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Over the past decade, the biomathematical community has devoted substantial effort to the complicated
challenge of estimating parameter values for biological systems models. An even more difficult issue is
the characterization of functional forms for the processes that govern these systems. Most parameter
estimation approaches tacitly assume that these forms are known or can be assumed with some validity.
However, this assumption is not always true. The recently proposed method of Dynamic Flux Estimation
(DFE) addresses this problem in a genuinely novel fashion for metabolic pathway systems. Specifically,
DFE allows the characterization of fluxes within such systems through an analysis of metabolic time ser-
ies data. Its main drawback is the fact that DFE can only directly be applied if the pathway system con-
tains as many metabolites as unknown fluxes. This situation is unfortunately rare. To overcome this
roadblock, earlier work in this field had proposed strategies for augmenting the set of unknown fluxes
with independent kinetic information, which however is not always available. Employing Moore-Penrose
pseudo-inverse methods of linear algebra, the present article discusses an approach for characterizing
fluxes from metabolic time series data that is applicable even if the pathway system is underdetermined
and contains more fluxes than metabolites. Intriguingly, this approach is independent of a specific mod-
eling framework and unaffected by noise in the experimental time series data. The results reveal whether
any fluxes may be characterized and, if so, which subset is characterizable. They also help with the iden-
tification of fluxes that, if they could be determined independently, would allow the application of DFE.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A central challenge of computational systems biology is the
translation of biological systems into mathematical models.
Addressing this challenge critically depends on two components:
data of high quality and effective strategies for model design, diag-
nostics, and analysis. The translation process itself consists of two
steps, namely the determination of suitable mathematical repre-
sentations and the identification of values for the parameters in
these representations. Recent years have witnessed enormous ef-
forts in the area of parameter estimation, indicating that parameter
estimation is an unavoidable and very difficult task that is not yet
completely solved (e.g., [1-5]). Some of its difficulties are of com-
putational nature, while others are due to the noisiness of biolog-
ical data and the fact that several computed solutions often lead to
similarly good data fits [6-11].

The parameter estimation task is not only difficult; it also
makes a fundamental a priori assumption, namely, that the math-
ematical structure of the model representing the given data is
known. However, this assumption is seldom entirely true; in fact,
one could legitimately ask whether we ever truly know the
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structural format of a model in biology. The choice of a particular
structure for a given modeling task may be rationalized in various
ways. The traditional argument has been that certain functions or
models had been used frequently and successfully in a particular
biological subfield and therefore had developed into default repre-
sentations. A good example in ecology is the Lotka-Volterra (LV)
model, which describes the time-dependent changes in population
sizes by linear and binomial terms that represent interactions
among the various pairs of populations [12-15]. LV models have
been very successful, but no ecologist would claim that they cap-
ture the dynamics of ecosystems in their full complexity. A second
example is the Michaelis—Menten function [16], which was derived
from a conceptual scheme describing the enzyme catalyzed con-
version of a substrate into a product under idealized conditions.
Although these conditions are seldom present in real cells
[17,18], this function has been used as a default in thousands of
biochemical studies, and even in cases that have not much to do
with enzyme catalysis, such as the uptake of nutrients through
the root system of a plant [19].

The choice of an appropriate model becomes more complicated
in cases where the processes to be represented are aggregates of
several steps [20,21]. An example is the ubiquitous effect of an
extracellular ligand or an intracellular process like gene expres-
sion. At a coarse level, this effect is direct: if the ligand is present,
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a gene becomes expressed, and without a ligand, the gene is more
or less silent. However, any description of this relationship in detail
becomes exceedingly difficult, as it typically would have to account
for physical changes in the conformation of the receptor, an entire
signaling cascade, the translocation of a transcription factor, as
well as the transcriptional machinery.

The alternative to an a priori assumption of a particular func-
tional form is the use of a ‘canonical’ approximation, which is a
representation that is based on theory, always leads to the same
mathematical structures, and therefore permits streamlined analy-
ses. The LV models mentioned earlier, as well as power-law models
of Biochemical Systems Theory (BST; [4,18,22,23]) and linear rep-
resentations fall into this category. The advantages of these repre-
sentations include their guaranteed appropriateness at some
operating point of choice, generality in applications, mathematical
and computational tractability, and the fact that these types of
models, at least initially, require very few application-specific
assumptions. Nonetheless, canonical models are not necessarily
the perfect answer to the question of what an appropriate repre-
sentation of a process should look like, because they are not mech-
anistic and their parameters therefore do not have a mechanistic
meaning. Also, like all other representations, they have by defini-
tion a limited range of valid approximation, and the size of this
range is almost always unknown and difficult to assess.

The question thus arises whether it is possible to infer mathe-
matical descriptions that adequately represent the true biological
process without introducing too much bias. In an attempt to ad-
dress this question for metabolic pathway systems, we recently
proposed the method of Dynamic Flux Estimation (DFE; [24]),
which is briefly reviewed in a later section. DFE uses as input the
topology of a pathway system, together with time series measure-
ments of the involved metabolites over a sufficiently wide time
horizon. Of note is that DFE presupposes no knowledge or assump-
tions regarding the processes governing a metabolic system, but
only of the topology of the network. In ideal cases, the input infor-
mation is sufficient to prescribe a straightforward strategy for
characterizing trends of all processes as they change over time or
as they are affected by metabolites and modulators in the system.
These resulting trends are not given as numerical functions, but as
graphical representations. These plots, in turn, can directly be used
for further analysis or allow the testing of numerically specified
candidate functions. Thus, in contrast to identifiability tasks, which
have the goal of determining optimal numerical settings for a mod-
el, the first phase of DFE addresses a characterizability task that
precedes the identification of functional forms and parameters in
the second phase.

