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What if the Fit is Unfit? Criteria for Biological Systems
Estimation Beyond Residual Errors

Eberhard O. Voit

9.1
Introduction

The analysis of biological networks has made enormous strides in recent years. In the
context of static networks, which do not change over short periods of time, new
biological techniques have begun to permit the characterization of very large
interaction maps (e.g., among proteins), and computational graph theory has
been the tool of choice for analyzing and interpreting what these maps entail.
Complementing these activities has been the exploration of dynamically changing,
regulated biological systems. On the experimental side, these efforts have enor-
mously benefitted from the astounding advances in high-throughput biology at the
genomic, proteomic, metabolic, and physiological levels. On the analytical side,
the procedures and results of this new field of experimental systems biology have
first been supported by a rapidly expanding repertoire of bioinformatics tools that
permit the storage, retrieval, and analysis of very large datasets. More recently,
the bioinformatics tools have become tightly interwoven with analytical and
simulation techniques that are at the heart of the emerging field of computational
systems biology.

At this pointin time, it is no longer a real challenge to simulate large linear or even
nonlinear systems in the form of algebraic or differential equations. It has also
become feasible to simulate hybrid systems that contain continuous and discrete
events, stochastic effects, and delays (e.g., [1, 2]). The simplicity with which we can
perform large-scale simulations is in stark contrast to the overwhelming challenges
we face much earlier in any biological systems analysis, namely when the biological
phenomenon of interest is to be translated into a mathematical or computational
model. This translation task may be subdivided into three aspects. The first concerns
the acquisition of data. While biology is producing high-quality data in large
quantities, these data are not always of the type and completeness that elucidate
all aspects of the biological phenomenon from sufficiently many angles to constructa
mathematical model. For instance, models of dynamic processes in the brain are
hampered by the extremely difficult access to specific, restricted neuronal areas in
living organisms [3]. This aspect of data availability will without doubt continue to
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improve throughout the foreseeable future and we will not discuss issues of data
generation in this chapter. The other two components of the translation from biology
into a computational construct are distinct, but closely related to each other. The first
is the determination of suitable mathematical descriptions for all relevant details of
the biological phenomenon, while the second is the identification of numerical values
for the parameters in these descriptions [4]. These two fundamental tasks of
computational systems biology are the focus of this chapter.

Before we discuss details, challenges, methods, and pitfalls associated with the
construction of biological systems models, we should ask why such an effort appears
to be worth our while. One might begin by pre-empting a widespread critique of
modeling, namely that models merely recreate, often in a much abstracted and
simplified fashion, what “real” biologists had known all along and in greater detail. So
what, if a model produces results similar to those observed? Modelers are sometimes
stunned by this critique, because it is certainly not a trivial matter to write computer
code that fits a large collection of biological data well. The truth behind this (mis-)
conception is that a well-fitting model is a necessary but not sufficient condition for
greater things to come. Indeed, without further analysis, exploration, explanation, or
prediction, an accurate fit by itself does not earn the modeler much more than
bragging rights.

In generic terms, the construction of a model is worthwhile if the model is able to
answer specific questions or helps decide between acceptance and rejection of a
hypothesis. Such a hypothesis may take many different forms. It may be qualitative in
a sense that one is primarily interested in whether some key variable in the system
responds to a specific input with an increase or a decrease. It may be semiquantitative
if one is interested in the rough extent of the response and it is quantitative or
numerical if the model is supposed to show the correct value of the affected key
variable. What level of accuracy is needed in a model result depends on the questions
asked, on the effort one is willing to invest in the modeling effort, and on many issues
associated with the biological phenomenon itself and with the model.

9.2
Model Design

The challenge of converting a biological system into a mathematical structure
requires the specification of functions that describe all pertinent processes, as well
as the identification of suitable parameter values. The selection of process descrip-
tions is by no means trivial. Granted, there are situations where a function can be
inferred from the type and mechanism of the process. For example, there is good
reason to choose an exponential function for the description of the growth of a small
bacterial population, because the process is biologically driven by repeated cell
doubling. However, such cases of mechanism-based model selection are actually
rare and even traditional choices like a Michaelis-Menten rate function for an
enzyme-catalyzed reactions are not without troubling questions, because deep
underlying assumptions like homogeneity of the medium and free movement of
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enzymes and substrates are usually not satisfied in vivo [5]. Physics affords us with a
rich repertoire of proven formulations for fundamental characteristics like forces and
energy, but in biology these fundamental aspects are convoluted and often mixed
together in a complicated manner. As an example, consider the process of gene
expression, which involves the opening of the DNA strands, the right spatial and
temporal availability and action of transcription factors, and the complex process of
transcription into RNA. It is simply impossible to reduce this collective event into
mechanistic pieces that permit elementary, physics-based representations.

