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Biochemical systems theory (BST) is the foundation for a set of analytical andmodeling tools that facilitate the analysis of dynamic
biological systems.is paper depicts major developments in BST up to the current state of the art in 2012. It discusses its rationale,
describes the typical strategies and methods of designing, diagnosing, analyzing, and utilizing BST models, and reviews areas of
application. e paper is intended as a guide for investigators entering the fascinating �eld of biological systems analysis and as a
resource for practitioners and experts.

1. Preamble

Biochemical systems theory (BST) is a mathematical and
computational framework for analyzing and simulating sys-
tems. It was originally developed for biochemical pathways
but by now has becomemuchmore widely applied to systems
throughout biology and beyond. BST is called “canonical,”
which means that model construction, diagnosis, and analy-
sis follow stringent rules, which will be discussed throughout
this paper. e key ingredient of BST is the power-law
representation of all processes in a system.

BST has been the focus of a number of books [1–6],
including some in Chinese and Japanese [7–9]. e most
detailed modern text dedicated speci�cally to BST is [3].
Moreover, since its inception, numerous reviews have por-
trayed the evolving state of the art in BST. Most of these
reviews summarized methodological advances for the anal-
ysis of biochemical pathway systems [10–50]. Others com-
pared BST models with alternative modeling frameworks
[32, 51–63]; some of these comparisons will be discussed
later. Yet other reviews focused on specialty areas, such as
customized methods for optimizing BST models (e.g., [64–
67]) or estimating their parameters (e.g., [68–72]), strategies
for discovering design and operating principles in natural
system (e.g., [73–78]), and even the use of BST models in
statistics [79–81]. A historical account of the �rst twenty years
of BST was presented in [82].

Supporting the methodological developments in the �eld,
several soware packages were developed for different
aspects of BST analysis. e earliest was ESSYNS [83–85],
which supported all standard steady-state analyses and also
contained a numerical solver that, at the time, was many
times faster than any off-the-shelf soware [86, 87]; see also
[88]. Utilizing advances in computing and an extension of the
solver from ESSYNS, Ferreira created the very user-friendly
package PLAS, which is openly available and still very widely
used [89] (see also [3]). Yamada and colleagues developed
soware to translate E-cell models into BST models in PLAS
format [90]. Okamoto’s group created the soware BestKit,
which permits the graphical design and translation of mod-
els, along with their analysis [91–93]. Vera and colleagues
developed the soware tool PLMaddon for analyzing BST
models within SBML [94]; see also [95]. It expands the
Matlab SBToolbox with speci�c functionalities for power-law
representations, which are fundamental to BST. A similar
goal had the program SBML squeezer, whose scope includes
BST, but is more general [96]. Another soware package is
Cadlive, which offers comprehensive computational tools for
constructing, analyzing, and simulating large-scale biological
network models [97]. Vera and Torres [98] composed so-
ware speci�cally for the optimization of BST-based models,
and Savageau’s group developed a speci�c toolbox for the
analysis of design spaces; it can be found at [99]. Goel
et al. proposed an automated method for constructing BST
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equations from information on the connectivity and regula-
tion of a system [45].

e purpose of this paper is to portray the present state
of the art in BST. Considering that BST was conceived over
forty years ago, a lot has happened and more is percolating.
is paper is quite comprehensive, but by nomeans complete,
and it is likely that some important contributions aremissing,
for which I apologize. Furthermore, due to its wide scope,
the paper can only super�cially discuss many of the pertinent
topics, and many interesting subtleties will not become
apparent and instead “disappear” in clusters of references.
Examples are detailed studies of the design principles of gene
regulatory networks and of the inference of their topology
and regulation. Nonetheless, the paper is hoped to offer the
newcomer easy access to BST and to provide the more exper-
ienced researcher with a valuable resource.

2. History and Rationale

BSTwas proposed byM. Savageau in 1969 [100–102]. Several
interesting trends motivated him to devise this new formal-
ism. First, biochemistry was in the process of advancing
from the traditional studies of isolated reactions to analyses
of pathways and, in particular, to investigations of the role
of feedback inhibition in their regulation and control. As
Savageau [101] noted, “we are now able to attempt the
description of behavior of biochemical systems in terms of
the component reactions. However, as yet, no method of
systems analysis has been proposed which takes into account
the particular nonlinear nature of biochemical systems.”

Concurrent with this important development in bio-
chemistry was the rise of computing, and early pioneers
of biochemical systems analysis like �avid �ar�nkel envi-
sioned large-scale computer-simulation systems for elucidat-
ing metabolic pathways (e.g., [103–105]). Exuberant about
the power of the new computers, the sky seemed to be the
limit, and it appeared to be only amatter of time that any large
reaction system could be analyzed through simulations. Alas,
Savageau, and other contemporaries, immediately realized
that computing power was only one aspect among many in
biological systems analysis: even if one couldwrite algorithms
for simulating large reaction networks, it was not at all clear
what functions should be used. Arguably, one could resort to
default functions like Michaelis-Menten or Hill rate laws and
their generalizations [106–108], but then it would become
overwhelmingly difficult to determine all kinetic constants
and coefficients. Indeed, Schulz [109] showed convincingly
that accurate representations of enzyme-catalyzed reactions
become surprisingly complicated even for apparently simple
bisubstrate biproduct reactions, if one attempts to account
correctly for the dynamics of all intermediate complexes.
Cautioning against large ad hoc models from a different
angle, Heinrich and Rapoport [110, 111] remarked that com-
plicated simulation models of reaction networks render it
very difficult to discern between important and unimportant
effects that enzymes and metabolites have on the system.
Expressed differently, it becomes a signi�cant challenge to
infer from simulations alone which components of a system

are responsible for certain systemic responses. By contrast,
it was argued, if a truly effective mathematical approach
could be identi�ed, it would permit relatively straightforward
computations of eigenvalues, sensitivities, gains, and other
key characteristics of a model. Interestingly, these key char-
acteristics are oen governed by a vastly reduced number of
essential parameters, which further enhances the appeal of
models that facilitate the characterization of a model’s key
drivers.

e emerging complications with pure simulation
approaches suggested a search for alternative representations,
which was to be guided by the much-envied paradigms
of physics and engineering. Physics is solidly anchored in
theory, and the representations of two coupled pendulums or
of an electrical circuit are prescribed by this theory and
therefore essentially unambiguous. Furthermore, the govern-
ing parameters, such as the resistance and conductance in the
electrical circuit, are usually measurable. Not so in biology.
Imagine a situation where a hormone triggers a change in
gene expression. On the surface, one is faced with a simple
cause-effect relationship. However, in detail, this process
is exceedingly complicated. e hormone, released from a
sender, such as a gland, needs to �nd its target cells. ere
it must dock to a receptor. e receptor is usually a trans-
membrane protein which, upon hormone docking, under-
goes some very speci�c change in its three-dimensional
structure. is change secondarily serves as a stimulus for a
signaling cascade, which in itself involves several proteins. A
protein at the last layer of the cascade directly or indirectly
signals the relocalization or activation of a transcription
factor, which binds to a corresponding regulator region of
the gene whose expression is to be up- or downregulated.
Formulating this chain of events mechanistically and in
biophysical or molecular detail is presently not feasible.

e second role model for potential representations in
biology was engineering. Here, the overwhelming choice is
the linear model. No formalism is as well understood as
linear mathematics, and in particular, linear algebra, and
the repertoire of analytical and computational methods is
without equal. Furthermore, engineers have managed to
design devices in such a fashion that their characteristic
responses indeed are linear, at least approximately. e suc-
cess of engineering and its utilization of linearmathematics is
evident everywhere. One might only think of the exploration
of Mars, where rockets have exactly been following computer
predictions to deliver a car-size Rover that drives around in
a self-guided manner and sends back pictures of formerly
unimaginable quality.