Unfortunately, the ideal conditions allowing such an unbiased
flux characterization are not often given. In particular, most meta-
bolic pathway systems contain more fluxes than metabolite pools,
and this discrepancy leads to a stoichiometric matrix of the flux
system that has less than full rank (see later). Thus, unless addi-
tional information on sufficiently many fluxes is available, DFE
cannot be applied. It is not even clear which fluxes would need
to be identified independently to permit subsequent DFE. Discus-
sion of this issue has led to suggestions for potentially helpful addi-
tional information, which could come from different sources. For
example, in addition to the metabolic time series one might have
measurements of some in- or effluxes. One might also be able to
assume a flux representation from generally accepted Kkinetic
knowledge [25]. If sufficiently many fluxes can be numerically
characterized in this manner, the remaining fluxes can be com-
puted in a point-wise fashion, as it is done in DFE with a system
of full rank. If the data are rich enough, it is also sometimes possi-
ble to infer some fluxes from the data themselves [26].

This article presents an extended, general strategy for charac-
terizing fluxes for pathway systems where the original DFE

strategy is insufficient. The strategy uses a pseudo-inverse matrix
method that reveals which reaction steps in a system are uniquely
characterizable if time series data are available, even if the system
is underdetermined. Secondly, the method permits the scanning
for those reaction steps in a pathway system that, if they could
be characterized independently, would be most beneficial for a
subsequent DFE analysis. Intriguingly, the characterizability meth-
od proposed here is model free and uses only the topology of the
pathway system, but no knowledge of regulatory features or spe-
cific time series data. The immediate result is a list of all reaction
steps that could be uniquely characterized in a DFE sense if time
series were available. Of course, the actual characterization of dy-
namic trends requires data, and a correct interpretation of these
trends requires knowledge of the regulatory control patterns of
the system.

2. Methods
2.1. Metabolic time series data

Modern 3C- and 3'P-NMR methods permit the non-invasive
determination of the concentrations of substrates and intracellular
metabolites in living cell cultures. These measurements can be
made every 30 s or even faster, thereby leading to dense metabolic
time series data on the same cells and under the same conditions.
In some sense, these data reflect all metabolic activities in these
cultures, at least in principle. Examples of such data and their anal-
ysis can be found in [9,27-29].

Mass spectrometry (MS) has advanced to a point where very
many metabolites in very small quantities can be identified simul-
taneously. While the method is destructive and requires the run-
ning of standards, it can be used to generate time series data as
well. As an example, Kinoshita and colleagues measured metabolic
time-courses of human red blood cell exposed to hypoxia, using
capillary electrophoresis coupled to time-of-flight MS [30]. Other
destructive methods, including liquid and gas chromatography,
can similarly be used to establish metabolic profiles over relevant
time horizons.

2.2. A brief review of dynamic flux estimation (DFE)

2.2.1. Rationale
The generic format of ODE models for metabolic systems is
X
s X=N:-R (1)
In this generic formulation, X is the vector of metabolite con-
centrations, N is the stoichiometric matrix, and R is a vector con-
taining the specific reactions in the pathways. The stoichiometric
matrix describes which variables are involved in which reaction
[31-33]. An example is the branched pathway system in Fig. 1,
which consists of one independent variable (X;), three dependent
variables (X1,X3,X3) and five reactions (v4,...,vs), and has the stoi-
chiometric matrix

Fig. 1. Branched pathway with one feedback signal.
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1 -1 -1 0 O
N=|(0O 1 0 -1 O (2)
0o 0 1 0 -1

The positive and negative entries in N correspond to influxes
and effluxes associated with each metabolite pool, respectively.
Thus, the second row indicates that X, receives input through reac-
tion v, (element N5 ,) and loses material through v, (element N5 4).
Independent variables and regulatory signals are not explicit in N.

Of particular interest is that the formulation in Eq. (1) separates
the topology of the pathway, which is represented by N, from all
numerical information, including regulatory effects; this informa-
tion is exclusively taken into account by the vector of reactions,
R. In particular, an explicit formulation of R exhibits the mathe-
matical format of the representations of reactions, while N does
not. For instance, each v; in R could be a Michaelis—-Menten func-
tion, a power-law function, or have some other mathematical
structure.

DFE capitalizes on the linearity of the system description in Eq.
(1) with respect to the reactions. Specifically, at any given point in
time, Eq. (1) is a system of linear equations, where the derivative
on the left-hand side equals a sum or difference of flux values at
the same time point. The derivative can be estimated from the time
series data, because it is the slope of the corresponding metabolite
at the same time point [34-36]. As a result, the slope of a variable
at a given time point is equal to a linear function of flux values.

2.2.2. lllustration example

For a simple illustration of DFE, consider the linear pathway
with feedback shown in Fig. 2. Suppose that, in a laboratory exper-
iment, the substrate X, had been supplied externally and that the
uptake v; had been measured at several time points. Suppose fur-
ther that time series data had been obtained for X; and X, and that
slopes of the time courses were estimated with some accuracy. Ide-
alized, noise-free data of this type are shown in Fig. A.1 and
Table A.1 of the Appendix.

For this demonstration, artificial data were generated with the
following system

Xo = —0.2X,
X1 = 0.2X, — 0.6X%°X,°? 3)
X, = 0.6X9°X,%% — 0.75X98

and the initial values Xp = 10, X; = 2, X5 = 1. In reality, just the data
in Fig. A.1 would be available, whereas the format and parameteri-
zation of the equations in (3) would be unknown.

The time series data are first used to estimate the slopes S; and
S,, of X1 and X; respectively, at a series of time points t;, i=1,.. .,k
(cf. [34-36]). With these estimates (Table 1), the system can be
reformulated symbolically as k pairs of equations of the form

S] (f,‘) =W (l’i) — Vz(t,‘)
Sz(t,‘) = Vz(t,‘) - V3(f,‘)
fori=1,...,k. For this simple case, it is easy to express the fluxes as
functions of measured slopes; in a realistic application, this step

would require a matrix inversion. For the illustration example,
one obtains

(4)

Fig. 2. Linear pathway with an external substrate input, two internal metabolites,
and one feedback inhibition signal.