Faced with similar challenges, engineers typically resort to linear approximations.
These are very convenient, because there are stringent rules for their design, as well
as for their analysis. Indeed, the repertoire of analytical and computational methods
for linear systems is huge. The problem with linear approaches in biology is that most
phenomena are genuinely nonlinear. They saturate or oscillate in a stable fashion,
show switches, and sometimes appear to be chaotic. Reducing their dynamics to
linear functions would not permit a proper analysis of these features. At the same
time, the number of nonlinear functions is infinite and there are no guidelines as to
which of these might be optimal or even appropriate descriptions of biological
processes. A useful alternative is a nonlinear approximation. The first idea presum-
ably coming to mind might be a second-order (quadratic) approximation, but this
choice actually turns out to be rather inconvenient for later analyses [6]. Instead, it has
proven beneficial to approximate biological processes with linear functions in
logarithmic coordinates. This procedure is mathematically sound, as it directly
adheres to the tenets of Taylor's theory and leads to nonlinear descriptions that
can capture all types of responses, including different types of oscillations and
chaos [7, 8]. Besides, these representations have desirable properties for mathemat-
ical and computational analysis. The concept of linearization in logarithmic coordi-
nates is the core of biochemical systems theory (BST) [9, 10], which has been
documented in several hundred articles and book chapters; book-length descriptions
include [11-14].

BST comes in two main variants. In the generalized mass action (GMA) formu-
lation, every process is represented with one product of power-law functions. For
instance, in the simple branched pathway with two feedback signals that is shown in
Figure 9.1, the equation for X, can be formulated directly as:

X; = Yzlxiczl_\’zzxi&n_\’z3xirmxfu (9-1)
where the y parameters denote rate constants, which can take any non-negative
values, while f5;, f351, f222, and f5, are kinetic orders that may take any real values. As X;
is the substrate of the production reaction, f,, is positive. By contrast, f,, is negative,
because it represents the inhibitory signal exerted by X,. In general, a GMA system
always has the format:

n+m n+m n+m

K=y [[ Xty [[ P+ v [[ ¥+ =10 (92)
J=1 j=1 Jj=1

In addition to the dynamically changing variables, the system may also contain
independent variables, X, ; 1, ..., X + m, Which affect the system, but are not
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Figure 9.1 Generic pathway with one branch and two feedback signals.

affected by the system. In many cases, these variables are constant during a given
mathematical experiment.

In the alternative S-system formulation, all processes entering a variable or pool are
collectively represented with a single product of power-law functions that contains all
variables affecting the collection of fluxes. Similarly, all processes leaving a variable or
pool are collectively represented with a single product of power-law functions that
contains all variables affecting the collection of fluxes. Revisiting the pathway in
Figure 9.1, the only difference to the GMA formulation occurs for the degradation of
X,, which is now represented with only one term that contains both X, and X;. Using
the conventional parameter names for S-systems, the equation for X, is therefore:

X = apXf - B, X (9.3)

All other equations are the same as before, with the minor deviation of traditionally
different names for the parameters. Accounting again for independent variables, the
generic S-system format is:

n+m n+m

Xi=a [[ X2 [[ X" i=1.....n (94)
= =

BSTmodels have a number of advantages over ad hoc formulations. First, in order
to formulate the system equations one does not have to know the true mechanisms
governing the phenomenon of interest. As long as it is clear how the system is
“connected” (i.e., which component affects which other components), either as a
source of material or as the source of a regulatory signal, it is a straightforward
procedure to set up a symbolic model. Here, “symbolic” means that we formulate the
equations of the model, but that we do not know what the values of their parameter
are; examples are Equations 9.1-9.4. The second advantage of BSTmodels is that each
parameter, even if it does not yet have a specific value, has a clearly defined meaning.
An example is fo4, which exclusively represents the inhibition by X, of the conversion
between X; and X,. Similarly, it is immediately clear into which parameter a particular
teature of a biological system has to be translated. This one-to-one relationship
between biological aspects and parameters is very helpful both during the model
design and the interpretation of results from the model analysis. The third advantage
of the BST formulation is that the particular format has convenient mathematical
properties. The main disadvantage of BST is that there is no guarantee that the model
will capture all relevant features of the biological system of interest with sufficient
accuracy. While the Taylor approximation is mathematically guaranteed to match any
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data close to a chosen operating point, this guarantee extends only over a very small
range. Outside this range, which is of unknown size, the model may or may not fit
well. BST shares this feature with all other models in biology.