Unfortunately, engineering principles can seldom be
applied directly to biological systems, because biology is
intrinsically different from engineering. We humans are not
the ones creating the components and merging them into
functioning machines with approximately linear characteris-
tics. Instead, nature has evolved very many known and yet
unknown components, and these components cooperate in
ill-characterized ways, which almost always contain genuine
nonlinearities that can hardly be designed away for easy sys-
tems analysis. In the original set of articles on BST, Savageau
already described this fundamental difference, stating that
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““small-signal” linearization is entirely inadequate, because
the dynamic range of the variables is known to result in the
nonlinear operation of biochemical systems” [102]. At the
same time, he recognized that general nonlinear theory was
too complicated for any streamlined analysis [100]. e only
realistic, feasible strategy had to be a compromise between
generality and tractability, and this compromise had to be an
approximation.

Merging ideas from Bode analysis in electrical engi-
neering [112] and Taylor’s approximation theory, Savageau
thus proposed the power-law representation as a valid local
description of processes in biochemistry. is representa-
tion combined generality with simplicity, turned out to
be rich enough to capture typical nonlinearities, such as
stable oscillations [102], limited the amount of experimental
data necessary for the description of general rate laws,
and generally seemed ideal for “the ultimate purpose …
to provide an explanation for the behavior of large-scale
biochemical systems rather than individual reactions” [100].
Indeed, it became clear later that all nonlinearities that can
be formulated as ordinary differential equations can also be
represented, with complete exactness, in BST [113].

It is over forty years that the core ideas of BST were
proposed, which raises the question of whether the original
goal of “providing an explanation for the behavior of large-
scale … systems” [100] is still unchanged. Expanding the
scope beyond biochemistry and metabolism, one might
address this question by looking at the nascent �eld of
systems biology. And indeed, the oen declared goals and
purposes of systems biology are not fundamentally different
from those of early BST. Under the common heading of
“understanding” a biological system, one might place them
into two categories, which at �rst appear to be rather different
but in fact have quite a bit of overlap [44]. e �rst goal
is the creation of large-scale models of an entire cell or
organism. Such models would clearly be very useful in a
vast array of applications, from metabolic engineering to
drug targeting and the development of personalized disease
simulators.e second type of understanding is the discovery
of design and operating principles, which rationalize why
a particular structure or process in nature outcompeted
alternatives during evolution [34, 35, 78]. For instance, why
does end product inhibition almost always target the �rst step
in a linear chain of processes?Why are some genes controlled
by inducers and others by repressors? Attaining the �rst
goal of realistic simulators clearly requires very large models
with many processes and parameters, while the second goal
suggests the peeling away of any extraneous information,
until the essence of a structure or process is revealed in a
relatively small model. Nonetheless, at a deep organizational
level, the goals are two sides of the same issue, because most
large systems in biology are modular and exhibit possibly
generic design features at different levels. ey are organized
and controlled in a hierarchical manner so that a true
understanding of ever smaller functional modules greatly
enhances the understanding of the system as a whole.

us, the core goals and aspirations of BST are still
valid, with an extension in scope toward biological systems
in general. e methods of analysis have of course evolved,

and it is now possible, for instance, to assesS-systems with
Monte-Carlo simulations of millions of runs, a feat that,
a few decades ago, could only be accomplished on a few
computers worldwide. Of equal importance is the rapidly
expanding availability of biological technologies, along with
the enormous amounts of useful quantitative data they bring
forth. Combined with a much enhanced appreciation for
computational approaches among experimental biologists,
there is an unprecedented exuberance that we might indeed
be able to formulate and parameterize very large models of
biological systems in the foreseeable future and use these
models for the betterment of humankind.

e true holy grail of systems biology will be a theory of
biology. It is easy to see what such a theory could do, when
we study the transition of physics from an experimental to a
theory-based science. Instead of studying one application at
a time, we could make (and prove) general statements about
entire classes of biological phenomena. Some biological laws
and partial theories have already been proposed, but they are
scarce and isolated in certain niches. For instance, the almost
universal law of correspondence between amino acids and
codons has had tremendous rami�cations for the interpre-
tation of genomic information, and the theory of evolution
has helped us explain the relatedness and differences among
species. Demand theory [114, 115] explains different modes
of gene regulation, and the theory of multiple equilibria
and of concordance [116, 117] addresses certain phenomena
in metabolism. Nonetheless, while some inroads have been
made, general theories of larger biological domains seem out
of reach at this point.

3. BST and Other Canonical
Modeling Approaches

e key to understanding large-scale systems in biology
through modeling is an effective compromise between appli-
cability, accuracy of representation, mathematical tractabil-
ity, and efficient computational tools. As the term “compro-
mise” suggests, no perfect modeling strategy is known that
satis�es all four criteria in all relevant situations. It is not
difficult to realize though that models consisting of vastly
heterogeneous mixtures of functions and submodels, while
possibly quite accurate, are not likely to permit streamlined
formulations and analyses or crisp interpretations. By con-
trast, homogeneousmodel structures provide a high potential
level of tractability and elegance, especially if powerful
tools like linear algebra can be brought to bear on these
structures. In recognition of this fact, several approaches
for biological systems analysis have made use of “canonical
representations” [2, 6, 11, 17, 81, 118]. ese consist of
mathematically homogeneous structures that are the result of
strict construction ruleswhich, in turn, are rigorously derived
from mathematical theory.

e best-understood canonical model is the linear rep-
resentation. When setting up a linear model, it is clear
from the beginning that every process in the model is to
be represented with a linear function and that the ultimate
result will consist entirely of such linear functions.e reward
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of this severe constraint to model choice and construction
is that a vast repertoire of effective methods is available for
analysis. It is this wealth of methods that, for instance, has
propelled engineering to the enormous level of sophistication
we discussed before. As soon as one component of the model
is made nonlinear, the homogeneity is lost, and streamlined
analyses are hampered, if not precluded.

While linear models are rightfully the �rst choice for
modeling, they obviously do not account for nonlinearities,
and because biological phenomena are predominantly non-
linear, linear models are not directly applicable to biological
systems. We will see, however, that some nonlinear canonical
models possess linear features that allow analyses of certain
aspects of nonlinear systems. Twoquestions thus arise: canwe
identify effective nonlinear canonical models, and if so, are
the results worth the trouble? Let us begin with the second
question of why is it bene�cial to accept the constraints of
canonical models. Several complementary answers may be
given.