)

so that the fluxes are expressed in terms of the slopes and the mea-
sured values of v;. The direct results of DFE are thus point plots of v,
and vz against time or against X; and X,. As an example, Fig. 3 shows
connected plots of v, against X; and X,. The structural and numer-
ical identification of functions that best fit these plots is still to be
done, and general guidelines do not exist for this task. Nonetheless,
the task is much simpler now, because the identification of explicit
functions can be done from plots that graph these functions, rather
than from combined processes that govern the dynamic time
courses of the ODE system. By characterizing the fluxes individu-
ally, many problems associated with error compensation and
extrapolability are mitigated [24].

2.2.3. Shortcomings of DFE

The Achilles heel of DFE is the requirement that the system con-
tain as many reactions as metabolites, which is usually not the
case. If equality is not given, a direct application of DFE stalls. To
ameliorate the situation, it is sometimes possible to characterize
a sufficient number of fluxes outside DFE. For instance, the kinetic
characteristics of a reaction may be known, and since metabolite
time series data are available, one may convert this information
into a functional representation of the reaction [25]. By thus aug-
menting the system, the system matrix might eventually have full
rank, so that DFE can be applied. While this augmentation fills the
rank, it introduces a certain degree of bias, due to the assumption
of a functional format and appropriate kinetic parameters.

If the data are non-monotonic or if sufficiently many datasets
are available, it is sometimes possible to augment DFE purely
based on the time series data. The method is somewhat cumber-
some, but leads to success if the data allow [26].

2.3. Application of the Moore-Penrose pseudo-inverse to DFE

This article does not address an augmentation of DFE but the
question of whether at least some reactions can be characterized
even if the matrix is non-square or does not have full rank, and if
so, which reactions are characterizable and which are not. This
information is very useful for selecting possible augmentation
schemes. The method is directly based on pseudo-inverse matrices.

Elementary linear algebra tells us that we can invert a matrix if
it is square and has full rank. The premier application of such an
inversion is the task of solving linear algebraic equations. However,
if the system matrix is “tall,” i.e., if there are more equations than
unknowns, the system tends to be over-determined, and a true
solution cannot be found. The best outcome is a solution that does
not satisfy all equations but is optimal in the sense of linear regres-
sion; that is, it minimizes the overall squared-residual error. If the
matrix is “wide,” because the system contains fewer equations
than unknowns, the solution tends to be under-determined, and
in most cases infinitely many solutions can be found that satisfy
all equations. As discussed before, this situation is typical for DFE
and of most interest here.

A method for dealing with the inversion of systems that do
or do not permit a unique solution uses the Moore-Penrose
pseudo-inverse, which is a generalization of the matrix inverse of
elementary linear algebra. The literature is quite rich (e.g., [37-
41]), and even Wikipedia presents a good introduction. The pseu-
do-inverse of matrix N is commonly called N*. Two features asso-
ciated with the pseudo-inverse are of pertinence here. First, for
an underdetermined system Nv=b, the solution z=N'b is the
solution of the system that satisfies the Euclidean 2-norm; that
is, it corresponds to the smallest distance from the origin among
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Table 1
Metabolite concentrations and slopes associated with the simple pathway system in Eq. (3).
t Xo vy Xq Xa M S
0 10 2 2 1 1.151472 0.09852814
1 8.187308 1.637462 2.880906 1.142217 0.6457941 0.1574867
2 6.703201 1.34064 3.342895 1.286703 0.2975619 0.1254981
3 5.488117 1.097623 3.507693 1.388293 0.04525962 0.07727053
4 449329 0.898658 3.456303 1.442177 —0.1380429 0.03144606
5 3.678795 0.7357589 3.24938 1.453391 —-0.2678741 —0.007870263
6 3.011942 0.6023885 2.934854 1.428643 —0.3547169 —0.04059536
7 2.46597 0.493194 2.551702 1.374082 —0.4062285 —0.06767775
8 2.018965 0.4037931 2.132225 1.294808 —0.4282133 —0.09019441
9 1.652989 0.3305978 1.703618 1.1949 —0.4251398 —0.1090841
10 1.353352 0.2706705 1.289138 1.077603 —0.4004636 -0.1250771
11 1.108031 0.2216061 0.9089883 0.945547 —0.3568811 —0.1386591
12 0.9071783 0.1814357 0.5809344 0.8010357 —0.2966265 —0.1499712
13 0.7427346 0.1485469 0.3205111 0.6465308 —0.2220953 —0.1584515
14 0.6080996 0.1216199 0.1400759 0.4858637 -0.137816 —0.1615551
15 0.4978698 0.09957397 0.04385477 0.3280041 —0.05745645 —0.1504126
16 0.4076214 0.08152427 0.01288757 0.1956741 —0.01286664 —0.1089796
17 0.3337321 0.06674643 0.005798956 0.1125757 —0.003972747 —0.05996322
18 0.2732368 0.05464735 0.003036819 0.06852463 —0.001871244 —0.03133076
19 0.2237073 0.04474147 0.001679863 0.04511861 —0.000958626 —0.01718472
20 0.1831561 0.03663122 0.0009648202 0.03176125 —0.00052187 —0.01033442

Fig. 3. Plots, derived from DFE, of v, against X;, X5, and both.

all possible solutions'. Second, to find the entire solution of an
underdetermined system Nv = b, one computes a particular solution,
which is given as N*b, and computes

v=N'b+[I-N'Nw (6)

where I is the identity matrix and w is an arbitrary vector, both of
the appropriate dimensions. For simplicity of the following discus-
sion, we denote with D the matrix of the differences between the
identity and the product N*N:

D=I-N'N (7)

D spans the same space as the kernel of N. N * and D are easily com-
puted in Matlab with the pseudo-inverse function pinv(N). Instead
of computing D, one may also use the Matlab function null(N),
which computes an orthonormal basis of the null space of N.

One should note that the Moore-Penrose pseudo-inverse is not
the only possible mechanism for identifying a generalized matrix
inverse [42]. However, it satisfies our needs here and is therefore
considered sufficient.

