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ABSTRACT

Dynamical models are the cornerstone of computational systems biology. While many methods 
are available for testing and simulating dynamical models, the estimation of their parameter values 
continues to be a difficult challenge. In recent years, this challenge has been addressed extensively for 
canonical models within Biochemical Systems Theory (BST), and while still no generally satisfactory 
solutions are available for the estimation of BST models, much has been learned. We use this recent 
expertise here to estimate parameter values in other canonical models, paying particular attention to 
Lotka-Volterra and linear-logarithmic models. The estimation itself is very simple in these cases, but 
the results are not always easy to interpret for systems of metabolic pathways.
Keywords: Biochemical Systems Theory, Canonical Model, Generalized Mass Action Model, Inverse 
Problem, Lin-Log Model, Lotka-Volterra Model, Parameter Estimation, S-system

INTRODUCTION

The central task of computational systems biology is the conversion of a biological system  
into a computational model. This conversion requires plenty of data and contextual 

information, as well as a mathematical model structure, along with computational methods that 
make the model fit the observations. Useful data can come from a variety of sources. In the 
context of modern systems biology, one might immediately think of gene expression data, but 
many other data types can be critical for the construction of a systems model. For an ecological 
system, the abundances of species in particular areas at particular times might be most important. 
Physiological systems models may benefit most from information on flow rates, forces, and 
electrochemical features. Metabolic pathway analysis depends on concentrations of metabolites 
and characteristics of enzymatic processes. 

No matter which application area is being considered, most data fall into one of two 
categories: either they quantify the individual components of the system or they represent the 
overall dynamics of the system. In an ecological system, the former, “local” data could describe 
the birth and death rates within a population, while the latter, “global” data could represent the 
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numbers of individuals in several cohabitating species as a set of time series. Similarly, molecular 
studies may generate “local” information on specific genes, proteins, metabolites, or the binding 
between two molecules, while “global” information might consist of time series of the expression 
of whole sets of genes or profiles of metabolite concentrations over a period of time. 

Dense time series data often contain comprehensive information, because they reflect the 
collective dynamics of a biological system and its pertinent individual components under the 
specific investigated conditions. As a result, time series data have always been very appealing 
to biomathematical modelers. In the case of ecological systems, oscillations in the numbers of 
fish in the Adriatic Sea, interactions between plant populations and herbivores, and the famous 
data set on Canadian lynx and snowshoe hare, established for fur trade by the Hudson Bay 
Company, motivated Lotka, Volterra, and others to devise mathematical models that are now 
widely known as Lotka-Volterra models (see, e.g., [1-5]). Time series in molecular biology were 
rare until recently when advances in high-throughput methodologies began to create them with 
a rapidly increasing rate.

The extraction of numerical information from observed time series faces two obstacles. 
First, it is usually unknown which mathematical formulation might provide the best model 
representation. And second, standard computational methods often fail to find the optimal 
parameters for given data and a given model. It is useful to discuss these two obstacles in greater 
detail.

In contrast to physics or engineering, biological systems seldom obey simple physical laws. 
Of course, biology is a part of the physical world and therefore is in principle describable with 
the mathematical functions of physics. However, even in apparently simple biological systems, 
very many processes often act simultaneously and in concert with each other, so that the apparent 
behavior is the result of a complicated mixture of physical functions that is essentially impossible 
to deconvolute. Just imagine the response of a cell to receiving an external, chemical signal. 
The signal leads to a conformational change in a receptor anchored in the membrane. The 
physical change triggers a cascade of biochemical phosphorylation events, which is spatially 
and functionally constrained, for instance, by scaffolds. The last step of the cascade causes 
the translocation of a transcription factor from the cytosol through viscous, inhomogeneous 
cell plasma and through the nuclear membrane into the nucleus. There the transcription factor 
“finds” and attaches to the appropriate section of DNA and leads to altered gene expression. 
All component steps are bound by the laws a physics, but the signal transduction process in its 
complex entirety evades a succinct physics-based mathematical representation. Considering 
that the process furthermore requires energy, ribosomes, and amino acids, one might be ready 
to give up on mathematical modeling in biology.