BST models are just one option for nonlinear representations, but they are
especially powerful as initial default models when not much is known about
the details of the biological system. Specifically, since the construction of the
symbolic equations is essentially automatic, the model design challenge is reduced
to determining optimal parameter values with which the model matches the
observed data well. This determination, while still difficult, is to be seen in
comparison with the task of setting up a model with unspecified functions that are
supposed to capture the dynamics of complex and ill-characterized processes. Many
methods are available for parameter estimation purposes (for arecent review, see [4]),
but none of them works perfectly or even satisfactorily in cases of moderately large
biological systems.

9.3
Concepts and Challenges of Parameter Estimation

Methods of parameter estimation for biochemical systems fall into two broad
categories, which are directly tied to the available types of data (e.g., see chapter 5
in [14]). In the past, the data almost always consisted of kinetic features associated
with a particular step in the biochemical pathway system. Such features included the
Ky of the enzyme, sometimes a flux rate or Vi, a dissociation constant, or some
other kinetic characteristic. Also, once in a while steady-state values for the variables
or fluxes of the system were available. Given such data, the “bottom-up” strategy of
parameter estimation consisted of formulating each step symbolically and optimiz-
ing the parameter values such that they matched the alleged shape of the reaction
step. Subsequently, all “local” descriptions (of individual reaction steps) were merged
into a system of differential equations that described the entire pathway, the
equations were integrated, and the numerical solutions of the system were compared
against additional observation data. As the comparison typically led to numerical
inconsistencies, one had to go back to the individual process representations many
times and adjust functions or parameter values. This iterated reformulation and data
matching could easily take months if not years. The vast majority of all existing
biochemical models have been estimated with methods of this type; a very detailed
example is [15].

Recent advances in molecular biology have begun to offer an alternative “top-
down” approach to parameter estimation. The data here consist of measurements of
metabolite concentrations at many subsequent time points, usually following some
stimulus. The estimation now occurs in the “opposite” direction. Namely, one
attempts to determine parameter values such that the solutions of the differential
equations match the observed time-series data. The local parameters, which earlier
were the starting point, are now the result of the top-down estimation. This type of an
estimation task is known in mathematics and computing as an inverse problem, for
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which many algorithms are available. However, these algorithms tend to fail for
moderately complicated biological systems [4].

As the identification of parameter values is a severe bottleneck of systems biology,
enormous efforts have been dedicated to the development of general and specific
techniques. One crucial issue is the fact that essentially all estimation algorithms are
iterative. They use some method to determine a candidate set of parameter values,
solve the differential equations with these parameter values, compare the solution
with the observed data, and evoke some method for improving the parameter set for
the next iteration. As an immediate consequence, the set of differential equations
must be solved thousands of times and while each solution may be relatively fast,
their collection can become prohibitively long. To circumvent this particular issue,
two independent groups [16, 17] proposed almost 30 years ago the smoothing of the
raw data and the interpretation of the slopes of the time course for each metabolite as
estimates for the differentials on the left-hand sides of the differential equations
(Figure 9.2). Thus, according to this method, each differential equation is replaced
with a set of K algebraic equations, where K is the number of time points where the
metabolite concentrations and slopes are measured or estimated. Each of the
algebraic equations contains on the left-hand side the estimated slope value S(t)
at a given time point #; and on the right-hand side the expression given by the
differential equation and evaluated at #;. Pursuing this strategy, estimating the
parameters py, ..., py in the differential equation:

Xi=fi(X1, X, .., Xuipir, - .. pingy) )

" K algebraic equations of the form:
:);pil-.---:piM;)-. i:]......,ﬂ.. k:]..,...,.K (96)

7ed time courses, all quantities Xi(t,) and S(t;)
nly unknowns are the parameter values of

e
x

+ dots), a smoothing function (red), and examples of
i) along the time course. The slopes thus estimated are
+ differential equations of the systems model.
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This slope estimation strategy has two significant advantages. First, the need
for solving differential equations is eliminated and the estimation is done instead
with a purely algebraic system of equations. This conversion is very consequential,
because in excess of 95% of the estimation time for a system of differential
equations is spent on numerically integrating the equations, and this percentage
can approach 100% [18]. Second, each time course is “decoupled” from the
others, because it can be addressed independently of all other time courses.
Intriguingly, if this method of slope estimation and decoupling is applied to
Lotka—Volterra models, the initially nonlinear parameter estimation task becomes
a simple linear regression [19]. Similarly, applied to S-systems within BST, the
nonlinear estimation can be converted into an iteration of linear regression tasks [20]
(see also [21]).

