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Biochemical systems are among of the oldest application areas of mathematical
modeling. Spanning a time period of over one hundred years, the repertoire of
options for structuring a model and for formulating reactions has been constantly
growing, and yet, it is still unclear whether or to what degree some models are
better than others and how the modeler is to choose among them. In fact, the
variety of options has become overwhelming and difficult to maneuver for
novices and experts alike. This review outlines the metabolic model design proc-
ess and discusses the numerous choices for modeling frameworks and mathe-
matical representations. It tries to be inclusive, even though it cannot be
complete, and introduces the various modeling options in a manner that is as
unbiased as that is feasible. However, the review does end with personal recom-
mendations for the choices of default models. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Over the past decades, mathematical and compu-
tational modeling has become a widely accepted

tool in biology, and its aspirations of making reliable
predictions or offering explanations for complex, and
sometimes counterintuitive phenomena are generally
appreciated as potentially very useful. At the same
time, newcomers to the field do not always seem to
recognize that modeling can entail very different
approaches and structures. In particular, it appears
that many nonexperts seldom wonder where exactly
models come from, and if they actively want to
engage in basic modeling, they resort to a few defaults
that are not necessarily optimal or even valid.

A prime example is the common use of the
Michaelis-Menten rate law (MMRL1,2), which was
developed for analyses of enzyme catalyzed reactions
in vitro. Specifically, it was conceptually based on the
reversible formation of an intermediate complex
between substrate and enzyme and the conversion of
this complex into product and enzyme, and formu-
lated mathematically in the language of elementary
chemical reaction kinetics. Over the decades, this

function was frequently chosen not only for meta-
bolic modeling in vitro, but also in living cells, where
its underlying assumptions are not satisfied3,4;
indeed, it has been used even in biological fields that
have very little to do with enzyme kinetics.5 The rea-
sons of this default utilization are threefold. First,
MMRL has proven to be an excellent representation
of enzymatic processes in vitro, and thousands of
articles have measured or used its characteristic para-
meters KM and Vmax. The assumption therefore has
been that, barring obvious alternatives, one might be
justified to extrapolate its usage to conditions
in vivo. Second, MMRL captures a nonlinear satura-
tion process, while allowing simple transformations
to linearity, for instance, by expressing 1/V as a func-
tion of 1/S, where V is the rate of product formation
and S the substrate concentration.6–8 This combina-
tion makes MMRL very appealing, especially if one
considers that there are infinitely many nonlinear
functions and that there is no guidance regarding
optimal choices among them. Also, linear regression
becomes applicable for parameter estimation,
although with some distortion of the error structure,
and is incomparably easier than nonlinear regression.
Finally, a default choice is attractive as it seems
impossible to infer valid nonlinear representations
directly from experimental data, and much has been
made of the fact that there are ‘no true models.’

Physicists have it a little easier in this respect,
because many ‘laws,’ such as the law of gravity, have
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been gleaned directly from experiments or derived
from first principles and are valid under common
conditions, even though they may fail in the realms
of astronomy and quantum physics. Biology, of
course, is embedded in the physical world and must
obey its laws, but biological processes are often con-
volutions of so many fundamental processes that a
physics-based description is no longer feasible.9 To
see this discrepancy, one might just imagine all the
physical processes associated with cell division or sig-
nal transduction to realize that biology must develop
its own higher-level functional representations. Biol-
ogy is of course not alone in this respect, and fields
like medicine, psychology or sociology face the same
challenges.

Even statistics, which is a shining example of
mathematical rigor, is not immune against wrong
model choices. In some cases, such as flipping a fair
coin over and over again, the phenomenon itself may
dictate which statistical distribution or process
description best captures its random features. How-
ever, if biological or medical data have an observed
distribution with an extended right tail, many proba-
bility distributions—with very different mathematical
formats—may approximately fit the data, and the
identification of a particular distribution becomes a
somewhat troubling matter of unguided choice.
Sometimes one may be able to use arguments like the
applicability of the central limit theorem in a multi-
plicative space, which can help provide support for a
log-normal distribution, but there are no true guaran-
tees when it comes to real data. We will return to this
issue later in the review, but the situation demon-
strates how much more complicated the choice of
model representations may become in the analysis of
biological systems.

To address the issue of model choice, let’s start
at the beginning. If one is not convinced already,
some pondering will lead to the conclusion that
there are no true models in biology and related
fields. The reasons are manifold but collectively sim-
ple: Every biological phenomenon, no matter how
small, contains so many components and occurs in
such a complicated environment that we cannot
even list—let alone represent—all factors that
directly or indirectly affect it. At least, that is the
current state of the art. Also, the purpose of a
model is often to distill, understand, or explain the
essence of a phenomenon, which suggests omitting,
simplifying, or abstracting nonessential details. But
if a detail is omitted, the model is bound to fail if
this particular detail becomes important. This
conundrum has no real solution, and Ockham’s
razor is of little help, because it advises against

redundancy which is widespread in biology. Instead,
modelers should require that a good model be
driven by crisp biological questions, which in turn
determine the structure of the model.10 As an exam-
ple, consider the growth of a bacterial culture. If we
plan to investigate how many bacteria to expect at
a given point in time, a simple exponential function
with an appropriate growth rate might be an appro-
priate solution for relatively small and well-fed
populations. However, the function breaks down
for large numbers, does not tell us anything about
the variability among several populations that
should all grow with the same characteristics, does
not take into account spatial considerations, and
certainly does not reveal molecular mechanisms.
Thus, if it is important to determine which genes
affect the speed of growth, we obviously require a
much more complex model. In the end, the clearest
and most concise formulations of questions have the
best chance of being answered by mathematical and
computational models.

The typical construction of a metabolic systems
model from scratch consists of four steps (Figure 1):

1. Identification of the constituents of the system.

2. Identification of the topology and regulation of
the system.

3. Choice of mathematical representations for all
processes.

4. Estimation of parameter values for the process
representations.

These construction steps are followed by
diagnostics and analyses of consistency and model
appropriateness, which assess technical details,
such as model stability and sensitivity, and more
globally try to ascertain that the model ‘makes
sense.’ The latter is often tested with a series of
simulations whose results are compared to data or
expectations. The final modeling steps pertain to
various model uses, which may include explana-
tions of observed phenomena, predictions of
untested scenarios, various manipulations, pertur-
bations, and interventions, or optimizations
toward desirable goals.