First, canonical models directly address the fundamental
question of how to get started with the design of a model.
As indicated above, we usually do not know the biophysical
processes and mathematical functions that are optimal for
describing complex processes in biology. One response of
the modeling community has been the use of default models
or ad hoc formulations that for some reason appear ben-
e�cial, even though they might not have a biophysical or
chemical foundation and even if the necessary assumptions
are not really valid. For instance, the standard representa-
tion of enzyme-catalyzed reactions is the Michaelis-Menten
function [106–108], although the biochemical assumptions
underlying the use of this function are typically not satis�ed
for metabolic pathways in vivo [4, 12, 13]. At the same time,
this function has been used to study processes that have
little to do with enzymes or biochemistry, such as the uptake
of nutrients from soil through roots [119]. In canonical
approaches, the representation of such a process is formally
prescribed and even guaranteed to be correct within some
limits.

Second, the result of a canonical model design is by
de�nition a homogeneously structured model that permits
analyses that are almost independent of the size of the model.
Similar to the case of linear models, for instance, canonical
Lotka-Volterra models and S-system models within BST
permit straightforward analyses of steady states and their
features, no matter how many variables are involved; we
will discuss this feature later in detail. As a very practi-
cal aspect, a homogeneous model structure facilitates the
development of customized soware. Such soware can be
tailored speci�cally for the canonical structure and optimized
in unique ways, because it does not have to be prepared for
eventualities that oen emerge in ad hocmodels. As an exam-
ple, a numerical solver for systems of power-law differential
equations does not have to anticipate the occurrence of poles
or other ill-de�ned situations and can therefore be optimized
in unique ways [85–87]. Similarly, different efficient solvers
for sensitivity computations and boundary value problems
made use of the homogeneous structure of BST models [88,
120–127].

ird, well-chosen canonical models come with some
guarantees regarding their accuracy. Because they are essen-
tially always the result of speci�c approximations, they are
known to be exact at some operating point of choice and
very accurate close to this point. At the same time, it is clear
that their accuracy is of unknown quality if one moves away
from this point. is issue, however, is a genuine feature of all
models in biology and will be discussed later in more detail
within the context of BST.

Fourth, canonical models possess an interesting property
that has been called telescopic [128]. Because these models
are always constructed according to the same principles,
the speci�c organizational level for which the model is
designed is immaterial.us, whether a model represents the
dynamics of genes, metabolites, organisms, or populations,
the model structure is always the same. If an additional, more
detailed module is created at a lower level than a model, its
structure is guaranteed to be the same, and the result can be
seamlessly incorporated into themodel at the higher level. As
a consequence, canonical models are natural starting points
for multiscale modeling approaches.

Finally, canonical models permit objective comparisons,
because they only differ in parameter values, but not in struc-
ture. By contrast, if two ad hoc models are to be compared,
it is not even clear howmany parameters are to be considered.
For instance, the typical Hill function

𝑉𝑉 (𝑆𝑆) =
𝑉𝑉max𝑆𝑆

2

𝐾𝐾2
𝑀𝑀 + 𝑆𝑆2

(1)

apparently has two parameters (𝑉𝑉max and 𝐾𝐾𝑀𝑀). However,
one could count the Hill coefficient as a third parameter,
which happens to be equal to 2 in this formulation, but could
be changed to a different value. More generally, it is all but
trivial to compare different functional forms in an objective
manner. As a speci�c example, consider a Hill model and a
generalized logistic model, which have very similar graphs
but different formats and different numbers of parameters
(see Figure 1). Two canonical models of the same kind
are always much more similar, because they have the same
structure and types of parameters, thus allowing direct, fair
comparisons of models of the same size and even of nested
models that include more and more parameters [129].

All canonical models have a certain appeal from a con-
ceptual point of view, but different choices of models have
their genuine advantages and drawbacks, and, as always, they
all constitute different compromises with respect to struc-
tural suitability, accuracy, mathematical and computational
tractability, complexity, their numbers of parameters, and a
host of other features. While this paper focuses primarily
on BST, alternative canonical approaches, using ordinary
differential equations (ODEs), should be mentioned.

Before we discuss alternative canonical models in detail,
it is useful to introduce generic nomenclature.We distinguish
two types of variables. Dependent variables are possibly
affected by the action of the system and may change over
time. In a system of differential equations, each dependent
variable has its own equation. Independent variables are
either constant or follow a dynamic that is controlled from
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F 1: Similar shapes do not imply similar functions. Although
the shapes of the two graphs are very similar, the models generating
them are structurally distinctly different. e blue line is the plot of
a three-parameter Hill function, namely,𝐻𝐻𝐻𝐻𝐻𝐻 𝐻 𝐻𝐻max𝐻𝐻

𝑛𝑛/[𝐾𝐾𝑛𝑛
𝑀𝑀 +𝐻𝐻𝑛𝑛]

with 𝐻𝐻max 𝐻 4, 𝐾𝐾𝑀𝑀 = 2, and 𝑛𝑛 𝐻 4, while the red line is the plot of
a generalized logistic function 𝐿𝐿𝐻𝐻𝐻𝐻 𝐻 𝐿𝐿/[𝐻𝐿 + 𝐿x𝐿𝐻𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐻𝐻𝐻𝐻]𝑑𝑑 with
the four parameters 𝐿𝐿 𝐻 𝑎𝑎𝑎, 𝐿𝐿 𝐻 𝑎𝑎4, 𝐿𝐿 𝐻 𝐿𝑎𝑎, and 𝑑𝑑 𝐻 𝐿𝑎𝑑. Other
sigmoidal models are compared in [4].

outside the system. ey typically do not have their own
equations. Examples are the brightness and temperature
during the day-night cycle, an externally managed feeding
regimen, or an enzyme activity that is believed not to change
during a numerical experiment. Parameters are placeholders
for numerical values that make the model speci�c. eir
values are constant throughout any given (computational)
experiment, but may be changed from one experiment to the
next. Fundamental constants such as 𝑒𝑒 and 𝜋𝜋 are sometimes
used but not as explicit model components.

e generic format of ODE models for biochemical, and
various other biological, systems is

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐻 �̇�𝑑 𝐻 𝐗𝐗 𝐿 𝐗𝐗𝑎 (2)

Here 𝑑𝑑 is the vector of dependent variables, 𝐗𝐗 is the stoi-
chiometric matrix, and 𝐗𝐗 is a vector or reactions. e
stoichiometric matrix describes which variables are involved
in which reaction [130].