Clearly, the computational speed-up of the slope estimation and decoupling
strategy is very appealing, but one might wonder about it statistical rigor. For a long
time, the method was seen as such a convenient shortcut that it would outweigh
possible concerns of statistical bias. The argument was that the solution obtained
with this method could at least be used as a starting point for more conventional and
possibly less biased estimations. However, Brunel recently showed that the proce-
dure is asymptotically normal, consistent, and indeed statistically sound [22].

As the optimization of parameters in algebraic equations is much easier than in
differential equations, one might be tempted to assume that the estimation task is
essentially solved. However, this is not always the case. The slope estimation and
decoupling strategy consists of two key steps — the smoothing of the data, which is
necessary for the estimation of slopes, and the parameter estimation of the systems of
nonlinear algebraic equations. The smoothing step is typically achieved with
splines [23], although more sophisticated methods have also been proposed for this
purpose [24, 25]. The choice of a spline or another smoother necessarily requires a
decision regarding the degree of desired smoothness, and this decision cannot be
made with total objectivity, because the smoothness of the data — or the lack thereof —
depends on the processes governing the system from which the data were obtained,
including experimental noise. At the same time it is quite evident that the degree of
smoothing will affect the second step of slope estimation. No matter which method is
chosen, smoothing incurs an approximation error, which is generally larger for
smoother splines that are of lower order and consist of fewer pieces. If more spline
pieces or higher-order splines are used, the approximation error is generally lower,
but the appearance of the smoothing function is “bumpier” (Figure 9.3). This
bumpiness may be due to time courses with many true ups and downs or to
experimental noise in the data. If the latter is the case, a bumpy smoother simply
tries to mimic the noise, the slopes along the smoothed time course increase and
decrease to an unreasonable extent, and the subsequent parameter estimation results
in a larger residual error. Thus, if the data contain even moderate noise, the
smoothing error and the parameter estimation error are inversely related to each
other, and the two must be weighed against each other. Addressing this issue with
statistical rigor, Ramsay et al. developed algorithms that optimize weights associated
with the two types of error [26]. A remaining question in this context is to what degree
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Interpolation (green) generaily resuits in a appearance, which may cause problems
larger residual error with respect to the with the slope estimation and decoupling
data (blue dots), whereas the more detailed technique.

different extents of smoothing may lead to a loss of biological information, especially
if the true “nature” of the data is unknown.

Overall, the slope estimation and decoupling strategy makes the estimation task
simpler and much faster, but it does not solve all problems. We discuss some
remaining issues in the following.

9.3.1
Typical Parameter Estimation Problems

The problems typically encountered in the estimation of parameter values fall into
two classes. In the first class, the algorithm simply does not find a suitable solution
and, as a consequence, the residual error is unacceptably high. In the second class, an
algorithm does find a solution, but something is not quite right with this solution. We
discuss the different cases one by one.

9.3.1.1 Data Fit is Unacceptable

If no satisfactory fit can be found, the reasons may be manifold. In a relatively clear-
cut case, the algorithm does not converge at all, reaches the maximally permitted
number of iterations, or produces a fit that is obviously very different from the
observed data. In such cases, the foremost (although not necessarily only) reasons are
likely of a technical nature. It might be that the computer- or user-suggested initial
guesses for all parameters are simply so bad that the algorithm does not reach a basin
of attraction surrounding the optimal solution. It is also possible that the algorithm is
attracted to an unacceptable local minimum.