The emphasis of this review is on Step 3. Steps
1 and 2 are briefly discussed, but they are primarily a
matter of the biological subject area. Step 4 has been
reviewed numerous times in recent years and will
only be discussed very coarsely. The steps following
the model construction fall outside the scope of this
review, although the diagnostic steps often lead to a
revisiting of Steps 1 through 4.
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STEPS 1 AND 2: IDENTIFICATION OF
CONSTITUENTS, TOPOLOGY AND
REGULATION OF THE SYSTEM

For most of the century of metabolic modeling, the
design of a model has focused on a specific metabo-
lite or pathway of interest, or on a pathway system
that contains several linear, branched, or cyclic path-
ways. This focus may have derived from an interest-
ing research question or from a hypothesis generated
by earlier investigations. The modeling process begins
with two steps, namely, identifying what is to be
included in the model, and how the components
interact with each other through mass flow or regula-
tion. The two steps go hand in hand and are guided
by the biological hypotheses or questions to be
answered by the model. They should involve the
most parsimonious lists of components, processes,
and regulators that still retain the integrity of the sys-
tem or phenomenon. Such a compromise is easily
stated but often very difficult to implement, because
assessing the importance of all possible factors would
require almost complete knowledge of the system

and its environment, which is seldom the case. For
this reason, Steps 1 and 2 are arguably the most
important and most difficult steps of the modeling
process. They may look deceivingly simple at first
glance, because ‘one intuitively knows’ what the
model is supposed to be about and who the main
players are. However, the selection of components
naturally incurs bias, because the modeler does not
have full information about the pathway system but
must make decisions to include or exclude certain
aspects. The hidden challenge is the following: If the
lists are missing important components, many model
results will be compromised or flat-out wrong. But if
they contain too many components, the model
becomes unwieldy, over-parameterized, and unrelia-
ble in predictions and extrapolations.

Generically, the system definition in Step 1 fol-
lows the etymology of the word: to define means to
set boundaries. The challenge is that this boundary
setting is often complicated and seldom unique,
because every system in biology is embedded in a lar-
ger system, which could affect the system of interest.
As a rule of thumb, Savageau proposed selecting
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FIGURE 1 | Model design process. Top left: Modeling ideas lead to the selection of (blue) metabolites, (red) reactions, and (gold) regulatory
signals, as far as they are known. Top right: These components are arranged in the format of a dynamic system, consisting of a static metabolic
network of reactions and their regulation. Bottom right: Each reaction in this dynamic system needs to be mathematically formulated, with
account of regulatory signals. Bottom left: The identification of the most appropriate model structure and representations faces many difficult
choices. The full characterization of all reactions, including the determination of parameter values, completes the model design. Green arrows
indicate that several iterations of the model design process may be necessary.
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components and processes such that there is high
connectivity within the system while the number of
processes crossing the boundaries of the system is
minimal (p. 80 of Ref 11). Of great help are data-
bases like KEGG12 and BioCyc,13 which contain
comprehensive maps of a large number of pathways,
along with ample other information. However, they
do not solve the problem.

Step 2 has been approached in two distinct
ways. When the model is constructed from the bot-
tom up, which used to be the case for almost all met-
abolic models until quite recently, one collects
information regarding the production and degrada-
tion of every component and thereby establishes the
system topology and possibly the regulatory struc-
ture. Clearly, this procedure requires substantial a
priori knowledge of the details of the system, but rich
information is available as the result of over
100 years of biochemical research and has been
documented in an enormous body of literature. The
exact determination of the regulatory structure is
often murkier, and if it is not known from biochemi-
cal experimentation, it is also difficult to infer with
computational methods (see below), although this is
sometimes possible (e.g., Refs 14–16). In any event,
rich information on metabolic reactions has been
amassed over time, and the database BRENDA17 is a
treasure trove for kinetic parameter values, including
information regarding regulation.

An entirely different approach toward con-
structing models is based on metabolic time series or
data from several input–output steady-state experi-
ments. If such data are available, it is in principle
possible to infer the most likely connectivity of a sys-
tem.18,19 The necessary data have become available
in recent years as the result of targeted or untargeted
metabolomics.20–24 In this approach, very many
metabolite concentrations are measured, typically
with mass spectrometry or nuclear magnetic reso-
nance, for the system under investigation and a con-
trol system. Often the goal is to identify and
characterize significant differences in the peak pattern
of the spectrograms. The differing peaks point to
metabolites with different concentrations in the two
situations. If these metabolites can be identified,
which however is not always the case, they become
the focus of further analysis, for instance with
dynamic models. To some degree it is also possible to
evaluate genome data with respect to expression dif-
ferentials in genes coding for enzymes.4,25–27

The methods of analysis for these data are very
different from the bottom-up methods. Rather than
scanning the literature and databases for possible
connections between pairs of components A and B,

and subsequently determining functional descrip-
tions, the data are collectively subjected to a statisti-
cal machine learning analysis that optimizes the
system connectivity so that it matches the observed
data as closely as possible. Specifically, one defines a
space of feasible models, which are formulated as
graphs where conditional probabilities are associated
with the connections between variables. A learning
procedure then selects the model that best fits the
actual observations.28 Early methods used Bayesian
inference29 or mutual information,30 but the topic is
generically so complicated, and there are so many
solution proposals—some effective, others less so—
that recurring crowdsourcing competitions are held
to determine the best inference algorithms; they are
called DREAM competitions (Dialogue on Reverse-
Engineering Assessment and Methods31,32). Many of
the proposed DREAM algorithms have focused on
co-occurrence patterns of changes in the expression
of particular genes, transcriptomic responses, pro-
teins, or metabolites. The vast majority of these have
targeted gene regulatory or protein–protein interac-
tion networks (e.g., Refs 33–36), but the results of
these genome- and proteome-based inferences can be
translated, under certain assumptions, into inferences
regarding specific metabolic networks.37–46 It is also
sometimes feasible, and of course desirable, to com-
bine the metabolomics top-down approaches with
more traditional bottom-up approaches.47,48 While
most reverse-engineering methods and applications
have targeted gene networks, some have been applied
to metabolic networks as well. Depending on the
data, these inferences have addressed static
networks49–52 or dynamic systems.53–62

The machine learning inferences may target not
only the connectivity of a network but also the distri-
bution of metabolic flux magnitudes at a steady state.
For the latter, two methodological frameworks have
been developed. The first is metabolic flux analysis,
which is based on supplying the metabolic system
with a labeled substrate, waiting until the substrate
has been converted into a variety of other metabo-
lites, and then using sophisticated computational
methods for determining the fluxes that drive the
system.63–69 The second is flux balance analysis
(FBA), which is a very popular extension of stoichio-
metric analysis70,71 and estimates flux distributions,
sometimes genome-wide, under the assumption of
some optimality criterion, such as maximal growth
or ATP production.72–75

Quite a different, graph-based inference method
is the metabolic pathway reconstruction from molec-
ular structures of compounds and knowledge about
enzymes that possibly convert these compounds into
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others. In these approaches, reactions are considered
transfers of atoms between metabolic compounds,
and computational graph methods determine feasible
or most likely paths.76–78

In all these approaches, no matter how different
they are, the ultimate outcome is a directed network
of metabolic fluxes, ideally with an indication of its
regulatory control structure. An exception is the defi-
nition of reactions as nodes and metabolites as edges
that represent ‘shared resources among modules.’79,80

This option is rather counterintuitive but has the
advantage of natural clustering with a reduced num-
ber of nodes. In a similar vein, one can mathemati-
cally represent a traditional metabolic network as a
model where the reactions are the dependent
variables.81