As an example, consider themodel of a branched pathway
system, as shown in Figure 2. e system contains three
dependent variables (𝑋𝑋𝐿, 𝑋𝑋2, and 𝑋𝑋𝑎) and �ve reactions
(𝑣𝑣𝐿, …, 𝑣𝑣𝑑). us, the stoichiometric matrix has three rows
and �ve columns and reads

𝐗𝐗 𝐻 
𝐿 𝐿𝐿 𝐿𝐿 0 0
0 𝐿 0 𝐿𝐿 0
0 0 𝐿 0 𝐿𝐿

 𝑎 (3)

�ositive entries correspond to in�uxes, while negative entries
signify effluxes from a metabolite pool. Most entries are
0’s and 1’s, but other quantities may account for the stoi-
chiometry of splitting or merging reactions. e vector of

v1
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v4

v5

X0
X1
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−

F 2: Generic pathway with one feedback signal. e pathway
is fed by a precursor 𝑋𝑋0, which could be a dependent variable, but
here is modeled as an independent variable with a constant value.
𝑋𝑋𝐿 is used as a substrate for the production of𝑋𝑋2 and𝑋𝑋𝑎.𝑋𝑋2 exerts
feedback inhibition on the production of𝑋𝑋𝐿. Each process 𝑣𝑣𝑖𝑖 may be
modeled in a variety of ways, for instance with a Michaelis-Menten
or Hill function, or with a power-law representation.

reactions directly shows the format of the canonical (or
noncanonical) model. For instance, each 𝑣𝑣𝑖𝑖 could be a linear
function, a Michaelis-Menten or Hill rate function, a power-
law function, or some other representation.

3.1. Types of Nonlinear Canonical Models

3.1.1. Lotka-Volterra Models. e oldest and best-known
nonlinear canonical modeling structure is the Lotka-Volterra
(LV) model, which typically describes interactions among
populations [131–136]. Speci�cally, the dynamics of a pop-
ulation is described as a sum of one linear term and some or
all binary interactions between any two populations, which
leads to the formulation

�̇�𝑋𝑖𝑖 𝐻
𝑛𝑛

𝑗𝑗𝐻𝐿

𝐿𝐿𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 + 𝐿𝐿𝑖𝑖𝑋𝑋𝑖𝑖𝑎 (4)

is formulation contains a quadratic term for variable 𝑋𝑋𝑖𝑖
in its own equation, which is oen interpreted as a crowding
term that becomes important when a population grows too
large. Any of the parameters 𝐿𝐿𝑖𝑖𝑗𝑗 or 𝐿𝐿𝑖𝑖 may be positive, nega-
tive, or have values of 0. If all variables are strictly positive,
one may divide both sides of each equation by 𝑋𝑋𝑖𝑖, and the
result is a system in the format:

𝐿
𝑋𝑋𝑖𝑖
�̇�𝑋𝑖𝑖 𝐻

𝑑𝑑 𝑑𝑑 𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑

𝐻
𝑛𝑛

𝑗𝑗𝐻𝐿

𝐿𝐿𝑖𝑖𝑗𝑗𝑋𝑋𝑗𝑗 + 𝐿𝐿𝑖𝑖, (5)

where the change in the logarithm of a variable is given as
a linear function of all variables. is formulation is quite
intriguing, because it turns out thatmanynonlinear canonical
forms contain three ingredients: differentiation, summation,
and the logarithm of variables.

e intriguing aspect is that every LVmodel has this same
format and that the only differences between two models are
the number of variables (equations) and the numerical values
of the parameter values. One might obtain the impression
that the format severely limits the repertoire of possible
model responses. However, this impression is wrong, and LV
models can represent the most complicated nonlinearities
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[21, 134], including deterministic chaos. For instance, the
graph in Figure 3 is the output of an LV system with just four
variables [71, 137, 138].

Although LV models have a long history in ecology and
are very rich in their possible responses, they are not well
suited to describe biochemical systems. e reason is that
this speci�c canonical format is incompatible with basic fun-
ctionalities of pathways of enzymatic reactions. As a sim-
ple, generic example, consider a pathway containing a
bimolecular reaction and one feedback signal, as depicted in
Figure 4.

is system is generically modeled as

�̇�𝐴 𝐴 Input1 − 𝑓𝑓1 (𝐴𝐴𝐴𝐴𝐴) 𝐴

�̇�𝐵 𝐴 𝑓𝑓1 (𝐴𝐴𝐴𝐴𝐴) − 𝑓𝑓2 (𝐵𝐵𝐴 𝐵𝐵) 𝐴

�̇�𝐵 𝐴 Input2 − 𝑓𝑓2 (𝐵𝐵𝐴 𝐵𝐵) 𝐴

�̇�𝐴 𝐴 𝑓𝑓2 (𝐵𝐵𝐴 𝐵𝐵) − 𝑓𝑓3 (𝐴𝐴)

(6)

with some functions 𝑓𝑓𝑖𝑖 that we need not specify for this
illustration. e LV format has problems with several of the
processes in this simple example. A constant input to the
system is incongruent with the LV format; it would have to be
formulated in LV as a linear function of 𝐴𝐴 or 𝐵𝐵, respectively.
e reaction from 𝐴𝐴 to 𝐵𝐵 is a problem in the equation of 𝐵𝐵,
because the corresponding term describing the production of
𝐵𝐵 should include 𝐴𝐴 as a substrate, as well as the inhibitor 𝐴𝐴,
but not 𝐵𝐵 itself, because 𝐵𝐵 does not contribute to its own gen-
eration. e generation of𝐴𝐴 should be modeled with a term
containing 𝐵𝐵 and 𝐵𝐵, but not𝐴𝐴, which, again, is problematic.
us, while LV models have been extremely successful for
systems of pair-wise interaction and simple growth processes,
they are not suitable for systems of biochemical reactions.
eir previously mentioned generality and �exibility are the
result of de�ning auxiliary variables that arti�cially increase
the size of the system (see the later section on Recasting for
parallels to BST).

3.1.2. BSTModels. BSTprescribes canonicalmodels inwhich
every process is formulated as a product of power-law fun-
ctions. BST permits several variants, as we will discuss later,
but once a variant is chosen, the resulting model always has
the same homogeneous structure. Similar to the cases of
linear and LV models, the only differences are manifest in the
number of equations and the parameter values.

BSThas two roots: �rst,�endrik�adeBode (1�05–1�82)
showed that a ratio of polynomials can be represented in
small pieces by straight lines, once a logarithmic transfor-
mation has been applied to the dependent variable and the
function [1, 101, 112]. Second, Brook Taylor (1685–1731)
had shown much earlier that any sufficiently smooth func-
tion (with sufficiently many continuous derivatives) can be
approximated with a polynomial of order 𝑛𝑛. For 𝑛𝑛 𝑛 𝑛, the
approximation becomes equivalent with the approximated
function, but, even for small 𝑛𝑛, the approximation is exact
at one point of choice, called the operating point, and very
accurate close to this point. Further away, the two typically
diverge, but general statements characterizing the rate of
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F 3: Chaotic oscillator. e Lotka-Volterra format looks
deceiving restrictive, but even an LV system with only four variables
is capable of exhibiting deterministic chaos. See [71, 137, 138] for
further details.
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F 4: Generic pathway for which an LV model is not suited.
Like many biochemical systems, the pathway contains inputs, a
bimolecular reaction, and a feedback signal. Some of these features
are not congruent with the binomial features of an LV system.

divergence and the accuracy of the approximation are seldom
practically helpful, even though they can be formulated.
Speci�cally, the sufficiently smooth function 𝑓𝑓(𝑓𝑓) with at
least 𝑛𝑛 continuous derivatives is represented at the operating
point 𝑝𝑝 as

𝑓𝑓 (𝑓𝑓) ≈ 𝑓𝑓 𝑝𝑝 + 𝑓𝑓′ 𝑝𝑝 𝑓𝑓 − 𝑝𝑝

+
1
2!
𝑓𝑓(2) 𝑝𝑝 𝑓𝑓 − 𝑝𝑝2 +

1
3!
𝑓𝑓(3) 𝑝𝑝 𝑓𝑓 − 𝑝𝑝3

+ ⋯ +
1
𝑛𝑛!
𝑓𝑓(𝑛𝑛) 𝑝𝑝 𝑓𝑓 − 𝑝𝑝𝑛𝑛.