Fortunately, biology is organized in a hierarchical and often modular fashion, which permits 
the establishment of models with different degrees of granularity and coarseness. At an atomic 
level, existing models are able to shed light on the details of binding between a protein and a 
ligand. At higher levels, we have models describing enzyme catalyzed reactions, and at even 
higher levels, models are capable of capturing the functioning of a muscle and the interactions 
among populations. These higher-level models no longer account for every involved molecule, 
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but instead use averaging and approximation to represent the dynamics of biological systems, 
often with sufficient accuracy.

If physical laws cannot be used for describing complex biological processes, how is it 
possible to find appropriate mathematical representations? The question has no answer that 
is generally true for all scenarios. Instead, modelers have pursued two strategies or their 
combination. The first strategy aims at developing semi-mechanistic representations. A good 
example is the Michaelis-Menten rate law, which uses mechanistic concepts of the formation 
and dissolution of chemical complexes and combines them with a number of assumptions that 
lead to a simple, yet often quite accurate mathematical representation of an enzyme catalyzed 
process. The main problem with this strategy in general is that there is usually no guidance for 
how to design these types of functions. The second strategy is the use of generic approximations. 
The advantage of this strategy is that there are certain mathematical guarantees of correctness 
and quality, but the disadvantage is that these guarantees only extend over a small—or even 
infinitesimally small—range of variation in the involved variables and parameters. In spite of 
this potential drawback, approximative models have turned out to be very useful and often bring 
forth satisfactory results even over extended ranges of variation.

Pursuit of the latter, generic strategy requires the choice of an approximation scheme. 
The first default to come to mind might be a linear approximation, but it is well known that 
most biological systems contain significant nonlinearities, which render linear descriptions 
too restrictive. Alternatives are nonlinear, “canonical” representations that consist of different 
variations of approximations, which typically happen to include logarithmic transformations [6, 
7]. While many options are available in principle, only a few classes of canonical models have 
so far proven truly useful. Most prevalent among them are Lotka-Volterra (LV) models [1, 5] 
and power-law models under the umbrella of Biochemical Systems Theory (BST) [8-13]. Much 
newer and so far less exposed to the scrutiny of actual different data are logarithmic-linear (log-
lin) and linear-logarithmic (lin-log; LL) [14, 15], as well as saturable-cooperative (SC) models 
[6]. In the next section we will discuss these models in some more detail.

The second obstacle to the efficient extraction of numerical information from observed time 
series is technical. In principle, the task is a straightforward optimization problem, in which the 
residual error between model and data is to be minimized. However, experience has shown that 
this optimization problem, which involves sets of nonlinear ordinary differential equations with 
quite a few parameters, is everything but trivial, and in spite of considerable effort, no generally 
satisfactory solutions have been found. Even within the relatively limited realm of metabolic 
pathway analysis, generic gradient methods like nonlinear regression, many variations of genetic 
algorithms, and other evolutionary methods such as particle swarm and ant colony optimization 
have been employed, but their success rates have been inconsistent and often disappointing (for 
a recent review, see Chou and Voit [16]).

Three methodological strategies have been shown to possess the potential of moving the 
field forward. First, it seems beneficial to preprocess the data, in order to tame experimental 
noise and to identify clear interactions—or the lack of interactions—between pairs of system 
components. Second, the estimation of slopes from observed time courses can tremendously speed 
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up the estimation, because it converts the estimation of systems of differential equations into an 
estimation task consisting solely of systems of algebraic equations. Finally, taking advantage of the 
specific form of canonical models can greatly increase the efficiency of estimation algorithms.

NONLINEAR CANONICAL MODELS AND 
THEIR ESTIMATION

Biochemical Systems Theory (BST): Within the realm of molecular systems, power-law models 
within BST have received the most attention. The BST modeling framework was originally 
devised for the analysis of biochemical and gene regulatory systems, but has subsequently found 
much wider application in various biomedical and other areas (cf. [13]). The hallmark of BST 
models is the formulation of each process vi as a product of power-law functions of the form

 . (1)
These terms contain two types of parameters: the rate constant γik represents non-negative turn-
over and each kinetic order fikj is a real number quantifying the direct influence of its associated 
variable. Positive kinetic orders signify positive or augmenting effects, while negative kinetic 
orders signify inhibitory or diminishing effects. A kinetic order of zero in effect eliminates the 
associated variable from the process vi. BST comes in three variations, which differ in their 
numbers of terms in each equation. The format of a generalized mass action (GMA) model 
with n dependent and m independent variables, which are not affected by the dynamics of the 
system, is

 , (2)
where Ti is the number of terms in the ith equation. The second BST variant is the so-called S-
system format. Here, the focus is on pools (dependent variables) rather than on fluxes: all fluxes 
entering a pool are represented by only one collective power-law term and all fluxes leaving a 
pool are represented by one collective power-law term. As a consequence, S-systems have at 
most one positive and one negative term in each equation, and their general format is

 , (3)
where the parameters are defined in analogy with GMA systems. 