A distinctly different cause for not yielding a good solution may be that the alleged
functions in the model are so far from the truth that the algorithm cannot determine a
satisfactory solution. In contrast to purely technical issues, the result in this case is
often “some” fit that, however, is clearly not optimal. For instance, if one attempts to
fit a Michaelis—Menten function to a sigmoidal time course, it is clear that the initial



=R =TS = R -

. PN Wow W w Wouw W R N S N SR SRR

Color Fig.: 9.4

9.3 Concepts and Challenges of Parameter Estimation | 191

H,M
3
8=
6«4 M
4 -
H
om
L L] L] L ‘S
r 5 10 15 20

Figure 9.4 An algorithm tries to fit a sigmoidal Hill function (H; blue) with a Michaelis-Menten
function (M; red) that simply does not have sufficient shape flexibility. As a consequence, no
adequate fit can be reached.

phase cannot be matched appropriately, because the structure of the Michaelis—
Menten model is not equipped to capture S-shaped datasets (Figure 9.4). In simple
cases like the one described, the problem is easily detected and diagnosed. However,
this analysis is not so readily accomplished in a high-dimensional parameter space.
Of course, all combinations of the above causes may be encountered. Many studies
have focused on these and other technical issues.

9.3.1.2 Differently Structured Candidate Models are Difficult to Compare

Within the realm of linear regression, methods have been developed for assessing the
relative worth of an additional parameter. Specifically, objective criteria exist, based
on residual errors and numbers of parameters and data points, for deciding the
superiority of one of two candidate fits where one involves M and the other one M + 1
parameters [27]. For nonlinear estimation tasks, such comparisons are much more
difficult, especially if different model structures are involved. Surprisingly, there is
even ambiguity in the number of parameters. As an example, consider a Hill function

of the type:

Vinax S
which has a sigmoidal shape as shown in Figure 9.4. One will easily recognize Ky and
Vimax as parameters, but should the Hill coefficient (i.e., the power associated with S)
be counted, even ifitis a priori setequal to 2? After all, it clearly affects the shape of the
function and if 2 did not fit, we could easily change it to a different value. It is difficult
to find an objective criterion accounting for this issue. Thus, it is in general not a
trivial matter to compare two fits, such as one with a Michaelis—-Menten model (which
is a special case with the Hill coefficient equaling 1) and one with a Hill model with a
fixed or tunable Hill coefficient. Similarly, it is difficult to compare fits with a Hill
model and a logistic model, which can both capture sigmoidal processes equally well

but have different mathematical structures (Figure 9.5).
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~ - ) ) _ a sigmoidal trend are equally well represented by
a Hill function (H; blue; H(S) = 45%/(8% + 5?) +0.5) or a logistic function (L; red; L(S) = 4.3/
[1+exp(—0.24-(5-8))]).

9.3.1.3 Fitis Acceptable, But. ..

In spite of all technical challenges, one often obtains a fit that is good, as judged by
visual inspection and an acceptable sum of squared residual errors (SSE), and it
mightappear that the problem is solved. In some cases this is the case, buta good SSE
should not be taken as the sole criterion.

The best-known situation is convergence to a local minimum. Even if an optimi-
zation algorithm returns an acceptable fit, there is no guarantee that the fitted model
is truly the best option. It is easily possible that the solution corresponds to a local
minimum and that other solutions, maybe far away, are even better. However, the
algorithm may not necessarily find these superior solutions because they are
separated from the current solution by domains of parameter sets that correspond
to drastically inferior model fits. Thus, any time the algorithm attempts to move
toward the global optimum, it hits the separating areas of high errors, deems the
direction futile, and searches in other parts of the parameter space. A partial, but not
always effective solution to the problem is repeated optimization with different initial
guesses for some or all parameters.

A slightly different situation occurs if the identified optimum is surrounded by a
large area of solutions with very similar errors. In the simplest cases, these “almost
optimal” solution sets form slightly distorted ellipses in a higher-dimensional space,
but this is not necessarily so. Recent years have seen quite a bit of attention dedicated
to what is now called “sloppy” solutions (e.g., [28, 29]). One could argue that the
optimized solution is still a tiny bit better than its neighbors in the sloppy set and that
it should therefore be preferred over all other candidates. However, in some cases the
residual errors within the sloppy set are so similar that a slight change in just one data
point, which could easily correspond to experimental noise, would identify a different
solution as optimal. Thus, one should not discard the range of parameters surround-
ing the optimized solution. In a way, sloppy solution sets are not necessarily a cause
for concern, because the corresponding models are quite similar in their fits to the
data. In fact, it might be possible to simplify the optimized solution by setting certain
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parameters equal to zero, if the sloppy set includes this setting as a legitimate
possibility. The SSE would very slightly increase, but arguments of simplicity might
favor this increase in exchange for a simpler model structure. Intriguingly, if the
sloppy set permits positive, zero, as well as negative values for a certain parameter, the
interpretation of the corresponding models differs. For instance, within the context
of BST, a negative kinetic order is to be interpreted as an inhibitory signal, while a
positive kinetic order suggests an activating or augmenting influence and a value of
zero corresponds to an unimportant role of the parameter. This result poses the
interesting question of whether sloppy solutions of this type are computational
artifacts or whether inter-individual variation could go so far as to allow activation in
one organism and inhibition in another [30]. At present, this question cannot be
answered with confidence. Finally, while Ockham’s razor might suggest that the
simpler solution is to be preferred, biology has presented us in many cases with
solutions that initially seem more complex than necessary. Later we may find that the
more complex solutions are preferable because of improved robustness or other
higher-order features.