(7)

e quantities 𝑓𝑓′, 𝑓𝑓(2), 𝑓𝑓(3), and 𝑓𝑓(𝑛𝑛) denote the �rst, second,
third, and 𝑛𝑛th derivative of 𝑓𝑓(𝑓𝑓), respectively. e higher
derivatives contribute less and less to the representation,
because they are divided by factorials (𝑛𝑛! ), which rapidly
become large. Arguably the most useful variant is lineariza-
tion, where 𝑛𝑛 𝐴 1, and the result is

𝐿𝐿 (𝑓𝑓) 𝐴 𝑓𝑓 𝑝𝑝 + 𝑓𝑓′ 𝑝𝑝 𝑓𝑓 − 𝑝𝑝 . (8)
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e slope is given by the derivative 𝑓𝑓′(𝑝𝑝𝑝, and the intersect 𝑏𝑏
is 𝑓𝑓(𝑝𝑝𝑝 𝑓 𝑝𝑝 𝑓 𝑓𝑓′(𝑝𝑝𝑝. Figure 5 illustrates this linearization with
the function 𝑓𝑓(𝑓𝑓𝑝 𝑓 𝑓𝑓𝑓𝑓 + 1 at the operating point 𝑓𝑓0 𝑓 0 (for
details, see [6]).

Figure 5 immediately indicates that the range of accurate
representation may be small. However, in many practical
cases it is sufficient. For instance, consider the clearly non-
linear function 𝐹𝐹(𝑓𝑓𝑝 in Figure 6. If the dependent variable 𝑓𝑓
always operates within a range such as [2, 5], the linearization
𝐴𝐴(𝑓𝑓𝑝may be sufficient and is certainly much simpler.

BST uses this linearization strategy, but because the goal
is a nonlinear canonical form, the approximation is executed
in logarithmic coordinates. Speci�cally, one linearizes ln (𝐹𝐹𝑝
as a function of ln (𝑓𝑓𝑝, and the results are always of the form
𝛾𝛾𝑓𝑓𝑔𝑔. e kinetic order, that is, the exponent 𝑔𝑔, is computed
�rst. �xecuting the Taylor approximation in logarithmic
space leads to the result that 𝑔𝑔 is equal to the derivative of 𝐹𝐹
with respect to 𝑓𝑓, multiplied by 𝑓𝑓, divided by𝐹𝐹, and evaluated
at an operating value of 𝑓𝑓 that we may choose. For instance,
consider the task of computing the power-law representation
of the function

𝐹𝐹 (𝑓𝑓𝑝 𝑓
𝑎𝑎

𝑏𝑏 + 𝑏𝑏𝑏(𝑓𝑐𝑐𝑓𝑓𝑝
, (9)

at the operating point 𝑓𝑓 𝑓 𝑥. We obtain directly

𝑔𝑔 𝑓
𝑑𝑑𝐹𝐹
𝑑𝑑𝑓𝑓

𝑓
𝑓𝑓
𝐹𝐹

OP

𝑓
𝑎𝑎 𝑓 𝑐𝑐 𝑓 𝑏𝑏𝑏 (𝑓𝑐𝑐𝑓𝑓𝑝
𝑏𝑏 + 𝑏𝑏𝑏(𝑓𝑐𝑐𝑓𝑓𝑝2

𝑓 𝑓𝑓 𝑓
𝑏𝑏 + 𝑏𝑏𝑏 (𝑓𝑐𝑐𝑓𝑓𝑝

𝑎𝑎

OP
,

𝑓
𝑐𝑐 𝑓 𝑓𝑓 𝑓 𝑏𝑏𝑏 (𝑓𝑐𝑐𝑓𝑓𝑝
𝑏𝑏 + 𝑏𝑏𝑏 (𝑓𝑐𝑐𝑓𝑓𝑝


OP

𝑓
𝑐𝑐 𝑓 𝑓𝑓

1 + 𝑏𝑏 𝑓 𝑏𝑏𝑏 (𝑐𝑐𝑓𝑓𝑝

OP
.

(10)

For speci�c values such as 𝑎𝑎 𝑓 0.2, 𝑏𝑏 𝑓 0.1, and 𝑐𝑐 𝑓 0.𝑐, 𝑔𝑔 at
the operating point is 1.036.

At the operating point, 𝐹𝐹 and its power-law approxima-
tion must, by de�nition, have the same value. is fact allows
us to compute the rate constant 𝛾𝛾 as follows:

𝐹𝐹 (𝑓𝑓𝑝 𝑓 𝛾𝛾 𝑓 𝑓𝑓𝑔𝑔OP,

𝛾𝛾 𝑓 𝐹𝐹 (𝑓𝑓𝑝 𝑓 𝑓𝑓𝑓𝑔𝑔OP.
(11)

e value of 𝐹𝐹 at the operating point (𝑓𝑓 𝑓 𝑥) is 0.619, and we
have already determined 𝑓𝑓 as 1.036. erefore, 𝛾𝛾 𝑓 0.11𝛾𝛾.
It is clear that the choice of a different operating point leads
to a different power-law representation. Two examples are
illustrated in Figure 7.

Studying the steps of the Taylor approximation in more
detail, one �nds that a positive effect of a variable on a
function results in a positive kinetic order, that a negative
effect, such as inhibition, results in a negative kinetic order,
and that a kinetic order of 0 corresponds to the situation
where the function is not affected by the variable at all. ese
correspondences are of tremendous value for designing BST
model, as we will discuss later.

e derivation of the power-law terms also indicates that
nothing is really limited to biochemistry. As long as variables
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L(x)

f (x)
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x

F 5: Taylor linearization of a nonlinear function. In this
illustration, 𝐿𝐿(𝑓𝑓𝑝 (red) is the linearization of a vertically shied
exponential function 𝑓𝑓(𝑓𝑓𝑝 (blue), developed at the operating point
𝑓𝑓0 𝑓 0.