It is furthermore mathematically possible to aggregate all fluxes affecting a given variable, 
so that each equation contains only one term [17]. This format is interesting, because it is 
very simple and because parameter estimation becomes a matter of linear regression, upon a 
straightforward logarithmic transformation [18]. However, the single-term format is inconvenient 
for most modeling purposes, for instance, because it does not permit non-trivial steady states, 
where all variables assume non-zero values. This format will therefore not be considered further 
here. Surprisingly, it has been shown that GMA and S-systems, as well as systems with only one 
power-law term, are capable of modeling virtually any differentiable nonlinearities, if sufficiently 
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many auxiliary variables are included in the system [17]. 
Essentially all standard methods have been used for estimating the parameters in GMA and 

S-systems. In addition, the special format of S-systems has led to efficient, germane estimation 
methods. Most of these are based on the technique of slope estimation and decoupling [13, 19, 
20]. Suppose for simplicity of discussion that the observed time series for each system variable 
is so dense and uncorrupted by noise that it is easy to draw smooth curves through the data 
points. The slope of such a curve for variable Xi at time tk is equivalent to the derivative dXi/dt at 
tk. If one obtains the slopes at many (K) time points, it is possible to replace the one differential 
equation for variable Xi with K algebraic equations of the type

Slope of Xi at time tk = Sik 

  (4)
The set of equations contains on the left-hand sides the slopes, which are obtained directly 

from the data. Each right-hand side contains some or all of the variables, whose values are also 
obtained from the data, as well as the parameters that need to be estimated. The slope-estimation-
decoupling strategy has two advantages. First, it avoids the need to integrate differential equations 
numerically, which tremendously speeds up the estimation [19]. And second, each equation may 
be estimated separately, thus allowing parallel or sequential analysis. Most recent methods of 
parameter estimation for BST models from time series have used this strategy.

For the specific case of S-systems, the strategy of Alternating Regression (AR) is very 
efficient in combination with slope estimation and decoupling [21]. In the first step of AR, the 
parameters βi and hij in Eq. (4) are guessed based on generic experience with S-systems ([13]: 
Ch. 5). This guess converts the term on the far right in Eq. (4) into a single numerical value. This 
value is moved to the left-hand side of the equation, and a logarithmic transformation reduces the 
estimation to a multiple linear regression step, yielding estimates of αi and gij. In the second step, 
these estimates are entered into the first term on the right-hand side of Eq. (4), making it into a 
number, which is merged with the slope on the left-hand side. Log transformation and regression 
now yields improved guesses for βi and hij. In this manner, the method switches between the two 
terms and parameters are iteratively updated. Outside possible convergence issues, this process 
is very fast, because every step consists of a simple linear regression.

As a variation on AR, it was shown that the two steps in each iteration may be merged. This 
strategy results in an Eigenvector Optimization (EO) task that often has favorable convergence 
features [22]. Both AR and EO are tightly connected to the structure of S-systems, and even 
GMA systems are not trivially addressed with these methods.

The quality of fit clearly depends on the noise in the time courses and accuracy with which 
the slopes can be obtained. Numerous methods, including splines, various filters, and artificial 
neural networks have been proposed for smoothing time courses and subsequently computing 
slopes [23-31].