3. Results
3.1. General insights

Both N and D can be applied directly to DFE, with D actually
being more informative than N*. The minimum-norm solution, gi-

! Traditionally, linear algebra uses the notation A x = b for these types of analysis.
Here, all considerations refer to stoichiometric systems, which are more intuitively
represented as N v, and using the notation A x seems more confusing than helpful.

ven by N*, does provide a solution, but unless the system happens
to have a unique solution, some fluxes in v=N'b are bound to be
negative, and therefore biologically meaningless. Thus, N* contains
pertinent information, but this information is more easily inter-
preted in the matrix D, which is derived from N*, or from the kernel
null(N), whose computation leads to the same conclusions, as we
will see in the examples.

In the special case where D consists entirely of 0’s, N * actually
is identical to the regular inverse and the solution is uniquely given
by the minimum-norm solution, which in this case is biologically
meaningful. This result is not surprising. More interesting, if D con-
tains a row of 0’s, the corresponding flux in the general solution is
unaffected by the arbitrary vector w. Thus, given time series data,
this flux can be characterized uniquely, in a DFE sense where it can
be plotted against time or against its contributing metabolites. If
several rows exclusively contain 0’s, all corresponding fluxes are
uniquely characterizable.

If two rows of D are identical, but not 0, the corresponding
fluxes are affected by the arbitrary vector w in the same manner.
These fluxes tend to correlate with each other and are often found
to be associated with the same variable or with a chain of reactions
within the pathway. It seems difficult to extract more pertinent
information from the identity of non-zero rows (see numerical
example at the end of the Results section).

Intriguingly, the characterizability analysis does not require
knowledge of the vector b in Eq. (6). In DFE, this vector contains
the left-hand sides of the differential equations, which consist of
slope estimates. In addition, the vector may contain known flux
values within the system, which as numerical values can be moved
from the right to the left side of Eq. (6). Thus, the above statements
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regarding D are independent of actual time series data, so that is-
sues of noise are immaterial at this point. Expressed differently, the
analysis of flux characterizability can be performed without actual
data, because it is exclusively based on the topology of the
pathway.

As a consequence, the statements above hold even if the fluxes
are regulated by metabolites in the system, for instance, through
feedback inhibition. This result is due to the fact that all informa-
tion regarding the metabolic regulation of the pathway exclusively
affects b, but not N, N*, or D, so that regulatory features are not rel-
evant for this characterizability analysis.

Finally, if D does not have desirable features, its computational
analysis may help identify additional experiments that, for in-
stance, would render rows of D to become zero. Specifically, one
may scan the system matrix N for non-zero elements, set these
to zero, one at a time or two at a time, and study whether these
changes would result in rows of zeros in D. The interpretation of
this strategy is the following: setting a non-zero entry of N to zero
means characterizing the corresponding reaction step over the
time points of the experiment with independent means. Because
the measured flux values can be merged with the slopes in the cor-
responding equation(s), they move from N, N*, and D to b. An
example is provided in the section Larger Systems. Other examples
are discussed in [25].

3.2. Illustration examples

The power of the analysis of D becomes evident most easily in
small examples. They consist of pathways with a few variables
and fluxes. It is immaterial in these examples whether the fluxes
are regulated by any of the metabolites, as was discussed before.
This regulation is of course very important, but it exclusively en-
ters the numerical values in b and does not affect N, N*, or D.

3.2.1. Branched pathway with accumulation
Consider the pathway in Fig. 4a which consists of three vari-
ables and four reactions. The corresponding flux matrix is

1 -1 0 -1
N=[0o 1 -1 o[ (8)
00 1 0

N* is computed in Matlab as pinv(N), and the result is

05 05 05
0 1 1

N = 0 0 1 ©)
~05 -05 -05

Furthermore we obtain D directly as D=1 — N*N:

05 0 0 05
0 00 O
0 00 O
05 0 0 05

(10)

The second and third rows consist of zeros, indicating that time
series data would allow the unique characterization of v, and vs.
Furthermore, the first and fourth rows are identical, which implies
that v; and v, are affected in the same fashion by an arbitrary vec-
tor w. These findings make intuitive sense: the flux vs is character-
izable from time measurements on X3, and v, is uniquely
determined by v3 and the measured levels of X,. By contrast, any
increase or decrease in v; can be compensated by a corresponding
change in v,4, without changing X;, and the two are therefore cou-

pled. This coupling is generally complicated and nonlinear, and de-
tails depend on the numerical features of the pathway and its
regulation (see numerical example at the end of the Results
section).

Using the Matlab function null(N), instead of pinv(N) and D, re-
veals that the basis of the kernel consists of the vector
(0.7071,0,0,0.7071)", thus indicating again that v, and vs are char-
acterizable from time series measurements.

Variation 1. Assume that v, does not exist or is obtainable
numerically with other means, so that it can be merged with the
estimated slopes Si(t;) (Fig. 4b). The only difference to the proto-
type above is that matrix element N; 4 equals 0. Except for possible
slight numerical inaccuracies, it is immaterial whether the earlier
4 x 3 matrix is used and N, 4 is changed from —1 to O or if one de-
fines a 3 x 3 matrix, which consists of the first three columns of the
earlier matrix. In the first case, N* has four rows, with the fourth
row consisting of 0’s. In the second case, N* only contains the first
three rows:

111
N'=[0 11 (11)
00 1

D consists entirely of zero’s, within machine precision. Thus, N*
is identical to the regular inverse, and the system is fully identifi-
able. This again makes intuitive sense, as the fluxes may be identi-
fied in backwards order, starting with vs. Computing null(N) leads
to the same conclusion.

