. Both of these organisms are tightly bound to cellu-

lose during growth and neither one secretes free

cellulases or produces cellulosomes. Thus these organ-

isms appear to use a novel mechanism for cellulose

hydrolysis, which has not been determined despite

extensive studies of F. succinogenes [29]. This mechanism

is very effective, as F. succinogenes grows faster on cellu-

lose than most other studied microorganisms [30].

Relatives of F. succinogenes are widely distributed in

nature and are the major cellulolytic bacteria found in

termite metagenomic sequences [31�]. As more bacterial

genomes are sequenced more variations are found in the

cellulase genes that they contain. S. degradanswhich has a
very unusual set of cellulases, as most of them are from

family 5 with a few from family 9 and both of these

families contain only endocellulases. There is one family

6 cellulase but it also is an endocellulase [32]. Three of

the family 5 cellulases appear to be a new type of

processive endoglucanase in which processivity does

not require an auxiliary domain but exactly how this

organism degrades cellulose so well is not clear [33].
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Recently several new proteins have been identified that

function in cellulose hydrolysis. Most cellulolytic fungi

contain multiple family GH-61 genes and a few of them

encode proteins having weak cellulolytic activity [34�]. A
family GH-61 protein was shown to stimulate cellulose

hydrolysis of pretreated biomass by crude T. reesei cellu-
lase when magnesium ions were present but it did not

stimulate hydrolysis of pure cellulose [34�]. Thermobifida
fusca produces and secretes large amounts of two family

33 CBM proteins when it is grown on cellulose. One

contains only a family 33 domain while the other is a

family 33 CBM joined to a family 2 CBM. Both of these

proteins have been shown to bind to cellulose and chitin

and they give a small stimulation of cellulose hydrolysis

by T. fusca cellulases [35]. Another T. reesei protein that

resembles expansin called swollenen has been identified

and shown to loosen crystalline cellulose [36]. A Bacillus
subtilis homolog was cloned and shown to significantly

stimulate T. reesei cellulase activity [37].

The diversity of cellulolytic organisms in
natural habitats and their degradation
functions
The best studied cellulolytic environment is the rumen

which is essentially a plant cell wall degrading chemostat

where the animal pretreats biomass by grinding it into

small particles which then are digested by a very dense and

complex mixture of anaerobic microorganisms. There are

about 1010 bacteria perml in the rumenbut only about 10%

of them are cellulolytic [38�] even though cellulose is the

major carbon source available to rumen microorganisms.

There are also some cellulolytic rumen fungi and protozoa

but it is thought that bacteria are the major cellulose

degraders. The microorganisms in the rumen that are

bound to feed particles are quite different from those that

are not attached and most cellulolytic microorganisms are

attached to the particles [39]. However many attached

microorganisms do not degrade cellulose. It is interesting

that a metagenomic sequence of a leaf cutter ant colony

garden contained many bacteria whose genes coding for

carbohydrate degrading enzymes were most similar to

those in the bovine rumen although there were clear

differences between the two sets of enzymes [40].

Another cellulose degrading environment, which has

been well studied is compost. The initial phase of com-

posting occurs at moderate temperatures and it is carried

out by both bacteria and fungi, then heating occurs and

thermophillic bacteria dominate the community [41–43].
Cellulose degradation mainly occurs in the thermophillic

phase. The community of microorganisms in compost is

extremely diverse and very variable although mature

compost tends to have simpler communities that are

enriched in cellulolytic bacteria [43].

A serious problem in studyingmicrobial ecology is that only

a few percent of themicroorganisms inmost environments

can be cultured and the populations are very hetero-

geneous. It is interesting that the bacteria in anaerobic

cellulolytic environments appear to be even more diverse

than the bacteria in aerobic environments. It is assumed

that plant cell wall degradation is dependent on many

organisms that act synergistically but this has not been

not clearly shown. It is likely that some of the different

polymers that are present in plant cell walls are degraded

by different organisms. There are some surprising specifi-

cities seen in polymer utilization.F. succinogenes can hydro-
lyze many polysaccharides but only grow well on cellulose

[44]. Clostridium thermocellum does not grow on xylose even

though it degrades xylan well [45]. T. fusca cannot grow on

xyloglucan even though it produces a very active xyloglu-

canase that completely hydrolyzes xyloglucan to soluble

products [46]. This enzyme is induced by growth on

cellulose and it contains a cellulose binding CBM so that

it probably functions to remove xyloglucan that coats

cellulose fibrils in primary plant cell walls. In fact it was

shown that when bacterial cellulose was synthesized in the

presence of xyloglucan, it was not hydrolyzed by amixture

of pure cellulases, unless the xyloglucanase was present

[46]. In addition, althoughT. fusca can grow on either xylan

or cellulose, it mainly hydrolyzes cellulose, when it is

grown on biomass that contains both polymers. This is

probably because the synthesis of the xylan degrading

xylanases is inhibited by cellobiose, which is the inducer

of all the cellulose degrading enzymes, which include a

xylanase and a mannanase that each contain a cellulose

binding CBM [47].

Another problem in understanding plant cell wall degra-

dation is that we do not know the exact substrate for most

organisms, as there may be several organisms that sequen-

tially attack a given type of plant cell wall. One example

of a stable mixed culture that degrades cellulose contains

four organisms but only one can hydrolyze cellulose and

the roles of the others are not directly linked to cellulose

hydrolysis [48]. In addition to ruminants, hindgut fer-

menting animals like horses and humans contain cellu-

lolytic microbes in their large intestines and even though

these organisms are not as effective in cellulose degra-

dation as those in ruminants, they do hydrolyze enough of

the plant cell wall to provide some extra energy to their

hosts [49�].

Conclusion
Despite the exciting new findings from the application of

genomic and metagenomic techniques to the study of

cellulose degrading organisms. There is still much we do

not understand about the mechanism of cellulose degra-

dation and the microbial communities that carry it out.

Because of the potential of biomass as a source of renew-

able fuels and chemicals, there has been a rapid increase

in the amount of research in this area, so that it seems

likely that our knowledge about these topics should

continue to increase.
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