Lotka-Volterra (LV) Models: LV models are the canonical models with by far the longest 
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history. Interestingly, they were independently proposed in the 1920’s by Lotka, a pioneer in 
mathematical biology, and Volterra, an applied mathematician [1, 5]. The concept and structure 
of LV models are simple. Each dependent variable is assumed to interact potentially with every 
other variable in the system. Furthermore, one linear term in the variable itself is permitted in 
each equation; it could represent birth, death, degradation or transport out of the system. Using 
the basic principles of mass-action kinetics, each differential equation of an LV model thus has 
the format

 . (5)
Obviously some (or many) of the parameters may have values of 0. LV models have a rich history 
in ecology, where interactions between populations are easily mapped onto the binomial terms of 
the equations. But even though Lotka [1] himself referred to these equations as “kinetic,” and they 
are special cases of GMA systems, LV models are not well suited for the kinetics of metabolic 
pathway systems. For instance, it is not directly possible to represent a simple conversion of a 
substrate X1 into a product X2, because the equation of X2 must not include variable X1 with a 
rate constant by itself. 

Nevertheless, LV equations are very interesting, especially for the modeling of different 
populations in the same environment that affect each other. First, it is easy and intuitive to set 
up the equations and to compute the steady state of the system, which requires simple linear 
algebra. Secondly, these equations are extremely flexible. Just like BST systems, LV models were 
shown to be capable of modeling any type of differentiable nonlinearities, including different 
kinds of oscillations and chaos, if sufficiently many equations and artificial, auxiliary variables, 
are included in the system [4, 17, 32]. As an example, Fig. 2 later in this section shows a four-
variable LV systems exhibiting deterministic chaos.

Many methods of parameter estimation have been applied to LV systems, including nonlinear 
regression with the differential equations [33], multiple shooting algorithms with subsequent 
optimization [34], and statistical methods based on nonlinear Kalman filtering [35]. However, 
it seems that none of the published estimation methods has taken advantage of the very special 
structure of these models. The only exception is apparently a method of preprocessing data 
for structure identification [36]. This omission is quite puzzling, because the methods of slope 
estimation and decoupling discussed above are not only immediately applicable to LV models, 
but they result in a straightforward linear regression task. As a small example from systems 
ecology, consider the interactions between an herbivore species N1 and a predatory species N2 
of carnivores. A typical LV description is 

  (6)
The model equations indicate that N1 grows exponentially with rate a1. Death comes in 

two forms. First, intrinsic death (with rate b1) is commonly represented with the square of N1. 
Second, N2 feeds on population N1 and the rate for this predation is b2; it is common practice to 
formulate this process as the product of N1 and N2. N2 grows by virtue of predation (a2N1N2) as 
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well as intrinsically (a3N2) and dies with rate b3.
Suppose the population sizes have been measured at subsequent time points, starting at 

time t = 1 (Fig. 1). It is now easy to compute the parameters. First, the time courses allow us to 
estimate slopes S1(tk) and S2(tk), either directly or upon smoothing. With these quantities, we can 
formulate the estimation task for the first differential equation as a set of K algebraic equations 
of the type

 . (7)
Furthermore, N1 is never 0, so that we can divide both sides by N1(tk) and substitute N1(tk) 

and S1(tk) with numerical values from the observed time courses. The result is a linear system 
with unknown quantities a1, b1, and b2: 

 . (8)
Simple linear regression immediately yields the correct parameter values (a1 = 40, b1 = 

0.008, b2 = 1.0), within the accuracy of the computation (results not shown). The parameter 

Figure 1: Estimation and simulation of a two-variable predator-prey model. The light grey line indicates the “true” model. 
Random noise is added to the true model (grey data points). The noisy data are smoothed as shown with the grey 
dashed line. Simulated data (black line) were generated using parameter values obtained by linear regression as 
described in the Text
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values for the equation of N2 are computed in exactly the same fashion as (a2 = 0.05, a3 = 0.01, 
b3 = 0.18). Even with moderate noise, this estimation is simple, and the result is excellent 
(Fig. 1). As an additional advantage, the estimation permits application of the large repertoire 
of diagnostic tools that have been developed for linear regression analysis [37].

The most intriguing aspect of the proposed estimation is that the LV system may exhibit very 
highly nonlinear responses and yet, the estimation becomes a simple task of linear regression. To 
illustrate this surprising fact with a more complex example, consider the following LV system 
with non-zero variables, which exhibits deterministic chaos [38, 39]:

Figure 2: Responses of the chaotic system in Eq. (9) with parameter values estimated from data without and with noise. 
In each case, the slopes were assumed to be error free. Panel a: Noise-free data; panels b-d: 2%, 5%, 20% noise, 
respectively. Symbols and lines: Black circle and solid line: X1; grey square and solid line: X2; black triangle and 
dashed line: X3; grey diamond and dashed line: X4
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  (9)
The parameter values for the example are taken directly from the literature and presented 

in the second column of Table 1.