STEP 3: CHOICE OF MATHEMATICAL
REPRESENTATIONS FOR ALL
PROCESSES

The great advantage of graph and machine learn-
ing methods is that only minimal a priori knowl-
edge about a system is needed, as long as enough
suitable data are available. Alas, this advantage is
directly connected to the greatest limitation of
these methods, namely, that the final result con-
sists only of the connectivity of the system and, in
some cases, the amount of material flowing
through each connection. For some purposes, this
information is sufficient, and corresponding mod-
els have been used to predict the consequences of
gene knock-outs or changes in substrate availabil-
ity. However, these predictions implicitly assume
that the organism does not call up its multi-level
regulatory machinery to mount compensatory
mechanisms. Such responses are nonlinear and
therefore not always well modeled by linear meth-
ods such as graph analyses or FBA. For instance,
if a gene is knocked out that codes for some
enzyme, the corresponding enzymatic step is also
eliminated and no product is generated. However,
if the organism needs this product, it will express
other genes with the goal of redirecting alternative
pathways toward the desired metabolite. This
problem is significant for minimalistic FBA models,
but does not entirely disappear for genome-wide
models either, because the analysis makes infer-
ences in the absence of regulation. In a beautiful
demonstration, Ishii et al.82 studied the responses
of Escherichia coli to numerous environmental and
genetic perturbations. While the expression of
genes close to the perturbations often changed

dramatically, the induced disruptions led to sur-
prisingly small changes in mRNAs and proteins.
Moreover, the metabolite levels remained unex-
pectedly stable, and the authors showed that this
stability was achieved through wide-spread rerout-
ing of fluxes throughout the metabolic system.

If complex responses such as compensation or
adaptation are to be understood, the modeling effort
needs to be stepped up toward fully dynamic models
that permit true extrapolations and predictions of
untested scenarios. For these models, the connectivity
of components is not sufficient, but every process
needs to be formulated as a function that appropri-
ately captures the roles of all system components that
affect this particular process. Needless to say, this
step is challenging. Furthermore, the need to identify
suitable functional representations arises whether a
model is constructed from the bottom up or from the
top down.

The Challenge of Choosing Suitable
Functions
Even for single processes, the choice of an explicit
function can be difficult. As a comparatively simple
example, consider the selection of a statistical distri-
bution function for representing a sample or process.
As discussed before, the stochastic features underly-
ing the distribution may suggest a formulation, as for
flipping a coin, but such guidance is rare. To demon-
strate the problem, Sorribas et al.83 generated 25 sam-
ples with 160 drawings each from normal, gamma
and Weibull distributions and then used an optimiza-
tion algorithm to fit one of the standard distribution
functions (normal, log-normal, gamma, logistic, Wei-
bull, or Gumbel) to these artificial data. Surprisingly,
in about 75% of all cases, the best fit was obtained
with a different distribution than the one used to cre-
ate the sample. This unexpected finding causes con-
cern for selecting functions for biological processes,
especially if data are noisy.

The wrong identification of functions raises the
question whether it is really problematic if the
selected function is wrong, as long as the data are
represented well. For the statistical example it may
actually not even be a major problem for data ana-
lyses because distributions are used for concise
descriptions, sampling, decision making, and maybe
for computing some test statistics. However, wrong
functions can be detrimental in dynamical systems,
which are commonly used for extrapolations toward
new scenarios. As a simple example, consider two
very similar models of the small pathway in Figure 2.
Model A is formulated as
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_X1 = 1:2X−1
3 −F X1ð Þ−0:2X1

_X2 = F X1ð Þ−X2

_X3 =X2−X3

_X4 = 0:2X1−0:2X4 ð1Þ

where, the material flux between X1 and X2 is repre-

sented with the Hill function F X1ð Þ = 1:2�X4
1

0:2 +X4
1
. In

Model B, all variables are called Yi, and the process
corresponding to F(X1) is instead formulated as the
mass action function G(Y1) = cY1 with c = 1. Other-
wise the two models are identical. One could argue
that a Hill model and a mass-action model are quite
different, which is certainly true, and that’s the point
of the example: In a real-world situation, it may be
entirely unclear how to formulate F(X1) mathemati-
cally, and the modeler will have to rely entirely on

available experimental data to determine a well-fitting
model. Without a priori knowledge, the modeler may
try the mass-action formulation or a Hill function
(or a variety of other functions), which in both cases
leads to excellent results (Figure 2). The modeler is
presumably satisfied, and using the argument of parsi-
mony, s/he may choose the simple mass-action for-
mat. This choice does not encounter problems until a
new scenario is modeled, as we will discuss next. It
appears that this scenario is generically much more
frequent than one would like to admit.

Both models have the same steady state of
(1, 1, 1, 1), and the differences in responses to rea-
sonable perturbations are small, especially if one
imagines that either model in reality should match
data with a bit of noise. Figure 2 shows responses to
changing the initial values from the steady state to
(0.2, 1, 1, 1) or (1, 1.5, 1, 1). The resulting fits are
certainly satisfactory, and one may conclude that
either model choice is perfectly suitable.
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FIGURE 2 | The diagram in the top-left panel was modeled with two slightly differing models (see Text). The responses to moderate
perturbations (top-right: X2(0) = Y2(0) = 1.5 and bottom-left (X1(0) = Y1(0) = 0.2) are quite similar. However, a bolus of 2 units added to X1 and
Y1 during the time period t 2 [3, 8] triggers very different response trends (bottom-right).
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However, substantial differences arise if the
models are used for other types of simulations. For
instance, the panel on the bottom right of Figure 2
exhibits the results of a simulation where an external
bolus of 2 units is added, quasi as a second input, to
the first differential equation during the time period
t 2 [3, 8], whereas it is 0 at other times. For larger
dynamical systems, where error compensation easily
happens within or among terms of the same equation
or of different equations, it is possible that wrong
model choices lead to utterly faulty results. Note that
the example was not constructed around a bifurca-
tion point, where slight changes in parameter values
may lead to different qualitative behavior, but that it
addresses typical alternative functions within their
normal operation ranges.

Generic Strategies for Identifying
Appropriate Functions
Clearly, the consequence of choosing a wrong model
should be a cause for concern that requires atten-
tion. For inspiration, let’s return to statistics to
explore documented strategies for selecting distribu-
tion functions. A first, intuitive strategy may be fit-
ting a more or less comprehensive set of candidate
functions to the data under investigation, one at a
time, and judging the quality of fit by residual error.
Sorribas et al.83 pursued this strategy to analyze
growth distributions of girls between ages 5 and 17.
Needless to say, this strategy is cumbersome and
time-consuming, and any choice based on residual
errors becomes questionable if the various candidate
distributions contain different numbers of para-
meters: On the one hand, a function with more
parameters should be expected to yield better accu-
racy, but if one is interested in a good fit, should a
highly parameterized (or over-parameterized) func-
tion be penalized?