Variation 2. Based on Variation 1, assume that there is an efflux
from X3 (Fig. 4c). Now the stoichiometric matrix is

1 -1 0 0
N=|[0o 1 -1 0 (12)
00 1 -1

and we obtain

075 05 025

-025 05 025
N = 13
-025 -05 025 (13)

-025 -05 -0.75
and

025 025 025 0.25

D 0.25 025 025 025 14
~ 1025 025 0.25 025 (14)

025 025 025 025

No row of D is zero, and therefore no flux can be characterized
uniquely. At the same time, all rows are identical, and the same
transformation by w is to be applied to all reactions steps. Given
the strict linear nature of the pathway, the result says that all
fluxes have to increase or decrease in lockstep.

Variation 3. Let’s return to the original pathway with two
branches at X;, but assume that there is no influx to X; (Fig. 4d)
or that it can be measured independently. The stoichiometric ma-
trix and its pseudo-inverse are

-1 -1 0

N=| 1 0 -1 (15)
0o 0 1

and
0 1 1

N=] -1 0 -1 (16)
0 0 1

10.1016/j.mbs.2013.01.008
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Fig. 4. Different variants of a branched pathway. For the characterizability analysis proposed here, it is immaterial whether any of the reaction steps are regulated by

metabolites of the system.

D is zero. The interpretation is that, since there is no influx to
the system, the change in X;, which gave the system one degree
of freedom before, is now governed by v; and v3, and v, receives
all material not flowing into the direction of v;.

Variation 4. We start again with the original pathway
but account for an efflux from Xs; (Fig. 4e). Now the sys-
tem has three variables and five fluxes. Its stoichiometric
matrix is

1 -1 0 0 -1
N=[0 1 -1 0o o | (17)
00 1 -1 0

The pseudo-inverse is

04286 0.2857 0.1429
-0.1429 05714 0.2857
N*=| —0.1429 04286 0.2857 (18)
-0.1429 04286 -0.7143
-0.4286 -0.2857 -0.1429
and we obtain
0.5714 0.1429 0.1429 0.1429 0.4286
0.1429 0.2857 02857 0.2857 -0.1429
D= 01429 0.2857 02857 02857 -0.1429
0.1429 0.2857 0.2857 0.2857 -0.1429
0.4286 -0.1429 -0.1429 -0.1429 0.5714

(19)

Rows 2, 3, and 4 of D are identical, which implies parallel shifts in
rates v,, v3,and v4. Rows 1 and 5 are not identical, but row 5 is equal
to the difference between row 1 and row 2 (or 3 or 4), thus pointing
to a rank of 2 and thus to two degrees of freedom, namely in the
amount of influx, and the subsequent split between v, and vs.

3.2.2. Pathway with reversible reaction

The pathway in Fig. 5a is linear but contains one reversible reac-
tion. If we can justify the replacement of the forward and reverse
steps with a single net reaction step, the system reduces to a fully
determined example, as it was discussed before. However, if this

substitution is not a priori justified, the stoichiometric matrix must
account for three metabolites and four reactions. It has the form

1 -1 1 0
N=[0 1 -1 -1]. (20)
0 0 0 1
N and D are
1 1 1
0 05 0.5
+_
N = 0 -05 -05 (21)
0 0 1
and
0 O 0 O
0 05 05 0
P=10 05 05 0 (22)
0 O 0 O

The interpretation of D is straightforward: reactions v; and v4
are characterizable from time series data, while v, and v3 are not
fixed but have to be changed at the same rate. Using null(N) rather
than computing D, we obtain the basis column vector
[0,0.7071,0.7071,0]", which leads to the same conclusion.

Variation 1. Suppose the same system does not have an influx
(Fig. 5b) or that this influx is measurable with other means, so that
it can be merged with slope estimates. Now the system has three
variables and three reactions, and one may be led to assume a un-
ique solution. The stoichiometric matrix is

-1 1 0

N=[1 -1 -1 (23)
0O 0 1

N and D are

—-0.3333 0.1667 0.1667

N™ = 0.3333 -0.1667 -0.1667 (24)
—0.3333 -0.3333 0.6667

and
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Fig. 5. Linear pathways with one reversible reaction.

05 05 0
D=|05 05 0. (25)
0 0 0

Although there are three metabolites and three reactions, only
one reaction is characterizable, whereas the other two are not:
they permit equal scaling. Even if v3 could be independently mea-
sured, it would not ameliorate the situation. By contrast, if v, v, or
their ratio could be measured, DFE could be applied.

3.2.3. Larger systems

The proposed extensions of DFE via pseudo-inverses are in prin-
ciple independent of scale. However, one must expect that larger
systems will often have higher degrees of freedom and therefore
elude characterization. Nonetheless, the analysis may point to
key reaction steps which, if they could be determined indepen-
dently, would lead to a higher degree of characterizability. As an
example, consider the branched pathway with five metabolites
and seven reaction steps, which is an extension of the first set of
examples (Fig. 4f). The stoichiometric matrix is thus 7 x 5 (not
shown) and D is 7 x 7:

04 02 02 0.2 0.2 0.2 0.2
0.2 0.2667 0.2667 —0.0667 —0.0667 0.2667 —0.0667
0.2 0.2667 0.2667 —0.0667 —0.0667 0.2667 —0.0667
D=| 0.2 -0.0667 —0.0667 0.2667 0.2667 —0.0667 0.2667
0.2 —-0.0667 —0.0667 0.2667 0.2667 —0.0667 0.2667
0.2 0.2667 0.2667 —0.0667 —0.0667 0.2667 —0.0667
0.2 -0.0667 —0.0667 0.2667 0.2667 —0.0667 0.2667
(26)

Inspection of D indicates that rows 2, 3, and 6 are identical and
that 4, 5, and 7 are identical. Thus, the corresponding reactions in-
crease or decrease in parallel. Furthermore, there is a linear depen-
dence, for instance, in the form of Row1 =Row2 + Row4. If the
effluxes vg and v, could be measured, columns 6 and 7 of the stoi-
chiometric matrix would consist only of zeros, and so would the
first five rows of D. Thus, the entire system would be
characterizable.