2 4 6 8

2

1

x

A(x)

F(x)
F

(x
),
A

(x
)

F 6: e quality of an approximation may be sufficient
throughout certain ranges of a dependent variable. In this illus-
tration, 𝐴𝐴(𝑓𝑓𝑝 (blue) is the linearization of the more complicated
nonlinear function 𝐹𝐹(𝑓𝑓𝑝 (red). If 𝑓𝑓 only operates within a range
between about 2 and 5, 𝐴𝐴(𝑓𝑓𝑝 is sufficiently accurate and easier to
analyze.

and functions are positive-valued, BST equations can be
developed whether the application is biochemical, biological,
or comes from some other �eld.

One intriguing feature of Taylor’s method is that it applies
in an analogous fashion to functions of several dependent
variables. e only true difference is that the derivatives in
this case are partial derivatives. Speci�cally, if one wants to
approximate the function 𝐹𝐹(𝑓𝑓, 𝐹𝐹𝑝 as a power-law function,
the results are already known to have the format 𝛾𝛾𝑓𝑓𝑔𝑔𝐹𝐹ℎ. e
kinetic order 𝑔𝑔 is computed as

𝑔𝑔 𝑓
𝜕𝜕𝐹𝐹
𝜕𝜕𝑓𝑓

𝑓
𝑓𝑓
𝐹𝐹

OP
, (12)

and the analogous is true for ℎ. As before, the rate constant
is computed by equating 𝐹𝐹 and the power-law term at an
operating point of choice.
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F 7:e function𝐹𝐹𝐹𝐹𝐹𝐹 (blue) is approximatedwith two power-
law approximations at 𝐹𝐹 𝑥 𝑥 (red) and 𝐹𝐹 𝑥 𝑥𝑥 (green). At the two
operating points OP𝑥 and OP2, the approximations have exactly the
same values and slopes as𝐹𝐹𝐹𝐹𝐹𝐹.e ranges of suitable representation
are about (3, 14) and (12, 20).

As an example, consider a generalized Monod model,
which describes the growth of a microbial population in a
fermenter. It depends in this example on the substrate (𝑐𝑐𝑥)
and is also affected by the alcohol (𝑐𝑐2) that is generated in the
fermentation process (cf. [139–141]). A suitable formulation
is

𝜇𝜇 𝑥 𝜇𝜇max
𝑐𝑐𝑥

𝐾𝐾𝑥 + 𝑐𝑐𝑥
⋅

𝐾𝐾2
𝐾𝐾2 + 𝑐𝑐2

, (13)

where 𝜇𝜇max, 𝐾𝐾𝑥, and 𝐾𝐾2 are parameters that characterize the
growth and product inhibition characteristics. We already
know the format of the corresponding power-law represen-
tation, which is

𝜇𝜇 𝜇 𝜇𝜇 ⋅ 𝑐𝑐𝑔𝑔𝑥𝑥 ⋅ 𝑐𝑐𝑔𝑔22 . (14)

e kinetic orders and the rate constant are calculated as
described above, and the result is

𝑔𝑔𝑥 𝑥
𝜕𝜕𝜇𝜇
𝜕𝜕𝑐𝑐𝑥

𝑐𝑐𝑥
𝜇𝜇
𝑥 𝜇𝜇max ⋅

𝐾𝐾2
𝐾𝐾2 + 𝑐𝑐2

⋅
𝐾𝐾𝑥

𝐾𝐾𝑥 + 𝑐𝑐𝑥
2 ⋅

𝑐𝑐𝑥
𝜇𝜇

𝑥
𝐾𝐾𝑥

𝐾𝐾𝑥 + 𝑐𝑐𝑥
,

𝑔𝑔2 𝑥
𝜕𝜕𝜇𝜇
𝜕𝜕𝑐𝑐2

𝑐𝑐2
𝜇𝜇
𝑥

−𝑐𝑐2
𝐾𝐾2 + 𝑐𝑐2

,

𝜇𝜇 𝑥 𝜇𝜇 ⋅ 𝑐𝑐−𝑔𝑔𝑥𝑥 ⋅ 𝑐𝑐−𝑔𝑔22 ,

(15)

see [4]. All three quantities are to be evaluated at some operat-
ing points OP 𝑥 𝐹𝑐𝑐𝑥0, 𝑐𝑐20𝐹 of our choice. Because it represents
the effect of the substrate on the process, 𝑔𝑔𝑥 is positive.
By contrast, 𝑔𝑔2 is negative, because it represents product
inhibition. As in the one-variable case, any multivariate
power-law model is a local representation that is exact

at the operating point, very accurate close by, and of ill-
characterized accuracy everywhere else. A detailed example
of how these representations enter a complete systems model
is given in a later section.

3.1.3. Other Canonical Models. A generalization of BST
models, as well as the LV format, is the Generalized Lotka-
Volterra model. In this format, any power-law term that
appears in any equation is included in every equation, if
necessary with a multiplier of 0 [142–148]. As a result,
all equations formally contain a sum of the same terms.
is structural homogeneity, although somewhat arti�cial,
permits higher-level algebraic manipulations that can be
used for elegant classi�cation purposes. However, as �rst-line
models for the practical analysis of pathways, this format is
overly complicated.

Other canonical forms have been proposed more
recently. e �rst is the lin-log model, which is linear in
logarithmically transformed variables, which are all expres-
sed in relation to their normal reference values [62, 149–151].
As a result, a process description in a lin-log model always
has the form:

𝑣𝑣𝑖𝑖
𝐽𝐽0𝑖𝑖

𝑥
𝑒𝑒𝑖𝑖
𝑒𝑒0𝑖𝑖




𝑥 +

𝑛𝑛+𝑛𝑛

𝑗𝑗𝑥𝑥

𝜀𝜀0𝑖𝑖𝑗𝑗 ln
𝑋𝑋𝑗𝑗

𝑋𝑋0
𝑗𝑗




, (16)

where the𝑋𝑋𝑗𝑗 aremetabolites andmodulators, 𝑒𝑒𝑖𝑖 are enzymes,
and variables with index 0 are the corresponding reference
values. Furthermore, 𝑣𝑣𝑖𝑖 is the �ux rate, and 𝐽𝐽0𝑖𝑖 is the reference
steady-state �ux through the pathway. e parameters 𝜀𝜀0𝑖𝑖𝑗𝑗
are reference “elasticities,” which play the same role as
kinetic orders in BST. Lin-log models are directly related
to the analytical framework of Metabolic Control Analysis
(MCA), which targets the effects of parameter changes on
the steady state of a pathway system. Many comparisons
between BST and alternative approaches, including MCA
and lin-log models, have been presented throughout the
history of BST [32, 42, 52–55, 58, 59, 62, 63, 152–166]. In
terms of accuracy, power-law models are better suited for
small substrate concentrations, and lin-log models for large
concentrations, and combinations of models oen turn out
to bemost accurate over wide ranges of variations in variables
[167] although these combinations lose the key advantage of
structural homogeneity of canonical models. e collective
experiencewith the theory and applications of lin-log systems
is so far much smaller than for LV systems and the variant
formats within BST.