A second strategy is the formulation of a gener-
alized distribution function that contains a few or
many candidate functions as special cases.84–88

Driven to the extreme, Savageau’s suprasystem of
probability distributions, which consists of a large
system of nonlinear ordinary differential equations
(ODEs), is so comprehensive that one can prove
mathematically that all continuous distributions are
exact special cases.89 Problem solved? No, because,
first, it is a priori unclear how many ODEs should be
involved, and second, increasing numbers of ODEs
demand so many parameters that it becomes impossi-
ble to determine them from data with any degree of
reliability. In a similar vein, one could propose a
generic polynomial which, with sufficiently many

terms, provides a perfect representation to any data-
set. In all these cases, the compromise obviously lies
in the complexity of the generalization, which
strongly affects the number of parameters to be
estimated.

A third option is in some sense a compromise
between the first two approaches. It consists of the
generic representation of a distribution family in an
approximate manner that strikes a reasonable bal-
ance between accuracy and the number of parameter
values. Examples in statistics are the four-parameter
S-distribution and the five-parameter GS-
distribution.90–92 These distributions contain only a
few statistical distributions as exact special cases, but
approximate very many of them, including compli-
cated noncentral and discrete distributions, in a rela-
tively simple, streamlined and quite accurate manner.
Owing to their simplicity, these distributions permit
interesting analyses, especially with respect to fitting
data of ill-characterized origins, where they can even
suggest which traditional distribution might be well
suited to represent a dataset. Similar strategies have
been proposed for growth processes.93–96

Selecting Metabolic Rate Functions from a
Smorgasbord of Options
The issues associated with model choices are exacer-
bated in metabolic modeling, because experimental
data are typically the output of complex systems,
rather than explicit functions. As a consequence, the
selection problem is confounded by compensation of
errors within and among the equations of the ODE
system that is supposed to represent the data, as we
saw before (Figure 2). The good news is that meta-
bolic models tend to be quite robust, as long as all
variables remain in relatively small ranges. This is
especially so in large models with ample regulation,
which tends to buffer the variables in the vicinity of a
homeostatic state. As a consequence, different models
may be appropriate for modeling systems close to
their normal operating state. Direct comparisons
between alternative modeling frameworks are relative
rare but do exist and demonstrate similar outputs for
different models in response to small
perturbations.97–111 Nonetheless, models are often
designed for explorations of new realms, where dif-
ferences among alternative representations can
become significant. For instance, the goal of a model
analysis may be to understand or intervene in a dis-
ease, or to manipulate a microbe toward the high-
yielding production of some metabolite, such as bio-
diesel, insulin, or citric acid.112–115 These types of
manipulations often require larger changes, where
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differences between alternative modeling formats
become significant. Thus, the search for the best
models must not be abandoned.

The field of metabolic modeling is dominated
by a few functional formats that have been used
time and again. In some way, many of them may
be traced back to mass action kinetics, which was
proposed over 150 years ago for explaining the
kinetics of elementary chemical reactions.116–119

Indeed, mass action functions are the most preva-
lent defaults. For a simple irreversible reaction that
converts A into B, the mass-action formulation is
_A = −k�A, _B = k�A. Thus, degradation and produc-
tion are linear functions of A with a rate k. If A and
B are converted into C, the model is represented as
_A = _B = −κ�A�B, _C = κ�A�B, where κ is again a rate
constant. It is important to note that many models in
biology are direct derivatives of these formula-
tions119; they include Michaelis-Menten and Hill
functions,1,2,120 SIR models121 for the spread of
infectious diseases, and Lotka-Volterra
models.122–125 For single-variable processes, the dif-
ferential equation for the loss of A is linear, which is
also the case for many elementary processes in phys-
ics, such as exponential decay, heating and cooling,
and simple transport processes.

Outside the mass-action formulation, the
MMRL1,2 has been the undisputed workhorse of
metabolic modeling.4 Initially formulated as a set
of differential equations, describing the binding of
substrate to enzyme and the generation of prod-
uct, as discussed before, the power of the rate law
came from assumptions that are mostly true for
experiments in vivo. These permitted the reformu-
lation of the overall rate of conversion of sub-
strate into product as an explicit function of
the form

v =
VmaxS
KM + S

; ð2Þ

where Vmax is the maximal rate, and the Michaelis
constant KM reflects the affinity between substrate
and enzyme. The simplest generalization of MMRL
is the Hill function,120 which associates the Hill coef-
ficient n with the substrate and with KM:

v =
VmaxSn

Kn
M + Sn

: ð3Þ

The Hill coefficient is typically 2 or 4, as it was origi-
nally meant to represent molecular subunits. None-
theless, there are no mathematical reasons for these

settings, and indeed, noninteger coefficients have
been used in metabolic modeling (e.g., Refs 126).

In their pure, unmodulated form, MMRL and
the Hill function are easy to use and parameterize,6–8

and while we already discussed limitations with
respect to valid applicability, they have been and will
remain to be a mainstay in metabolic modeling for a
long time. For larger pathway systems, the seeming
simplicity evaporates, and standard analyses, such as
the computation of a steady state or of parameter
sensitivities, become very cumbersome.104

The most important generalization of these
functions is the account of regulation, which can
make these functions complicated, if not unwieldy. In
the simple case of competitive inhibition by inhibitor
I, the result is still rather simple:

v =
VmaxS

KM 1+ I=KIð Þ+ S : ð4Þ

However, different inhibition mechanisms mandate
different formulae. As a result, the mathematical for-
mats for rate laws with competitive, noncompetitive,
uncompetitive, mixed, or allosteric inhibition are all
different, which implies that the type of inhibition
must be known before the appropriate model can be
formulated. Numerous books have published details
of the various types of inhibition.11,127–130

For reactions that involve several inhibitors and
modulators, the results can become very complicated,
leading to a feeling of frustration and concern. An
interesting example is the phosphofructokinase (PFK)
reaction of glycolysis, which phosphorylates fructose
6-phosphate through a transfer of ATP. Because PFK
is a critical control point in glycolysis, the reaction is
affected by several metabolites, as well as
pH. Extensive investigations of these modulators
have led to a large variety of rate functions that were
formulated to capture the reaction kinetics. The fol-
lowing collection of examples is certainly not com-
plete, but the reason for showing at least a subset is
to indicate the growing confusion the newcomer
experiences when studying rate functions. The exam-
ples are presented essentially in the notation in which
they were originally published.