Table 1 
True and Estimated* Parameter Values of a Chaotic LV System without and with Noise

Parameter True Parameter values obtained for each level of noise in the data 
 parameter
 value 0% 1% 2% 5% 10% 20%

r1 1 1 0.9814 0.9921 0.9686 0.9382 0.6417
r2 0.72 0.72 0.6985 0.6958 0.6295 0.4923 0.4098
r3 1.53 1.53 1.4778 1.5536 1.5269 1.4660 0.6818
r4 1.27 1.27 1.2273 1.2570 1.2058 1.0349 0.6320
a11 1 1 0.9916 1.0228 0.9529 1.0369 1.0369
a12 1.09 1.09 1.1125 1.0679 1.0808 0.9816 0.8756
a13 1.52 1.52 1.5837 1.5492 1.3730 1.6206 2.1084
a14 0 0 -0.0446 -0.0075 0.1306 0.0167 0.1460
a21 0 0 -0.0185 -0.0040 -0.1166 -0.1711 -0.5763
a22 1 1 1.0311 1.0432 1.1315 1.1497 1.0742
a23 0.44 0.44 0.5285 0.5750 0.7699 1.3429 1.3126
a24 1.36 1.36 1.2997 1.2541 1.1982 0.8991 1.5569
a31 2.33 2.33 2.3576 2.3098 2.2629 2.3295 4.1527
a32 0 0 -0.0047 -0.0528 0.0650 0.0275 -0.7881
a33 1 1 1.0532 0.8591 0.9184 1.2515 2.9831
a34 0.47 0.47 0.4334 0.5978 0.5051 0.3331 -0.5513
a41 1.21 1.21 1.2139 1.2282 1.1918 1.3643 1.6376
a42 0.51 0.51 0.5258 0.4931 0.5814 0.5368 0.3997
a43 0.35 0.35 0.4109 0.3497 0.4744 0.9483 1.6103
a44 1 1 0.9521 0.9995 0.9111 0.5736 0.4491

* Parameter values were obtained per simple linear regression. 

Under the assumption that the data are accurate enough to obtain good slope values, either 
directly or upon smoothing [30], the parameter estimation is again a simple task of linear 
regression with four variables. For noise free data, the correct parameters are obtained without 
any problem (Table 1). As the data become noisier, the accuracy of the parameter values begins 
to degrade, and given that the system is chaotic, the predicted behavior may quickly deviate 
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from the true time courses. This divergence is not surprising and would happen with any other 
estimation approach. At any rate, the ease with which decent parameter estimates are obtainable 
is quite intriguing. For 1% or 2% noise, the results are still quite similar to the true model 
(Fig. 2). For 5% noise, the system still seems chaotic, but the time courses are noticeably 
different, as it is to be expected for a chaotic system. For 20% noise, the system loses its chaotic 
characteristics and approaches a limit cycle instead (Fig. 3). 

Figure 3: Limit cycle of system (9) with parameters estimated from noisy data. If the data are corrupted by 20% noise, the 
LV system loses its chaotic characteristics and instead approaches a limit cycle (here shown for X1 and X2)

Linear-Logarithmic (Lin-Log) Models: Log-lin and lin-log models grew out of Metabolic 
Control Analysis (MCA), an analytical approach to understanding the shared control within 
metabolic pathways close to a steady state [40-42]. For a long time, MCA only permitted 
infinitesimally small variations about the normal operating state of a pathway, but the restriction 
was later relaxed, ultimately leading to a dynamic pathway formulation that is now known as 
the lin-log model [15, 43].

For a pathway with n dependent metabolites, X1, X2, …, Xn, m independent variables Xn+1, 
Xn+2,…, Xn+m, and r reactions v1, v2, …, vr, catalyzed by enzymes with activity ei, the lin-log model 
describes the rate of the ith enzyme catalyzed reaction as

 . (10)
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One characteristic tying the lin-log model to MCA is the consideration of a reference (steady) 
state at which Xj

0 is the concentration of species Xj, Ji
0 is the flux through the ith reaction, ei

0 is 

the reference level of the enzyme activity and  is the reference elasticity, which corresponds 
to a kinetic order in BST [44, 45]. Methods of MCA have been used to estimate the parameters 
in these models of single reactions (e.g., [43]). 