As an alternative to D, we may compute the null space of N with
the Matlab function null(N), which directly yields a result with the
same information content, but which is less redundant, namely

[ 03313 0.5387]
05134 0.0555
05134  0.0555
null(N) = | —0.1821 0.4832 (27)
~0.1821 0.4832
05134 0.0555
| -0.1821 0.4832 |

As in D, rows 2, 3, and 6 are identical, and rows 4, 5, and 7 are
identical. Furthermore, row1 = row2 + row4. Using the same argu-
ments as before, we can conclude that v is characterizable.

In more complicated cases, the null space may be subjected to
additional analyses. For instance, it might be useful to perform
the so-called varimax rotation [43], which is commonly used in
principal component analysis [44], where it assists in the identifi-
cation of a new coordinate system in which a few variables are
dominant and all others are close to zero. This change of coordi-
nates and identification of near-zero variables could lead to addi-
tional insights into the structure of the null space and thus the
metabolic system.

As a different scenario, suppose v, could be measured indepen-
dently. The characterization would in effect split the pathway into
two smaller pathways, and it is clear that v; and vg could directly
be characterized. Furthermore, the remaining fluxes (vi — v3), V4,
vs, and v; would be similarly scaled by any vector w, and additional
independent determination of v; would make the entire system
characterizable from time series data.

As a second example of affecting the stoichiometric matrix, con-
sider a pathway with an internal loop, as shown in Fig. 6. The stoi-
chiometric matrix is

(1 -1 0 1 0
N=(0 1 -1 0 -1 (28)
10 0 1 -1 0
and D is
0375 025 -0.125 -0.125 0.375
0.25 0.5 0.25 0.25 0.25
D=| -0.125 025 0375 0375 -0.125 (29)
-0.125 025 0375 0375 -0.125
0375 025 -0.125 -0.125 0.375

Rows 1 and 5, and 3 and 4, are identical and imply parallel scal-
ing, which is consistent with intuition. Furthermore, Row2 = -
Row1 + Row3. If the details of the internal loop are not of
particular interest, the metabolite pools of X5, X3, and X4 could be
merged, and the overall influx and efflux would be v; and vs, which
would still allow one remaining degree of parallel scaling.

3.2.4. Example of actual characterization

Suppose the pathway under study is similar to the prototypes in
Fig. 4, but contains two regulatory signals (Fig. 7). For illustration
purposes we assume that the system can be modeled with a Gen-
eralized Mass Action within Biochemical Systems Theory [23], but
except for simulating time series data, we pretend not to know the
governing equations. As a numerical illustration, and without any
particular reason for the choice of parameter values, the describing
model is shown in Eq. (30)

X1 =0.05 - 1.1X9°X;°7° — 2.8x98x%4
Xy = 1.1X9°X;°7 — 1.1x5° (30)
X3 =1.1X98

The pathway is easily simulated once initial values are chosen;

for instance, (X;(0), X2(0), X5(0))=(4,1,2). The resulting time
courses are shown in Fig. 8. In reality, this would be the only input
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information, outside the pathway topology. Also in reality, one
would now estimate slopes for all variables at sufficiently many
time points. Here we can simply compute these slopes.

The stoichiometric matrix, the pseudo-inverse, and D are iden-
tical to those in the original branched pathway example (Egs. (8)-
(10)). The earlier analysis showed that v, and v4 are characteriz-
able, while v; and v4 are coupled, probably in a nonlinear fashion.
Suppose we had estimated slopes from data following the trends in
Fig. 8. At t = 0, the vector of slopes for X;, X,, and X3, which in this
illustration was taken from the simulation, is
S =(-9.746,0.2081,1.1); earlier, this vector was generically called
b. In this example, b exists exclusively of slopes, while it could,
in other cases, also contain numerically known fluxes. N* and S al-
low us to compute the minimum-norm solution, which is

-4.219
1.308
= N* = 1
VO =N'SO) = | T (31)
4219
The complete solution at time O is
05 05 05
1 1
v(0) =N*S(0) + D -w(0) = 1 0 1 S(0)
-5 -5 -5
05 0 0 05
0 00 O
+ 0 00 O -w(0) (32)
05 0 0 05

D indicates that v, and v3 are characterizable: no vector w can
change the values of v, and v3 in v(0). Indeed, the values in Eq.
(31) are exactly the same as the fluxes values of 1.1X3°X;%”® and
1.1X3% in the dynamical system (Eq. (30)), when the metabolite
concentrations at t = 0 are entered. Namely, substituting the initial
values, one obtains 1.1 -4%%.27%97°=1.308 and 1.1 -1%6=1.1.

D reveals that v; and v, are not characterizable. In line with this
insight, the first entry of v(0) is negative (see Eq. (31)), which is a
reflection of the fact that v(0) satisfies the minimum norm of the
system. Biologically, the solution is not meaningful and requires
(unknown) scaling with some vector w. Specifically, we obtain
the equations

V1(0) = —4.219 + 0.5(w; (0) + w4(0))

V4(0) = +4.219 + 0.5(w; (0) + w4(0)) >

Fig. 6. Pathway with a loop.

Fig. 7. Branched pathway with two regulatory signals.

which show that these two rates are affected in the same manner by
any changes in w(0). If (w;(0) + w4(0)) happens to be 8.538, which
we can only know from the details of Eq. (30), the solution of the
dynamic model is retrieved (v1(0) = 0.05; v4(0) = 8.488). However,
this value is not identifiable without knowledge of the system. Fur-
thermore, the entries of w are generally different for every time
point. The only justified conclusion is that v, and v, depend on each
other with a positive, but presumably nonlinear relationship. This
relationship depends on the values of the metabolites affecting v,
and vg4, and also on the numerical features of the functions repre-
senting the fluxes. In this particular case, v, is constant, but v,
(=2.8X98X%4) depends on X; and X, in a highly nonlinear fashion
(see Eq. (30)). Eq. (33) also reflects the fact that, if we knew v,
numerically for all time points t;, we could compute wy(t;) + wy(t;)
and infer vy, or vice versa.