One of the simpler rate laws was presented by
Eicher and colleagues,126 who formulated it as a bi-
substrate, irreversible Hill process of the form

v = Vf
F6PhATPh

F6Ph +ATPh
� �

� 1 + 1+PEPh + 1+ α2hPEPh

1+ α4hPEPh

� �n o ;
ð5Þ
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where the variables F6P, ATP and PEP represent
metabolite concentrations that are scaled by their
half-saturation constants. Thus, in addition to Vf, α
and h, the model contains three further parameters.
Blangy et al.131 proposed a model based on the so-
called concerted transition theory proposed by
Monod et al.132 This model has over twenty para-
meters. A few years later, Otto et al.133 proposed a
model in the format

v =
Vmax_PFK× F6P

K_F6P + F6P ×
MgATP

K_MgATP+MgATP

1 +L
; ð6aÞ

where

L = L0_PFK×
1:0 + MgATP

KMgATP

� �4
× 1:0 + Mg

K_Mg

� �4
1:0 + F6P

K_F6P

� �4
× 1:0 + AMP

K_AMP

� �4 :
ðð6bÞÞ

Mulquiney et al.134 suggested the alternative

where

One of the most complex formulations to date
was proposed by Peskov et al.,135 again based on the
ideas of Monod et al.132 This model involves about
40 parameters. Numerous other models for the PFK
reaction have been described, including.131,136–142

Granted, some of these formulations were developed by
enzyme biochemists interested in characterizing the cat-
alytic mechanisms underlying an enzymatic reaction, so
that the resulting format and numbers of parameters
were not really an issue. However, Peskov
et al. explicitly state that their model ‘can be used in the
kinetic modeling of biochemical pathways containing
phosphofructokinase-1,’ so that a quantitative determi-
nation of parameter values is unavoidable.

The co-existence of such drastically different
models for the same reaction is disconcerting: How
should one decide on the most appropriate model
formulation? Is it even possible to obtain information
regarding all kinetic parameters, and if so, is it valid
to mix parameter values measured under different
conditions and maybe even in different organisms?
Are questionable parameter values and a confusing,
overwhelming diversity of formats a fact of life, or
are there alternatives? Savageau (p. 75 of Ref 11)
responded to these questions over forty years ago: ‘It
must be concluded that the complete kinetic charac-
terization of more complex regulatory enzymes is
impossible for practical reasons. Even if such a char-
acterization were available, it would hardly be useful.
In the simplest case, for which the highest power of
any concentration variable is one, a reaction with
eight reactants and modifiers will have on the order
of 500 terms in its rate law.’ Schulz130 came to a sim-
ilar conclusion after having discussed the overwhelm-
ing complexity of some rate functions that attempted
to capture the correct mechanism.

The solution Savageau proposed ushered in the
modeling framework of Biochemical Systems Theory,

whose core feature is the streamlined representation
of all processes as products of power-law
functions.143–145 Thus, if the reaction producing a
metabolite X3 is affected by two substrates, X1 and
X2, inhibited by Xi, and activated by Xa, the mathe-
matical formulation is

_X3 = α3X
g31
1 Xg32

2 Xg3i
i Xg3a

a : ð8Þ

Here, the rate constant α3 and the kinetic orders g31,
g32, g3a are positive, while the inhibition parameter g3i
is negative. Since the inception of BST, hundreds of arti-
cles have successfully used this straightforward formal-
ism; some comprehensive reviews are.11,96,114,146–149

L =

H+½ �
Ka

� �4
1 + ATP

K_ATP

� �4
× 1 + Mg

K_Mg

� �4
1 + 23BPG

K_23BPG

� �4
1 + F6P

K_F6P +
F16BP

K_F16BP

� �4
× 1 + AMP

K_AMP

� �4
× 1 + Pi

K_Pi

� �4
× 1 + G16BP

K_G16BP

� �4 : ð7bÞ

v =

Kcatf ×MgATP× F6P
K_MgATP×K_F6P − Kcatr × F16BP×MgADP

K_F16BP×K_MgADP

� �
1 + MgATP

K_MgATP +
F6P

K_F6P +
MgATP× F6P

K_MgATP×K_F6P +
F16BP

K_F16BP +
MgADP

K_MgADP +
F16BP×MgADP

K_F16BP×K_MgADP

×
1

1 +L
ð7aÞ
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BST comes in two main variants. In the Gener-
alized Mass Action (GMA) representation, each term
is represented with a product of power-law functions,
as in Eq. (8), which makes intuitive sense as a direct
generalization of mass action systems. In the S-system
variant, by contrast, the focus is on metabolite pools
rather than on reactions. Thus, all reactions entering
a pool are aggregated into a single power-law func-
tion and the same is done with all fluxes leaving a
pool. The result is an ODE system that contains at
most one positive and one negative power-law term
in each equation. While less intuitive to the biochem-
ist, this formulation has the enormous advantage that
steady states and their associated features like stabil-
ity, sensitivities, and gains can be computed straight-
forwardly with algebraic means.143 This aspect can
be crucial for a variety of analyses that require the
frequent computation of steady states, such as the
search for design principles or steady-state optimiza-
tion (e.g., Refs 104,112–114,150–155). While BST
has been very successful, it has been clear from the
beginning that the power-law formulation is the
result of Taylor approximation in logarithmic space.
As such, this representation is exact at an operating
point, excellent close to this point, but of unknown
quality if one moves farther away from this point. In
particular, power-law functions with positive expo-
nents do not saturate. Also, if an inhibitor is included
as in Eq. (8), one may find it acting like an activator
if its concentration falls below 1. However, simply
rescaling the inhibitor concentration or using (1 + I)
instead of I easily remedies this situation.156 Finally,
the aggregation of fluxes leading to the S-system for-
mat introduces slight inaccuracies at branch points.
Interestingly, it was shown that this inaccuracy com-
pensates for the error of the power-law approxima-
tion and that this format is actually more accurate
than the GMA form, if hyperbolic functions such as
MMRL are represented in this form.111 Overall,
power-law representations are approximations, but
so are all other functions discussed in this review.
They have their shortcomings, but they are terrific
defaults, especially if the metabolic system is not all
that well characterized numerically.

A later proposal for streamlined representations
was the lin-log model,101,157–159 which was inspired by
Metabolic Control Analysis,160–164 and takes the form

νi
J0i

=
ei
e0i

1 +
Xn +m
j = 1

ε0ijlog
Xj

X0
j

 ! !
: ð9Þ

Here the variables are denoted by X1, …, Xn+m and
the reaction rates are denoted by v1,…, vr. Xj

0 is a

reference concentration of species Xj, Ji
0 is a refer-

ence flux of the ith reaction, ei is the enzyme activity,
ei
0 is the reference level of the enzyme activity, and ε0ij

are elasticities that correspond to the exponents in
BST. A troubling problem with this formulation is
that the rate becomes negative for small concentra-
tions and approaches –∞ for substrates approaching
zero.99,100

Searching for a better compromise between
mathematical tractability and modeling accuracy,
Sorribas and collaborators generalized BST by using
a Hill function as the core element for each variable,
so that all terms in the model are guaranteed to satu-
rate.165,166 The result is the Saturable and Coopera-
tive (SC) formalism, where each reaction has the
format

v =

Y
j
Xnj

j

a
Y

j
Xnj

j +
X

i
bi
Y

j, j 6¼i
Xnj

j

ð10Þ

and the parameters a, bi, and nj are related to the
kinetic parameters of the Hill functions. This model
is often more accurate than a power-law model, but
contains quite a few more parameters.