Somewhat related to sloppy solutions is the situation where the data are not
plentiful of informative enough to allow a precise determination of all parameter
values. A very simple example arises if two parameters p; and p, always appear in the
model in the same constellation, such as the ratio p;/p,. Clearly, by multiplying the
two parameters with a nonzero factor, the ratio is unchanged. Turning the argument
around, a search algorithm cannot find a unique solution in this situation, but only
one where the ratio fits well. In these cases, the solution is “structurally non-
identifiable,” which entails that infinitely many combinations of parameter values
can yield solutions with the same SSE. It is recommended to remove these
identifiability issues, for instance, with methods of model reduction [31].

Quite a different concern with an apparently good fitis the occasional identification
of parameter values that are impossible or unreasonable from a biological point of
view. The most obvious case is an optimized value that turns out to be negative,
although the parameter must be positive. Examples include rate constants and Ky
values. If this situation occurs, the optimization should be redone with correspond-
ing constraints on the parameters. A more subtle variation of this issue is a resulting
model that is unstable or extremely sensitive. It may happen in this case that a very
small percent change in a parameter value would lead to dramatic changes in an
important system feature such as the steady state. Itis rare that such a high sensitivity
is realistic in biology. Whether the situation is caused by a faulty parameter or by the
misidentification or omission of some process or regulatory signal cannot be said
without further analysis.

Another common and generic issue with an apparently good fit is often overlooked
atfirstand becomes an inconvenient surprise later. This issue is the frequent inability
of the parameterized model to predict responses to new stimuli in an adequate
fashion [32]. Thus, the original data are matched quite nicely and the model traverses
the cloud of data points seemingly fine. It may also be able to predict responses of the
model throughout a modest time period beyond the measured time points. However,
if new observations are to be modeled, the model may woefully fail. How is that
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t  However, since F and F only intersect in
the (white) model fit and otherwise diverge,
extrapolated fits to other data (light and
dark green circles) are no longer accurate
and lead to significant residual errors
(exemplified with A).

itted curve constitutes the intersection of two
(usuaiy Curveu suitaces — uvuae ucesCribing the model function with optimized
parameter values and the other representing the true dynamics of the biological
system (see Figure 9.6). If the data points are close to this intersection, the fit not only
appears to be good, but actually is so. However, analyzing new data means moving
along the true surface and away from the intersection, and it becomes significant that
the two surfaces diverge. As aresult, if the extrapolation differs substantially from the
original data, the model is no longer able to capture it. Again, several root causes for
this situation are possible. One is the compensation of error among different terms
within a system of equations. As an example, consider an equation with two terms, of
which one is modeled quite badly. It is not difficult to imagine that, at least in certain
situations, the other term could compensate for the error. In fact by also being
modeled badly, the overall results can be surprisingly good. At first glance, it appears
that two wrongs could indeed make a right. However, the error compensation usually
no longer holds for new situations where the system variables in the two terms of the
equation change to different degrees. As consequence, the fit to the extrapolated
dataset can be unacceptably bad. To some degree, the method of dynamic flux
estimation can remedy the extrapolation problem [32]. However, this method
requires ideal conditions that are seldom satisfied and therefore requires additional
information, which is not always easy to obtain [33, 34].
Finally, a genuine challenge with the otherwise appealing slope estimation and
decoupling technique is that dependencies among equations are a priori ignored. For
instance, if the same parameter appears in two equations, the decoupling causes
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independent estimations and unless countermeasures are put into place, the same
parameter might be identified with two different values [21].

9.3.1.4 Needed: A Better Fit! Or Not?

The previous sections have demonstrated that even an apparently good fit may not be
the ultimate solution, because, for instance, it may not hold up in extrapolations. If so,
what should be done? This is a complex question, and as in so many cases the answer
is: it depends. The need to search for other solutions depends on the purpose of the
model and the availability of appropriate data.