In the same fashion as for t = 0, other flux values can be com-
puted by evaluating v(t;) = N'S(t;). In all cases, v, and v directly re-
turn the correct values. For example, if t = 1, we obtain v, = 0.1912
and v3 =0.8129. Once v, and v3 have been determined for suffi-
ciently many time points, they may be plotted against time or
against the contributing metabolites. Figs. 9 and 10 show these
types of plots. While the time plots are somewhat interesting,
the plots against metabolites are probably more informative as
they provide clues regarding the dependence of a reaction step
on its substrate(s) and modulator(s). In particular, the positive
and negative kinetic orders of X; and X3 in reaction v, are reflected
with corresponding trends in Fig. 10. While these graphical rela-
tionships between a reaction and time, or between a reaction
and its contributing metabolites, result directly from the DFE anal-
ysis, actual parameterized representations are not revealed, thus
leaving the task of fitting these plots. This step is not trivial. How-
ever, it is much easier than any attempt to identify functional
forms directly from the complete set of time series data.

It is even possible that a wrong functional format fits the plots
relatively well, especially if noise in the time series data is consid-
ered. For example, suppose one assumed that v, had the format

o Vmaxxl
Ky +X;

It is not difficult to parameterize this function against the
graphical plots in Fig. 10 against. With V. =8, Ky=0.3, and
p = 0.9 one obtains the fits in Fig. 11, and substituting this repre-
sentation of v, into Eq. (30) yields time courses that are essentially
indistinguishable from those in Fig. 8 (results not shown). The
probability of incorrect formats decreases with the availability of
additional datasets that shed light on different ranges of the
dependent variables.

vy -exp(—p - Xs3). (34)

Fig. 8. Numerical simulation of the pathway in Fig. 7 and Eq. (30).
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The reactions v; and v,4 are not characterizable from N* and D.
Both are always shifted by 0.5-(w; + wy), but this expression gener-
ally has a different value for every t. While it is theoretically pos-
sible to compute vectors w that make the flux vector completely
non-negative for all time points, this computation is not always
easy in practical situations when the system is large.

4. Discussion

Arguably the most crucial task of computational systems biol-
ogy is the translation of a biological phenomenon into a computa-
tional model that can be analyzed in lieu of its counterpart in the
real world. This translation requires (1) the setting up of equations
and (2) the fitting and validation of the parameters in these equa-
tions so that simulations with the model match experimental re-
sults. An interesting—yet often untested—challenge is the
appropriate choice of the mathematical format of the equations,
which only rarely can be truly justified, because the mechanisms
to be described by the equations are often complicated and seldom
known in sufficient detail. Canonical approximations may be used
instead, but they have their own limitations.

Nature has not provided us with guidelines steering us toward
the correct functional forms. Furthermore, the total repertoire of
mathematical functions is infinite, and even if we can determine
a function that models a certain dataset perfectly, there is no proof
that the format of the function is correct. Good examples are high-
order polynomials that can be constructed to match every data
point precisely but can utterly fail in extrapolations to slightly
changed conditions.

In the context of metabolic pathway systems, Dynamic Flux
Estimation (DFE) addresses this conundrum in a two-phase strat-
egy [24]. In the first phase, one attempts to establish the trend of
each flux as a graphical plot against time or against its contributing
metabolites. The result is significant, because it shows what each

flux looks like, while essentially eliminating redundancies between
fluxes affecting the same or different metabolites. The second
phase attempts to convert the flux plots into functional forms. As
in other identification tasks, these are entirely unknown, but the
problem is vastly simplified because each flux can be analyzed
individually and because this identification requires only explicit
functions, rather than systems of differential equations. Neverthe-
less, the identification in the second phase of DFE is not guaranteed
to be correct, because the selected function could be under- or
over-parameterized and conceivably only apply to the specific
ranges of values for which data were measured. Indeed, the valid-
ity of the results of the second phase of DFE can only be tested with
additional data.

While DFE allows a significant leap forward in the identification
of metabolic models, it has the unfortunate drawback that it re-
quires a matrix inversion that is only directly possible if the path-
way system contains as many fluxes as metabolites. Earlier
extensions of DFE called for additional kinetic information on some
fluxes or depended on rich datasets with quite particular features
[25,26]. Here, we use pseudo-inverses of matrices to solve as much

Fig. 9. Time plots v, and v; against time, respectively, reconstructed from N* in
cases where D has rows of 0’s.

Fig. 10. Plots of reaction v, against its substrate (X;), its inhibitor (X3), and both. The light blue line in panel c shows the projection in the (X;-X3) plane. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. No guidance can be given for selecting a parameterized representation of fluxes, and it is possible that a wrong representation nevertheless fits the flux profiles
relatively well, especially if the input data are noisy. Shown here is a representation of v,, where the dependence on X; is formulated as a Michaelis—Menten function and the
dependence on X3 as a negative exponential (green dots). The blue lines are copied from Fig. 10. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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of the DFE approach as is possible for a given pathway topology.
Specifically, the proposed analysis reveals which fluxes in a path-
way system could be characterized, if metabolic time series data
were available. The analysis does not identify the numerical fea-
tures of any of these fluxes and is therefore called ‘characterizabil-
ity analysis’ rather than ‘identifiability analysis’. This distinction is
important and quite interesting. The characterizability analysis is
much more limited than a full flux identification procedure, be-
cause its result is something like an existence proof, rather than
a prescription for the mathematical format of the fluxes in the sys-
tem. Ideally, characterizability leads to graphical representations of
all fluxes and suggests functional formats that are subsequently to
be parameterized. Therefore, characterizability may be considered
a precursor to identifiability. However, it is also possible that a
pathway model is not characterizable, but that the assumption of
a specific flux format permits unique parameter identification.
Thus, characterizability and identifiability are distinct aspects of
the general task of formulating parametric representations of bio-
logical processes.