For purposes of parameter estimation from time series data, the parameters characterizing 
the reference state are merged with other parameters, and embedding of the individual reactions 
into a system of differential equations yields

 . (11)
This system has nonlinear characteristics but is entirely linear in its parameters. In other 

words, if time courses of sufficient quality are available, the logarithmic terms and the derivatives 
(slopes) can be obtained directly from the data and the estimation consists of a simple linear 
estimation task (cf. [46, 47]). Indeed for pathway systems that adhere to the lin-log format or 
whose variables remain within relatively close ranges, the estimation is trivial.

As an example, consider the simple branched pathway model in Fig. 4, whose dynamics is 
modeled as the S-system 

 

 

  (12)

 
[19] and suppose three datasets are available for parameter estimation (Table 2). Even 
though the time courses were produced with an S-system, rather than a lin-log model model, 
the estimation of lin-log parameters is simple and the result is excellent for Dataset 1 (Fig. 5; 
Table 3). 

The main limitation of the lin-log estimation is that the model structure may not be able to 
capture the dynamics of the time courses adequately. For instance, if the same S-system is used 

Figure 4: Didactic system with four variables and two regulatory signals. This pathway model [19] has been used for 
demonstrations of parameter estimation methods. Here it is used for parameter estimation with lin-log models. 
See Text for details
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with different initial conditions, the dynamics of the estimated lin-log model may be deviating 
from the data slightly (Dataset 2) or lead to unreasonable results (Dataset 3) (see Fig. 6).

The situation becomes particularly troublesome if concentrations are close to zero, which 
can cause problems with rates becoming negative [47]. Problems may also arise if the model 

Table 2 
Three Datasets Generated from the Branched Pathway Model in Fig. 4

 Dataset 1 Dataset 2 Dataset 3
Time X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

0 1.40 2.70 1.20 0.40 1.40 1.00 0.20 3.00 4.00 1.00 3.00 4.00
0.25 0.95 3.16 1.69 0.30 4.04 3.38 0.67 1.33 1.55 2.87 2.00 1.57
0.5 0.57 3.10 2.15 0.22 2.40 4.79 1.58 0.74 0.74 3.17 2.01 0.59
0.75 0.39 2.78 2.47 0.17 0.96 4.84 2.47 0.42 0.48 2.95 2.25 0.26
1 0.32 2.43 2.64 0.14 0.36 4.06 3.13 0.22 0.37 2.62 2.47 0.16
1.25 0.30 2.15 2.68 0.12 0.21 3.14 3.50 0.12 0.33 2.32 2.59 0.13
1.5 0.30 1.96 2.63 0.12 0.19 2.42 3.59 0.10 0.31 2.09 2.60 0.13
1.75 0.32 1.86 2.53 0.12 0.19 1.95 3.47 0.09 0.32 1.95 2.55 0.12
2 0.34 1.82 2.42 0.13 0.21 1.68 3.22 0.09 0.33 1.87 2.46 0.13
2.25 0.36 1.83 2.32 0.13 0.24 1.56 2.92 0.10 0.35 1.85 2.37 0.13
2.5 0.39 1.87 2.24 0.14 0.29 1.55 2.63 0.11 0.37 1.86 2.29 0.13
2.75 0.40 1.92 2.20 0.14 0.33 1.61 2.40 0.12 0.39 1.90 2.23 0.14
3 0.41 1.96 2.18 0.14 0.38 1.71 2.23 0.13 0.40 1.94 2.20 0.14
3.25 0.42 2.00 2.17 0.15 0.41 1.82 2.14 0.14 0.41 1.97 2.18 0.14
3.5 0.41 2.02 2.19 0.15 0.43 1.92 2.10 0.15 0.41 2.00 2.18 0.15
3.75 0.41 2.03 2.20 0.15 0.44 2.00 2.11 0.15 0.41 2.02 2.19 0.15
4 0.41 2.03 2.21 0.14 0.43 2.05 2.14 0.15 0.41 2.03 2.21 0.14
4.25 0.40 2.03 2.23 0.14 0.42 2.07 2.17 0.15 0.40 2.03 2.22 0.14
4.5 0.40 2.02 2.23 0.14 0.41 2.06 2.20 0.15 0.40 2.02 2.23 0.14
4.75 0.40 2.01 2.24 0.14 0.40 2.05 2.23 0.14 0.40 2.02 2.23 0.14
5 0.40 2.01 2.24 0.14 0.40 2.04 2.24 0.14 0.40 2.01 2.23 0.14