In some cases, even symbolic models, in which parameters are not at all
numerically defined, can yield valuable insights. In fact, if insights can be gained
for arbitrary parameter values, they are usually more general than results obtained for
certain numerical parameter combinations. A beautiful example is the exploration of
design principles [35]. In this line of research one asks what the role of a particular
teature of a biological system is. For instance, one might observe a feedback
inhibition signal in a pathway system and ask why it is there. According to the
method of controlled mathematical comparisons (MCMC), one sets up two essen-
tially identical systems models in parallel; however, one represents the observed
signal and the other one does not [36]. The responses of these two models are
compared with respect to performance criteria, such as robustness and response
time. Studying a whole roster of such features and results, one system design is
ultimately declared superior, either in general or within a certain environment. Many
such comparisons have been performed without the specification of numerical
parameter values, while other comparisons required the definition of relevant ranges
of parameters. Using this MCMC strategy, Savageau proposed general rules for the
regulation of bacterial gene circuits that have held up in all cases tested so far [37, 38)].
These rules were independent of specific parameter values and identified the
superior circuit designs primarily based on demands exerted by the environmental
of the bacteria. Other examples included more complex gene circuit designs and a
variety of other system structures [39—44]. In the context of signaling cascades, the
structural design and performance demands even helped determine the ranges of
effective parameter values [45].

Trusting in the observation that accurate parameter values are often not as critical
as the correct model structure, Alves et al. exhaustively evaluated likely parameter
ranges on discrete grid points, thereby yielding sufficiently good, although maybe not
optimal solutions [46]. Parameter ranges can also be restricted by biological and
clinical constraints, and coarse solutions can be refined by means of simulations. In
spite of the rather uncertain nature of this process, the model results can be
surprisingly strong. For example, in an effort to construct a model of dopamine
metabolism in the human brain, Qi et al. collected semiqualitative input from
clinicians, biochemists, and toxicologists regarding the relative concentrations of
relevant metabolites and the flux split ratios at diverging branch points in the pathway
system [3]. This information turned out to be sufficient for setting up complex
pathway models with coarse parameter values. Even though theses models did not
capture the precise numerical features of the biological system, they helped explain
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the inner workings of the system. For instance, Qi et al. used these models to perform
exhaustive analyses of root causes leading to Parkinson’s disease and schizophre-
nia [3, 47, 48]. Models of this type can also indicate whether the responses to targeted
alterations occur in the right direction. Thus, even if the parameter values are coarse,
some types of valuable insights may be gained.

Alas, there are situations where the parameterization should be as good and
reliable as possible. For instance, it is becoming possible to develop health and
disease models, which could be used for designing specific, and maybe even
personalized, treatment strategies [49]. Clearly such strategies need to be quantitative
and accurate enough to allow at least modest extrapolations from the normal state.
These models should also permit reliable predictions of what might happen to an
individual if s/he is or is not treated for some abnormality. One might be tempted to
discard such predictions into the future, because our current models are simply too
inexact. However, even short-term predictions can be extremely beneficial. For
instance, a 5-min warning that a critical care patient is diverging from the normal
trajectory might be sufficient to initiate efficient countermeasures [50]. Such short
time horizon seems to be within reach of computational models, even if they are
based on relatively coarse approximations.

If the fit is good with respect to the SSE of one data set, but fails in extrapolations,
the situation is dire, because there is no general diagnostic tool for identifying where
the problem lies or whether the reason of failure is a combination of several
problems. To some degree, the modeling process needs to be restarted in such a
case. Of course, the process does not really start at the very beginning, because a
reasonable model for atleast one situation is now available and this model may serve
as a starting point or as a constraint for further model development. One might also
expect both, greater reliability of the model and insight into the true nature of the
biological processes if more and ideally diverse datasets are available that cover a
greater portion of the space of variation in the system variables. Nevertheless, the
difficult question at this point is whether the chosen functions in the model are
appropriate or not. If they are, renewed parameter estimation with additional data
might lead to a better numerical model implementation, but if they are not, new
functions need to be determined. This task can be very difficult, because the structure
of these functions is a priori unclear and because one usually does not even have data
regarding the individual functions, but only regarding the entire dynamics of the
system, which is governed by numerous processes simultaneously [34].