Two of its intriguing features of the proposed method are the
following. First, the analysis is entirely model free. No choice of
functions or a particular modeling framework is required, and
there is consequently no issue with limited validity or accuracy
of some candidate model. Second, the analysis is not affected by
the quality of experimental data, missing data, noise, or the exis-
tence of known or unknown regulatory signals. The characteriza-
tion is based purely on the topology of flux distribution within
the pathway system, that is, on the stoichiometric matrix. A corol-
lary of these insights is that additional data of the same or a similar
type do not make a DFE analysis possible if it was not possible be-
fore. For instance, if new data with slightly altered inputs were
generated for an underdetermined system, the collective data
would still be underdetermined. The data could possibly improve
the estimation of slopes, fill gaps in the data, or smooth out plots
of fluxes, but they would not make DFE executable without addi-
tional information.

Thus, the first step of an underdetermined DFE task might be to
compute from the stoichiometric matrix of a system which fluxes
are directly characterizable. If all fluxes are characterizable, one
could proceed and measure metabolic time series data, and if these
could be obtained with sufficient accuracy, the trends in fluxes
could be computed as plots against time or against the metabolites
contributing to the dynamics of the flux. If some fluxes are not
characterizable, it is clear that a parametric representation of the
reactions in the system is not possible without the infusion of addi-
tion information. In this case, one could explore what information
would be needed to augment the rank of the system sufficiently to
execute DFE. This exploration could consist of screening the system
in the following fashion. Assume that unknown flux UF1 can be
identified outside DFE. If so, it can be merged with the vector b,
which contains the slopes of metabolites at different time points.
In effect, this merger reduces the number of non-zero entries in
the stoichiometric matrix N (for example, compare Egs. (20) and
(23)). Compute D or null(N) to test whether the system is now
characterizable. If so, independent information on UF1 would suf-
fice to solve the problem. If not, study the next unknown fluxes
UF2, UF3, etc. If none of these analyses succeeds, study combina-
tions of unknown fluxes. Because each step requires only the com-
putation of D or null(N), which is very fast, it should be possible to
devise an automated screening algorithm, which would result in
sets of fluxes to be determined to make DFE feasible. Ultimately
the screening process will terminate, although not necessarily with
the only possible solution, because if almost all fluxes were known,
the remaining few fluxes could certainly be characterized.

In a similar vein, N, D and null(N) may be explored to gauge
whether the pooling of metabolites or the merging of fluxes would

make a pathway system characterizable. As typical examples
shown here, the two directions of a reversible reaction were
merged into a net flux, and a small cyclic module was condensed
into a single pool, thereby reducing the discrepancy between the
numbers of fluxes and metabolites. Similarly, other subsystems
could be pooled, which would lead to a loss of detail within the
subsystems, but could make the overall system characterizable.
Once the system is characterizable, metabolic time series data
need to be obtained and all fluxes are graphically identified. Subse-
quently, the graphical trends are to be converted into mathemati-
cal representations. These steps are highly dependent on the
repertoire of candidate functions and the quality of the metabolic
times series data. Related issues of experimental noise and uncer-
tainty, missing datasets, and mass leaks from the system were dis-
cussed elsewhere [25], but remain to be issues worth pursuing.
Overall, the procedure may appear to be complicated. However,
one has to consider what is being achieved if DFE can be applied.
Namely, it is possible to “see” from the graphical representations
what the individual fluxes governing the system look like in depen-
dence on time or on the metabolites that affect them. It appears
that this “insight” is not achievable with other existing methods.
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Appendix A

Numerical. characteristics of artificial data associated with the
example in Eq. (3)

The illustration of DFE with Fig. 2 and Eq. (3) requires metabolic
time series data, which are presented in Table A.1. In a real exam-
ple, these data would have been extracted from experimental time
courses as they are shown in the idealized graphs of Fig. A.1.

Fig. A.1. Artificial, noise-free metabolic time series data, computed here from Eq.
(3), but in a real application corresponding to an experiment with the pathway in
Fig. 2, in which a bolus of X, is supplied externally and used up within about 20
time units.
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Table A.1
Metabolite concentrations and slopes associated with the simple pathway system in Eq. (3).
t Xo Vi Xi X3 M M
0 10 2 2 1 1.151472 0.09852814
1 8.187308 1.637462 2.880906 1.142217 0.6457941 0.1574867
2 6.703201 1.34064 3.342895 1.286703 0.2975619 0.1254981
3 5.488117 1.097623 3.507693 1.388293 0.04525962 0.07727053
4 4.49329 0.898658 3.456303 1.442177 —0.1380429 0.03144606
5 3.678795 0.7357589 3.24938 1.453391 —0.2678741 —0.007870263
6 3.011942 0.6023885 2.934854 1.428643 —0.3547169 —0.04059536
7 2.46597 0.493194 2.551702 1.374082 —0.4062285 —0.06767775
8 2.018965 0.4037931 2.132225 1.294808 —0.4282133 —0.09019441
9 1.652989 0.3305978 1.703618 1.1949 —0.4251398 —0.1090841
10 1.353352 0.2706705 1.289138 1.077603 —0.4004636 —0.1250771
11 1.108031 0.2216061 0.9089883 0.945547 —0.3568811 —0.1386591
12 0.9071783 0.1814357 0.5809344 0.8010357 —0.2966265 —0.1499712
13 0.7427346 0.1485469 0.3205111 0.6465308 —0.2220953 —0.1584515
14 0.6080996 0.1216199 0.1400759 0.4858637 -0.137816 —0.1615551
15 0.4978698 0.09957397 0.04385477 0.3280041 —0.05745645 —0.1504126
16 0.4076214 0.08152427 0.01288757 0.1956741 —0.01286664 —0.1089796
17 0.3337321 0.06674643 0.005798956 0.1125757 —0.003972747 —0.05996322
18 0.2732368 0.05464735 0.003036819 0.06852463 —0.001871244 —0.03133076
19 0.2237073 0.04474147 0.001679863 0.04511861 —0.000958626 —0.01718472
20 0.1831561 0.03663122 0.0009648202 0.03176125 —0.00052187 —0.01033442
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