Another more recent canonical modeling format is the
representation of metabolic processes with sigmoidal mod-
ules of Hill-type, rather than power-law functions [42, 168,
169]. us, a process involving two variables is represented
as

𝑣𝑣 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗 𝑥
𝑘𝑘𝑖𝑖 ⋅ 𝑋𝑋

𝑛𝑛𝑖𝑖
𝑖𝑖

𝐾𝐾𝑛𝑛𝑖𝑖
𝑖𝑖 + 𝑋𝑋

𝑛𝑛𝑖𝑖
𝑖𝑖

𝑘𝑘𝑗𝑗 ⋅ 𝑋𝑋
𝑛𝑛𝑗𝑗
𝑗𝑗

𝐾𝐾
𝑛𝑛𝑗𝑗
𝑗𝑗 + 𝑋𝑋

𝑛𝑛𝑗𝑗
𝑗𝑗

, (17)

where 𝑘𝑘𝑖𝑖, 𝐾𝐾𝑖𝑖, 𝑛𝑛𝑖𝑖 and 𝑘𝑘𝑗𝑗, 𝐾𝐾𝑗𝑗, 𝑛𝑛𝑗𝑗 are parameters. As one
might expect, this formulation permits greater �exibility than



ISRN Biomathematics 9

the corresponding power-law representation 𝑣𝑣𝑣𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) =

𝛾𝛾𝑖𝑖 ⋅ 𝑣𝑣
𝑓𝑓𝑖𝑖
𝑖𝑖 𝑣𝑣

𝑓𝑓𝑗𝑗
𝑗𝑗 but requires more parameter values.

Vinga and colleagues compared BST with the concepts
of dynamic energy budget theory and proposed a combined
approach that used aspects of both [170]. Her group also
presented a comprehensive comparison of several modeling
frameworks, including BST, �ux balance analysis (FBA),
and Petri nets [171]. Wu and Voit embedded BST into
hybrid functional Petri nets, which expanded the range
of phenomena that could be modeled [172–174] (see also
[175]). ey also considered stochastic analogues to GMA
systems [176]; see also [177].

4. Model Design, Parameter Estimation, and
Diagnostics in BST

A great advantage of BST models is the simplicity with
which the modeling process can be initiated [3, 16, 30].
is simplicity is directly related to the theory behind the
power-law representation, which assigns a direct and unique
interpretation to each parameter.

4.1. Setting Up Equations. e typical starting point of model
design is a pathway diagram, as we saw it in Figure 2, but
which in real applications is usually much larger and more
complicated. Even for large systems, a diagram of pools and
processes immediately dictates how a model is to be set up.
Two basic decisions have to be made. First, which of the
variables should be declared as dependent and which should
be independent? And second, whichmodeling format should
be chosen? e �rst question requires biological insight and
good judgment that balance realism and practical feasibility,
because a dependent variable ultimately requires much more
input information than an independent variable. In response
to the second question, we focus primarily on BST, which
permits a choice among a few alternatives.

e main ingredient of BST is the power-law approxi-
mation of all processes in the system, as it was discussed
before. While this core concept is immutable, it leaves a
residual degree of freedom, which leads to different variants
within BST. is variability stems from differences in the
order in which the processes in the system are formulated
and approximated. Coarsely speaking, one may approximate
every process in the system separately, which leads to the
GeneralizedMass Action (GMA) form, or onemay aggregate
some processes �rst and then approximate the result, which
leads to S-systems andHalf-systems.e differences aremost
clearly illustrated with an example, and we consider for this
purpose again the branched pathway that was shown before
in Figure 2.

e construction of equations is facilitated by the inter-
pretation of kinetic orders, as discussed earlier: positive and
negative effects correspond to positive and negative kinetic
orders, respectively, and, importantly, if there is no effect, the
kinetic order is zero. For instance, considering the process
𝑣𝑣2 in Figure 2, we know immediately that it will exclusively
contain𝑣𝑣1 as a variable. Process 𝑣𝑣1 contains variable𝑣𝑣0 with

a positive kinetic order and𝑣𝑣2 with a negative kinetic order,
because it is an inhibitor. Applying these rules, we obtain the
symbolic BST equations

�̇�𝑣1 = 𝛾𝛾11𝑣𝑣
𝑓𝑓110
0 𝑣𝑣𝑓𝑓112

2 − 𝛾𝛾12𝑣𝑣
𝑓𝑓121
1 − 𝛾𝛾13𝑣𝑣

𝑓𝑓131
1 ,

�̇�𝑣2 = 𝛾𝛾21𝑣𝑣
𝑓𝑓211
1 − 𝛾𝛾22𝑣𝑣

𝑓𝑓222
2 ,

�̇�𝑣3 = 𝛾𝛾31𝑣𝑣
𝑓𝑓311
1 − 𝛾𝛾32𝑣𝑣

𝑓𝑓323
3 .

(18)

is format models every �ux independently of others,
but inspection of the diagram mandates some equivalences
between terms, because the sameprocesses sometimes appear
twice; namely, we need to require 𝛾𝛾12 = 𝛾𝛾21 and 𝑓𝑓121 = 𝑓𝑓211,
as well as 𝛾𝛾13 = 𝛾𝛾31 and 𝑓𝑓131 = 𝑓𝑓411. is format, which
focuses on processes, is called the Generalized Mass Action
(or GMA) format.

An alternative is the S-system format. is terminology
�rst emerged in the mid-1980s [11, 18] and refers to the
fact that this system representation, in a minimal fashion,
is capable of representing “synergistic and saturable” phe-
nomena. e S-system form focuses on the pools (dependent
variables) and collectively formulates all incoming processes
and all outgoing processes in one term each. If there are no
branches, there is no difference to theGMA format. However,
there is a notable differencewhere two processes diverge from
𝑣𝑣1. In the GMA format, the loss of𝑣𝑣1 is represented with the
two terms (−𝛾𝛾12𝑣𝑣

𝑓𝑓121
1 −𝛾𝛾13𝑣𝑣

𝑓𝑓131
1 ). In the S-system format, one

argues that the loss of𝑣𝑣1 only depends on𝑣𝑣1, thus leading to
the single, aggregate term (−𝛽𝛽1𝑣𝑣

ℎ11
1 ). At the operating point,

the two formulations are exactly equivalent, but for other
values of𝑣𝑣1 they are generally different, unless 𝑓𝑓121 and 𝑓𝑓131
happen to have the same value. us, the S-system model
with typical parameter names is

�̇�𝑣1 = 𝛼𝛼1𝑣𝑣
𝑔𝑔10
0 𝑣𝑣𝑔𝑔12

2 − 𝛽𝛽1𝑣𝑣
ℎ11
1 ,

�̇�𝑣2 = 𝛼𝛼2𝑣𝑣
𝑔𝑔21
1 − 𝛽𝛽2𝑣𝑣

ℎ22
2 ,

�̇�𝑣3 = 𝛼𝛼3𝑣𝑣
𝑔𝑔31
1 − 𝛽𝛽3𝑣𝑣

ℎ33
3 .