One strategy is to use biological insights to find functions that mightbe appropriate
representations of individual processes. Accordingly, one designs a model with more
complex, biologically relevant functions, and fits it to the original data and to the new
data at the same time. The original, simpler model may be evoked as a constraintina
sense that the new function should coincide with the original model function (and
possibly its slopes) with respect to the original data. In principle, this strategy seems
to make sense, but in reality it often requires considerable effort [34]. Ultimately, this
strategy leads to the question of when enough is enough. Is it really desirable to
develop a very complicated process description that now captures two datasets? It is
known that even slight overparameterization tends to lead to extrapolation problems
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and the more parameters are involved in a functional description, the more severe the
potential problem is.

An alternate strategy is an extension of the concept of generic approximations.
Experience has shown that extensions toward higher-order Taylor terms become
mathematically cuambersome and while they naturally fit better, the facility of their
analysis is compromised [6]. Instead, one may employ a piecewise approximation [51].
This strategy is straightforward in principle, but realistically requires the determi-
nation of breakpoints, at which one approximation is substituted with another. For
univariate functions, the breakpoints can almost be determined by visual inspection
or with a simple algorithm, but the determination is much harder for multivariate
functions. For linear and power-law functions, algorithms have been developed that
automate this process [52, 53]. The result is an approximation, consisting of a certain
number of pieces, throughout which the overall SSE is within desired bounds. The
actual estimation of parameter values for these piecewise approximations requires
considerably more data and of course the number of parameter values grows with
each added piece. Nevertheless, this strategy is relatively unbiased and therefore may
offer a first default in situations where biology does not suggest candidate functions
or where such candidates are so complicated [54] that there is hardly a chance that
parameters could be estimated without serious overfitting.

9.4
Conclusions

The goal of parameter estimation is clear — find numerical values that render a model
optimal for the representation of a biological system. While clear in principle, the task
is often convoluted in practice. In the past, most data were coarse and scarce, and
simple model fits had to be considered adequate. With recent advances in molecular
biology, the situation has changed and some data are so good now that it is difficult to
excuse bad fits.

As parameter estimation is so important, many groups have devoted substantial
effort to it. In most cases, these investigations focused on the substantial technical
challenges associated with the task and on algorithmic improvements. In addition to
distinctly different optimization methods, which include regression, simulated
annealing, and numerous variants of genetic, colony, and swarm algorithms, it has
turned out that the estimation of slopes and the subsequent conversion of differential
into algebraic equations is very beneficial. While these methodological and algorith-
mic improvements have made parameter estimation manageable in principle, they
have not solved all problems. There are still issues with slow convergence or the
trapping of algorithms in local minima.

Beyond the well-known technical issues, even apparently good fits should be
subjected to additional muster. Criteria for such additional tests should be the
reasonableness of the numerical values of all parameters, model stability, sensitivity,
and robustness, and the ability to provide good fits in extrapolations. Possible causes
for models to fail these criteria are plentiful. Particularly hideous among them is the
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compensation of fitting errors within and among the system equations, because such
compensation is not always easy to diagnose and remediate. The recent method of
dynamicflux estimation [32]is able to help, but only under ideal conditions, and it will
be necessary to expand such methods toward more realistic conditions.

If a fit with a good SSE is obtained, but extrapolations cause problems, the entire
model structure may have to be revisited, including the choice of functions, the
numbers and types of parameters, and the availability of data. Clearly, several
replicates of time-series data and data obtained under different conditions will allow
better estimations, along with their statistical analyses and interpretations. Ulti-
mately, one must consider the purpose of the model and judge the real need for
accurate parameter values. Indeed, a simple model with fewer parameters is often
more robust and less sensitive to overparameterization, yet may yield as much, if not
more insight.
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Abstract

The identification of functions and their parameter values for biological systems
models is currently among the most severe bottlenecks in computational systems
biology. While many papers and books have discussed the advantages and pitfalls of
estimation algorithms of various types, including nonlinear regression, genetic
algorithms, ant colony and swarm optimization, and simulated annealing, issues
beyond the technical challenges of parameter estimation have seldom received much
attention. This chapter discusses several situations where the computationally
determined model fit to experimental data is satisfactory with respect to the sum
of squared residual errors, but unsatisfactory or undesirable for other reasons.
Examples include unrealistic parameter values, nonunique or sloppy solutions, and
the inability of a fully parameterized model to make reliable predictions regarding so
far untested scenarios.

Keywords: biochemical systems theory; extrapolation; inverse problem; model
identification; parameter estimation; sloppiness.
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