In a similar vein, Wayman et al.167 proposed
Multiple Saturation Kinetics with reaction terms of
the Michaelis-Menten form

rj =Vmax
j Ei

Y
s

Xs

Kjs +Xs

 !
vj: ð11Þ

Here, Vmax
j is the maximal rate, Ei is the enzyme

activity, each Kjs is a Michaelis constant, and vj is an
allosteric regulatory term, which is typically
expressed as a Hill function.

Yet another proposal is Convenience Kinetics.
For a reaction that converts A1, A2, …, An (with con-
centrations a1, a2, …, an) into B1, B2, …, Bm (with
concentrations b1, b2, …, bm), the proposed rate
function is

v a, bð Þ =

Etotfreg
kcat+

Y
i
eaαii −kcat−

Y
j
ebβjjY

i
1 +eai +… +eaαii Þ +Yj

1 +ebj +… + ebβjj Þ−1:��
ð12Þ

In this formulation, the variables with tildes denote
concentrations that are scaled by the corresponding
Michaelis constants, Etot is the total enzyme activity,
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and freg is a regulatory term. Owing to the scaling,
this model contains more parameters than an initial
impression suggests.

In the spirit of BST, Rohwer et al.168 argued
that ‘in systems biology, … the precise mechanism of
an enzyme is less important; what is required is a
description of the kinetics of enzymes that takes into
account the systemic context in which each enzyme is
found.’ As a solution they proposed a generalized
reversible Hill equation of the generic form

v =
Vfα 1− Γ

Keq

� �
α + πð Þh−1

1 + μh

1 + σ2hμh + α + πð Þh
; ð13Þ

where α is the substrate concentration divided by its
half-saturation constant, π is the correspondingly
scaled product concentration, Γ is the mass-action
ratio, Keq is the equilibrium constant, h the Hill coef-
ficient, μ a scaled modifier concentration, and σ an
interaction factor. The authors proclaimed this func-
tion as ‘a universal rate equation for systems biology’
that ‘should lay the groundwork for a “new” enzyme
kinetics for systems biology.’ Other authors proposed
different ‘universal canonical forms’ for modeling
dynamic systems, based on power laws.169–171 Visser
et al.172 suggested a combination of Michaelis-
Menten type reactions, stoichiometric analysis, and
model reduction based on pseudo-steady-states,
which they termed tendency modeling. Marino
devised an iterative method for determining the nec-
essary model complexity.173

Similar to power-law models in BST and repre-
sentations in the SC formalism, these latter formula-
tions have a fixed structure, but it is easy to see that
they quickly become unwieldy. For instance, the
great advantage of S-systems within BST, namely the
algebraic computability of steady states143 and of
features like stability and sensitivities,146 is gone in
SC, multiple saturation, and convenience-kinetic
models, as well as Rohwer’s universal rate equation.
As a compromise, piecewise S-system formulations
have been proposed, which improve accuracy, but
require more parameters.174–176 Furthermore, Löwe
et al.177 proposed a BST model reduction based on
hierarchies of time-scales, which indeed can span sev-
eral orders of magnitude in actual applications.178

An entirely different type of metabolic model
makes use of typical control strategies in cybernetics.
These models can be highly predictive. However, the
control does not occur through metabolic processes,
but is based on optimal decisions with respect to
hypothetical physiological goals, so that the control

strategies are difficult to translate into a specific bio-
logical mechanism.167,179

Space, Delays, and Stochasticity
All ODE models of metabolic pathway systems make
the implicit assumptions that the reactions occur
under homogeneous, well-mixed conditions and that
very many molecules are involved. The first assump-
tion is often—if not almost always—violated. Never-
theless, very few attempts have been made to develop
formalisms not needing the assumption of spatial
homogeneity. The reasons are that the mathematics
immediately becomes much more complicated and
that data very rarely exist that would allow a more
appropriate model representation. For instance, as
soon as a metabolic pathway is distributed over the
cytosol, Golgi and endoplasmic reticulum, a modeler
would need to know volumes of each, just to com-
pute concentrations, as well as transport rates across
membranes, and possibly a clear picture of the spa-
tial arrangements of organelles within a cell.180 Rudi-
mentary attempts have been made to accommodate
different compartments through different variables,
an ‘ecosystem of organelles,’ or variables on different
types of grids.181–187 However, generally effective
models and solutions are yet to be developed.

Several authors addressed an important sub-
problem within the class of space issues, namely the
formulation of kinetic rate laws in crowded cellular
environments, where the movement of molecules is
impeded.188–194 The conclusion was that power-law
functions are good representations, but require differ-
ent parameter values than under noncrowded
conditions.

The second assumption in ODE modeling is
that all processes occur without delays. This assump-
tion is often, but certainly not always true. While
delay-differential equations are cumbersome, approx-
imation methods can introduce delays into ODE
models in a straightforward fashion (e.g., Refs
195–199).

The third implicit assumption of ODE models
is that sufficiently many molecules are present. If so,
enough averaging occurs in time and space to justify
a continuous model. However, if it is not the case,
averaging over individual catalytic events may not be
valid. A more accurate description in this situation is
a stochastic process, in which each conversion of a
substrate molecule into a product molecule is consid-
ered a separate event. The strategy to capture this sit-
uation is to compute the probability that the state of
the system (in terms of numbers of molecules of a
particular type) changes during a given time interval.
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The base formulation for this purpose is the chemical
master equation (CME), which is a finite-state,
continuous-time Markov process that can be
expressed as a Chapman-Kolmogorov differential
equation.200,201 CME describes the probability Pk

that the chemical system is in state k at time t. Sup-
pose A is a matrix of rate constants of possible tran-
sitions between species, where the destination is
given by the first subscript and the source by the sec-
ond subscript of each element. Each transition rate is
characterized by a so-called propensity function
α(X), where α(X)dt represents the probability that a
system variable will change during the infinitesimal
interval (t, dt) due to the activity of a reaction. Gen-
erally, the propensity function is the product of a sto-
chastic rate constant with a combinatorial factor
representing the number of different combinations of
reactant molecules that are available just before the
reaction.202 For instance, for a reaction between
X and Y, where NX and NY molecules are available,
respectively, the propensity is c � NX � NY.

Any increase in the probability Pk is driven by
transitions from other states Pm into Pk and can be
written as X

m

AkmPm: ð14Þ

The contribution of Pk to other states is formulated
analogously. CME can therefore be written as

dPk

dt
=
X
m 6¼k

AkmPm−AmkPkð Þ: ð15Þ

Because k is not a metabolite, but a possible state,
which is composed of the numbers of metabolite
molecules in each pool, the dimension of this system
may be very large even for relatively small systems.