Table 3 
Estimated lin-log Parameters for the three Datasets in Table 2

 Dataset 1 Dataset 2 Dataset 3
Parameter Noise-free 5% noise Noise-free 5% noise Noise-free 5% noise

b1 0.8056 -0.3875 5.8713 5.8245 3.4423 2.4601
b2 -5.2898 -2.1962 -16.1915 -15.6796 -10.0925 -8.9946
b3 -3.7142 -2.2530 -8.5297 -8.0062 -5.1803 -5.2413
b4 6.1816 5.1700 6.2831 6.1943 7.4586 7.1297
b5 3.2729 2.8842 3.5536 3.5032 3.8711 3.9788
b6 -4.4970 -3.7045 -4.0993 -4.0346 -5.4788 -4.8070
b7 -1.3834 0.7050 -1.4264 -0.4323 -3.2047 -1.2722
b8 3.4777 2.4649 3.5096 2.7345 4.6345 3.9375
b9 -1.3013 -0.5767 -0.9821 -0.1005 -3.1282 -5.0026
b10 -0.0001 0.9881 0.1342 0.7558 -1.2874 -1.2981
b11 -1.6977 -1.0581 -6.6720 -6.4416 -4.6865 -5.1279
b12 0.5610 0.0983 3.4303 3.0873 -6.8833 -5.5146
b13 -1.1321 -0.5749 -5.1592 -4.7728 1.0144 0.0746
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exhibits truly nonlinear features, such as stable oscillations. For example, the system

  (13)
describes a limit cycle oscillation [48]. The parameter values of the corresponding lin-log 
model

  (14)
are easily computed from noise-free data per linear regression. Their values are b1 = -0.0923, 
b2 = 6.0355, b3 = 20.7249, b4 = 0.0308, b5 = -2.9675, b6 = -6.6309, and the resulting model 
captures the general trends but not the exact dynamics. Worse, the model loses its characteristics 
of a limit cycle and instead exhibits damped oscillations (Fig. 7). It is unclear whether this 
example constitutes a singular problem, caused by the fact that the lin-log model is used as 
an approximation to a different model type (cf. [49]), or whether the lin-log model structure is 
principally unable to capture limit cycle behaviors.

While the estimation of lin-log models from time series data is a matter of straightforward 

Figure 5: Estimation of a lin-log model of the pathway in Figure 4. Even though the original model was in S-system form 
(12), the lin-log model captures Dataset 1 (Table 2) very well
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Figure 6: Estimation of a lin-log model of the pathway in Figure 4. In contrast to Dataset 1 (Figure 5), Datasets 2 (panel a) 
and 3 (panel b) of Table 2 are not modeled well by the lin-log model
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linear regression, one must note that the result is not well suited for typical simulation studies. 
For instance, suppose we intend to study the response of the pathway in Fig. 4 to a 50% increased 
input. The corresponding term in the first equation of the system seems to be b10. However, this 
parameter not only represents the input but also contains contributions associated with the inhibitor 
X3 and with the degradation of X1, and it is not possible to dissect the relative contributions by 
the input and by variables X1 and X3. In more general terms, it seems impossible to associate the 
parameters to particular fluxes without further biological information. In the bottom-up approach, 
the combination of parameters is not an issue [43], but it does become a serious problem in top-
down estimations from time series.

Saturable-Cooperative (SC) and More Complicated Models: The hallmark of SC models 
is that all individual processes are s-shaped with zero slope for zero concentrations and saturation 
toward high values of their variables [6]. The particular format of SC models can be rationalized 
in two ways. On one hand, they may be seen as a generalization of BST models, in which each 
power-law function is replaced by a Hill function of the type

 , (15)
where Vmax describes the upper limit of the process, Km is the Michaelis constant, and the positive 
real number h is a generalized, real-valued Hill coefficient. On the other hand, similar to BST, 
LV, and lin-log models, SC models can also be derived directly as a Taylor approximation in 
some log-transformed space. In this particular case, a process
 v = f(X1,..., Xn) (16)

is first transformed by introduction of the new variables w = v–1 and Zi = , resulting in
 w = ϕ(Z1,..., Zn). (17)
Taylor linearization of this function and transformation back to the original space yields