In some chemical systems, some reactions are
very fast, whereas others are slow. Like for any other
system of ODEs, this difference in time scale may
lead to stiffness, which slows down typical integra-
tion algorithms.203 In both, stochastic and determin-
istic simulations, the apparent difference in time
scales may actually be due to very different concen-
trations among reactants. At any rate, if the fast reac-
tions are not of interest, they may be removed by
grouping states that are connected through fast tran-
sitions, which possibly remedies the problem.204

Another speed-up was proposed by López-Caamal
et al.205 who reduced the order of the model by
reformulating the propensities as Michaelis-Menten
terms. Wu et al.206 showed how the propensity of a
stochastic simulation is to be derived from the

continuous analog. Hahl and Kremling compared
CME and ODE methods207 and Ao incorporated sto-
chasticity into deterministic metabolic models.208

The typical approach to working with CME is
a Monte-Carlo simulation, which is often implemen-
ted as the Stochastic Simulation Algorithm (SSA).
This algorithm constructs numerical realizations of
the state of the system over time and averages the
results of many such realizations.201,209,210 Specifi-
cally, it computes the probability of the time to the
next reaction and the probability that the next reac-
tion is a particular reaction ri. Based on these prob-
abilities, the state of the system is updated. While this
algorithm captures the process appropriately, it is
computationally rather slow and can only be applied
to small systems, unless one uses high-performance
computing. The solution can be sped up, by maybe
one order of magnitude, with the τ-leaping method
which, instead of determining exactly which next
reaction fires when, performs all expected reactions
within an entire interval of length τ. Many implemen-
tations of this concept have been proposed.211–213 A
disadvantage of this method is that the error of the
approximation is difficult to assess.

A modeling language that organizes determinis-
tic and stochastic approaches under a unifying
umbrella is Petri net theory.214,215 This theory was
originally proposed in the 1960s as a formal lan-
guage for assessing network graphs,216 by character-
izing their topology, invariants, reachability, spaces
of possible states, and possible structural reduction.
To model metabolic networks, a Petri net model was
formulated as discrete-event system describing how
the state of the system changed from one time point
to the next.217–219 Nowadays, Petri nets may be con-
tinuous, in which form they are quite similar to typi-
cal kinetic ODE models that use as default rates
mass-action, Michaelis-Menten, or Hill representa-
tions. They may also be stochastic, where they funda-
mentally implement Gillespie’s ideas of randomly
timed reaction steps, or they can combine stochastic
and deterministic aspect in the form of Functional
Hybrid Petri Nets.198,218,220–226 This aspect is of par-
ticular appeal, as continuous systems are often sub-
ject to stochastic perturbations or delays, which can
be subsumed under the format of hybrid functional
Petri nets.

Outside Petri nets and stochastic models, rela-
tively few discrete approaches have been proposed to
model metabolism. Watson227 formulated metabo-
lism as a discrete optimization model. Manca
et al.228 developed a conceptual approach based on
membrane computing.229 Asenjo et al.230 combined
gene regulation with a metabolic network model in a
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discrete manner. Velez-Cuba and collaborators231

showed that Boolean, logical, and Petri net models
can be represented as time-discrete dynamical sys-
tems that may be analyzed with methods of computer
algebra. Nehaniv et al.232 formulated metabolic and
other biological systems in the language of automata.

In addition to typical simulations and steady-
state analyses, some types of ODE models permit a
very different type of exploration, namely, the appli-
cation of automated methods for algebraic model
checking.233–237 A good example is the Simpathica
software that explores the time-trajectories of models
with an automaton-based semantic language.238,239

This language permits answering questions about the
logical properties of the temporal evolution of a sys-
tem, such as: is the system able to reach a steady
state? Or: what are the possible bounds for the tra-
jectories of a particular dependent variable in the sys-
tem? The model checking language also contains
qualifiers such as eventually and always, as well as
their negation, which leads to the qualifiers never
and sometimes. As a specific example, a computer
algebra algorithm may check the truth of the expres-
sion Eventually(Always(zero-derivatives)), which cor-
responds to the situation that the system will
certainly approach a steady state for t going toward
infinity. In this manner, the system can qualitatively
reason about features of the system by using proposi-
tional temporal logic that succinctly and unambigu-
ously addresses ordered sequences of events. A
different type of metabolic model checking was pro-
posed by Gevorgyan et al.,240 who proposed algo-
rithms for the verification of the stoichiometric
consistency of a model.

A Glimpse of the Truth
Taking account of the great variety of representations
of metabolic processes, the question arises if it is at
all possible to identify the true functions governing
metabolism in vivo? The answer is probably not.
Nonetheless, it is possible to get a glimpse of what
such representations might look like. An approach
toward this aspect is Dynamic Flux Estimation
(DFE241). In a nutshell, DFE works by separating lin-
ear and nonlinear aspects of metabolic models
(Figure 3). The typical generic representation of a
metabolic model is the stoichiometric equation

_X=N�V; ð16Þ

where the metabolites Xi are the state variables and
_X is the corresponding vector of derivatives. The

stoichiometric matrix N captures the connectivity
between the fluxes and metabolite pools.

Given time series of metabolite concentrations,
the data trends are smoothed (e.g., Refs 242–244),
and it is possible to obtain estimates St1 ,St2 ,…, Stk of
the slopes _Xt1 , _Xt2 ,…, _Xtk at K time points, which are
substituted in Eq. (16). The result,

S=N�V; ð17Þ

with numerical values on the left-hand side, is a sys-
tem of linear algebraic equations in the flux values V.
The fluxes are unknown functions of metabolites,
but at each time point, Eq. (17) is a typical algebraic
matrix equation. Thus, DFE is an extension of
stoichiometric flux balancing into the dynamic,
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FIGURE 3 | Dynamic flux estimation (DFE). Beginning with the
diagram of regulated fluxes (Figure 1, bottom right), DFE separates
the linear stoichiometry from the nonlinear fluxes. Specifically, at a
series of time points, the distributions of fluxes are given by linear
algebraic systems. These systems are solved and flux values are
plotted either against time or against the variables that affect them.
One may attempt to find explicit functions for these plots or pursue
nonparametric modeling. The subsystem of K, L, M, and N is

demonstrated here with the model: _K = 1 – vKM ; _L = 0.2 – L
/(4 + L); _M = vKM + L /(4 + L) – 1.2 M 0.2; _N = 1.2 M 0.2

– 1.2 N 0.8;
vKM = K 0.4 N −1; (K0, L0 M0, N0) = (0, 8, 0.1, 10).
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nonsteady-state realm. It works quite well, if the avail-
able time series data capture the true trends in the data.

Under opportune conditions, N is square, so
that Eq. (17) can be solved at every time point; we
will discuss nonsquare matrices in a moment. The
solution is a numerical value of every flux in the sys-
tem at every time point. Collecting the values for a
particular flux Vi over time results in a plot of Vi ver-
sus time. Alternatively, Vi may be plotted against all
variables on which it depends, which include sub-
strates and modulators (see Figure 3). Again, such a
plot is a collection of points in a two- or higher-
dimensional space. Under the assumption that all
pertinent metabolites are included in this plot, the
plot is a representation of the true flux that is essen-
tially free of assumptions. One cannot tell from the
plot which mathematical formulation would opti-
mally capture it, but the plot itself is in some sense a
true image of the actual flux.