Figure 7: Loss of a limit cycle in the lin-log model. Parameters of a lin-log model are easy to compute from time series data. 
However, in this particular case, the limit cycle of the original system (13) is lost (a), and the lin-log model (14) 
instead exhibits a damped oscillation (b)
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 . (18)
Clearly, this format contains a larger number of parameters than other canonical models, 

which endows it with a higher degree of flexibility in shape. Parameter estimation has so far been 
performed only for individual processes but not for time series of integrated systems.

Extending the flexibility of rate laws further, other authors have proposed more complex 
kinetic formulae, which may or may not be considered canonical. For instance, Hadlich et al. 
[50] suggested the following rate law, which accounts for activators a1, …, am and inhibitors d1, 
…, dn and contains the kinetic parameters α1, …αj+m:

  (19)
Even more complicated in terms of their structure and number of parameters are rate laws 

of “convenience kinetics” [51], which therefore allow for further increased flexibility in shape. 
In these cases of not truly canonical models, the estimation of parameters from time series data 
becomes rapidly more complicated as the complexity of the metabolic system grows.

DISCUSSION

Biological systems operate within the physical world. However, the processes governing these 
systems are often too complex to permit truly mechanistic, physics-based representations. 
Alternatives are canonical models, which are based on some specific type of approximation 
that leads to a well-defined, characteristic mathematical structure. Biological systems that are 
modeled within such a structure are always represented by the same symbolic equations and 
differ exclusively in the number of variables and the values of the model parameters. The use of 
canonical models is particularly advantageous for inverse problems, where observations on the 
biological system consist of time courses of system responses. In this case, it is very difficult to 
determine the optimal mechanistic model, while it is comparatively easy to set up a canonical 
model.

Among many options, Lotka-Volterra (LV) systems and models designed under the auspices 
of Biochemical Systems Theory (BST) have received the most attention, but other options, such 
as the linear-logarithmic (lin-log) and the saturable-cooperative (SC) model, are available. With 
regard to parameter estimation from time series, by far the most attention has been paid to BST 
models. In fact, essentially all standard methods, including nonlinear regression, genetic and 
other evolutionary algorithms, and some customized methods have been applied to BST models 
(for a recent review, see [16]). While no clear winner among these methods has emerged, it 
has become evident that one preprocessing step is particularly useful, namely the estimation of 
slopes from the time series data. This step circumvents the very costly numerical integration of 
systems of differential equations and permits optimization of parameters for one variable at a 



Parameter Estimation in Canonical Biological Systems Models 17 

time. In the case of BST models, the estimation task is therewith reduced to an optimization of 
systems of nonlinear algebraic equations. Interestingly, it seems to have gone unnoticed that the 
same strategy leads to a straightforward linear regression task in the case of LV systems. The 
only mention of a related strategy has apparently been a method for inferring the connectivity 
of networks from time series data [36]. We show here that a direct estimation of LV models per 
linear regression is possible and essentially trivial even for highly nonlinear cases, including 
systems exhibiting deterministic chaos. The linear regression has the added advantage of making 
the rich repertoire of diagnostic methods available, with which statisticians have been analyzing 
the quality of linear regression results for a long time (e.g., [37]).

The same advantage of leading to a linear regression task is present for lin-log models. For 
systems operating close to a non-zero steady state, or within a small window of variation in its 
variables, the inverse problem is therefore simple. The main drawback is that this estimation does 
not associate mathematical terms with particular fluxes. As a consequence, the fit is almost like a 
black-box fit, where it is difficult to map a biological experiment or a change in pathway structure 
onto the mathematical model. It seems that this problem can only be resolved with additional, 
independent biological information. In many cases, a lin-log model will give sufficiently good 
results, but it needs to be determined whether this model structure is rich enough to capture all 
relevant types of nonlinear behaviors, including limit cycles and deterministic chaos. It also 
needs to be seen whether it might be useful to execute a pre-fitting with lin-log models and to 
use the results as a starting point for the estimation of more flexible power-law models within 
BST or for the even more complex SC models.
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