The stoichiometric matrix N usually has more
columns than rows, which prevents a direct matrix
inversion. One could use a pseudo-inverse to over-
come the issue, but the solution typically contains neg-
ative flux values, which are not appropriate if the
system was set up with fluxes pointing in the right
directions. As alternatives, several methods have been
proposed to obtain external information regarding a
few fluxes, which makes the system invertible.245–250

Similar issues of underdeterminedness have been
addressed in different ways with methods of metabolic
flux analysis251–253 and with the characterization of
elementary modes,254–256 although these analyses had
different goals.

The result of a DFE analysis not only shows the
shapes of all fluxes, either plotted against time or
against their contributing variables, but may also
provide hints that something is missing in the model.
As an example, Dolatshahi et al.249 discovered plots
that were not true functions of variables, but bent
back so that some substrate values were associated
with two flux values. This situation led to the tar-
geted, and ultimately successful, search of modula-
tors that had not been known for the species under
investigation, although they had been documented
for other species.15,16

A DFE analysis usually includes the attempt to
convert the metabolite-flux plots into explicit mathe-
matical representations. Sometimes the shape of the
plot suggests such a representation, but this is not
always the case (Figure 3). Nonetheless, this type of
fitting is much easier than for the entire ODE system,
as it involves one explicit function at a time. As an
intriguing novel alternative, which at first glance may
appear to be impossible, one can retool DFE for

nonparametric dynamic modeling.257 Specifically,
one forgoes the last step of flux identification and
instead enters the metabolite-flux relationships into a
library. This call-up library henceforth replaces
explicit functions, but still permits nonparametric
model analysis. This approach not only permits
dynamic simulations of what-if scenarios, but even
steady-state, sensitivity, and stability analyses.

STEP 4: ESTIMATION OF PARAMETER
VALUES FOR THE PROCESS
REPRESENTATIONS

It is quite evident that the parameter estimation step
is tightly connected to Step 3, because parameter
values can only be estimated if one has functional
representations of all processes that contain para-
meters. Similar to Step 3, parameter estimation
depends very much on the manner in which the
model is constructed.19 In the bottom-up approach,
where individual processes are modeled and then
assembled into the comprehensive model of interest,
parameter values are to be obtained for explicit func-
tions. If data were available for each process individ-
ually, the determination of parameter values would
be quite simple. However, this is almost never the
case, and one has to rely on literature values or on
kinetic parameters that had been obtained from
in vitro experiments. To what degree this in vitro–in
vivo extrapolation is justified and valid has been dis-
cussed widely in the literature (e.g., Refs 258–261).

If the model was constructed top-down from
series of metabolite concentrations, all parameter
values must be estimated simultaneously, which can
cause compensation of errors, as discussed before. In
these cases, one can easily identify quite a wrong
model which, however, only becomes evident when
new data are fitted with the same model, and the
model may fail quite spectacularly. Presently the only
systematic rescue from this trap of compensation
appears to be DFE. In all other cases, error compen-
sation and numerous technical challenges can make
the parameter estimation step very difficult. Corre-
spondingly, a Google Scholar search for Parameter
Estimation yields more than 3.6 million hits.
Uncounted reviews have been published describing
these challenges, even within the field of biology
alone, along with a wide variety of possible
solutions.148,262–280 Unfortunately, powerful reverse
engineering and parameter estimation algorithms
from other fields are often not easily applicable as
they require long, dense time series.281,282 In spite of
strong, concerted efforts, the scientific community is
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still awaiting effective solutions that work in most
applications. As an aside, parameters in biology are
often affected by the lab executing the experiments,
so that they are not absolute and should not be over-
interpreted. Instead, the more important questions in
many cases should be whether a model offers new
insights and explanations and whether it is capable
of capturing novel situations.

In addition to not being able to obtain good
solutions, parameter estimation can lead to entire
domains of combinations of parameter values that
yield essentially equivalent solutions. This issue of
sloppiness has been discussed frequently in recent
times (e.g., Refs 283–296). Thus, in some cases, there
are no good solutions, and in other cases, there are
arguably too many. In yet other cases, one obtains a
good fit, but this fit is inappropriate for other rea-
sons.297 One solution to this conundrum is to accept
the fact that many parameter combinations may be
equally good and search not for one optimal solu-
tion, but for an entire ensemble of well-fitting
models.298–303

DISCUSSION

The purpose of this review was to present the many
options the metabolic modeler has for structuring a
model and setting up process representations. The
challenge of model selection may sound almost philo-
sophical, but it is very real and has a direct impact
on the practice of metabolic modeling.

The title of the review alluded to the identifica-
tion of the best models of metabolism, and given the
diversity presented here, there is indeed a good
chance that the best models available today are
somewhere mentioned in this report. But which ones
are they? Before selecting models that may serve at
least as the best defaults, one must keep in mind that
all descriptions of enzymatic processes are approxi-
mations. There are no true representations, and the
question is therefore which type of approximation is
in some sense better than others. Also, one must not
forget that the quality or superiority of a model in
comparison to others does not necessarily lie in its
simplicity or complexity, but is to be judged by how
well the model answers the questions that triggered
the modeling process in the first place.10 As a conse-
quence, there will never be a single model type that is
best for all purposes, because different modeling
goals impose contradictory demands: A model for

determining the dose of a drug presumably needs to
be as comprehensive as possible, whereas a model
revealing the essence of a phenomenon should proba-
bly be as simple as possible.

Keeping these fundamental caveats in mind, I
would like to proffer some suggestions, based on sev-
eral decades in the field. In most real-world systems,
the numbers of substrate and enzyme molecules are
presumably sufficient to allow for the type of aver-
aging that is common to ODE models. Furthermore,
throughout almost half a century, the use of power-
law functions has proven to strike a good balance
between their ability to capture complex phenomena,
their mathematical tractability, and their numbers of
parameters. For theoretical studies, such as the search
for design and operating principles, the S-system for-
mat is an excellent starting point, because it permits
algebraic computations of steady states, stability,
static and dynamic sensitivities,304–306 and more
complex features such as bifurcations to limit
cycles,307,308 and structural design space
analysis.309–313 To judge this advantage as trivial
would be a mistake, because this computability opens
further analytical avenues, which are not available if
the steady state for every new model setting has to be
determined with a search algorithm.104 For applied
simulation studies, the S-system’s close cousin, the
GMA model, may be the preferable default. This for-
mat is more intuitive, because every process in the
system corresponds uniquely to a term in the ODEs,
and every quantity within a term has a unique mean-
ing as ‘the strength of the effect of a variable on a
specific process.’ It is easy to account for modulators
in GMA models, and when more variables are
included in the model, the number of parameters
grows only modestly, at least in comparison with
other options. Of course, power-law frameworks do
not shed light on reaction mechanisms and they do
not really allow spatial or stochastic aspects to be
analyzed. But taking all arguments together, power-
law models are so transparent, have so many advan-
tages, and make so few assumptions, that they offer
a great balance between validity and tractability.
Finally, if good time-series data are available, DFE
offers insights unmatched by any other formalism.
The required datasets are still rare, but will be much
more commonplace in the near future. Analyzing
many of such datasets with DFE might indeed offer
us insights into the true functional shapes of simple
or complex metabolic processes.
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