(19)

If 𝑓𝑓121 and 𝑓𝑓131 have different values, ℎ11 is a weighted
average of the two, and the weights are the �ux rates toward
𝑣𝑣2 and𝑣𝑣3.us, the following constraints have to be satis�ed
for the S-system and the GMA system to be equivalent at the
operating point (𝑣𝑣1,OP,𝑣𝑣2,OP,𝑣𝑣3,OP) of choice:

ℎ11 =
𝑓𝑓121𝛾𝛾12𝑣𝑣

𝑓𝑓121
1,OP + 𝑓𝑓131𝛾𝛾13𝑣𝑣

𝑓𝑓131
1,OP

𝛾𝛾12𝑣𝑣
𝑓𝑓121
1,OP + 𝛾𝛾13𝑣𝑣

𝑓𝑓131
1,OP

,

𝛽𝛽1 =
𝛾𝛾12𝑣𝑣

𝑓𝑓121
1,OP + 𝛾𝛾13𝑣𝑣

𝑓𝑓131
1,OP

𝑣𝑣ℎ11
1,OP

.

(20)

Although the functional representations at branch points are
different in the GMA and S-system forms, the dynamics of
the resulting models is oen rather similar. For instance, if
the branched pathway system in Figure 2 is initiated away
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F 8: Although GMA and S-system models are mathematically
different, their responses are oen similar. Shown here are responses
of the branched pathway model in (18) and (19) (see Figure 2).
Parameter values are 𝛼𝛼1 =1; 𝛼𝛼2 = 2.5; 𝛼𝛼3 =1.5; 𝛽𝛽1 = 4; 𝛽𝛽2 = 2.5; 𝛽𝛽3
= 1.5; 𝑔𝑔10 = 1; 𝑔𝑔12 = −0.75; 𝑔𝑔21 = 0.2; 𝑔𝑔31 = 0.9; ℎ11 = 0.4625; ℎ22 =
0.3; ℎ33 = 0.8;𝑋𝑋0= 4. Initial values are𝑋𝑋1 = 0.2;𝑋𝑋2 = 0.35;𝑋𝑋3 = 1.75.
Dots and subscripts S indicate S-system responses, while lines and
subscripts G refer to the corresponding GMA system.

from the steady-state operating point, the two transients are
essentially the same (Figure 8).

In the Half-system format [113], all processes contribut-
ing to the dynamics of a variable are collectively represented
in a single power-law term, and the corresponding represen-
tation for the branched pathway is

�̇�𝑋1 = 𝛿𝛿1𝑋𝑋
𝑘𝑘10
0 𝑋𝑋𝑘𝑘11

1 𝑋𝑋𝑘𝑘12
2 ,

�̇�𝑋2 = 𝛿𝛿2𝑋𝑋
𝑘𝑘21
1 𝑋𝑋𝑘𝑘22

2 ,

�̇�𝑋3 = 𝛿𝛿3𝑋𝑋
𝑘𝑘31
1 𝑋𝑋𝑘𝑘33

3 .

(21)

e three representations are mathematically different
and have their genuine advantages and disadvantages. e
greatest advantage of the GMA format is that it is the most
intuitive: it focuses on �uxes, and every �ux is mapped
directly onto one power-law term. e S-system representa-
tion focuses on pools (variables). Its greatest appeal is its
simpler two-term format, which leads to unusual mathemat-
ical opportunities, which we will discuss later. In particular,
the steady state of an S-system can be computed with
methods of linear algebra, whereas other formats, including
GMA, require more complicated methods [178–180]. Maybe
surprisingly, the S-system format is also the more accurate
representation for functions with a hyperbolic shape, that is,
functions that start at a small value and monotonically grow
toward saturation, such as a Michaelis-Menten rate func-
tion. e Half-system form has the simplest mathematical
structure, which permits, for instance, very simple means of
parameter estimation from time series data [181]. However,
it can only capture steady states in which at least one variable
is zero; otherwise the dynamics continues to increase or
decrease. In the section on recasting, we will introduce

the even simpler format of Binary Systems, which are still
surprisingly rich in their repertoire of responses [113].

All these formats possess the telescopic property [128]:
the overall response of a model at a lower level may be
approximated as a power-law term, which can replace a
dependent variable at a different level, and since any power-
law term, raised to a power, is again a power-law term, the
format is preserved at the new focus level.

Summarizing the main variants within BST, the different
orders of �ux aggregation and power-law approximation
always result in the following formats.

(1) If every process is modeled with its own power-law
representation, the result is a GMA system. Each
equation in a GMA system with 𝑛𝑛 dependent, 𝑚𝑚
independent variables, and 𝑇𝑇𝑖𝑖 terms has the format

�̇�𝑋𝑖𝑖 =
𝑇𝑇𝑖𝑖

𝑘𝑘=1

±𝛾𝛾𝑖𝑖𝑘𝑘
𝑛𝑛𝑛𝑚𝑚

𝑗𝑗=1

𝑋𝑋
𝑓𝑓𝑖𝑖𝑘𝑘𝑗𝑗
𝑗𝑗 ,

𝑖𝑖 = 1, 2,𝑖 , 𝑛𝑛.

(22)

(2) If, for each (metabolite) pool, all incoming processes
and all outgoing processes are �rst aggregated and
then collectively modeled with one power-law repre-
sentation each, the result is an S-system. Each equa-
tion in an S-systemwith 𝑛𝑛 dependent and𝑚𝑚 indepen-
dent variables has the format

�̇�𝑋𝑖𝑖 = 𝛼𝛼𝑖𝑖
𝑛𝑛𝑛𝑚𝑚

𝑗𝑗=1

𝑋𝑋
𝑔𝑔𝑖𝑖𝑗𝑗
𝑗𝑗 − 𝛽𝛽𝑖𝑖

𝑛𝑛𝑛𝑚𝑚

𝑗𝑗=1

𝑋𝑋
ℎ𝑖𝑖𝑗𝑗
𝑗𝑗 ,

𝑖𝑖 = 1, 2,𝑖 , 𝑛𝑛.

(23)

(3) If all processes affecting a (metabolite) pool are aggre-
gated and then collectively modeled with a single
power-law representation, the result is a Half-system.
Each equation in a Half-systemwith 𝑛𝑛 dependent and
𝑚𝑚 independent variables has the format

�̇�𝑋𝑖𝑖 = ±𝛿𝛿𝑖𝑖
𝑛𝑛𝑛𝑚𝑚

𝑗𝑗=1

𝑋𝑋
𝑘𝑘𝑖𝑖𝑗𝑗
𝑗𝑗 , 𝑖𝑖 = 1, 2,𝑖 , 𝑛𝑛. (24)

No matter which representation is chosen, the procedure
of setting up symbolic equations is fully prescribed and easily
learned by novices [182].

4.2. Parameter Estimation/Inverse Problems. Once one has
decided which variables should be dependent or indepen-
dent, the construction of model equations in BST is straight-
forward. Indeed, it is possible to write computer programs
that automatically set up correct equations [45, 91–93] (see
also [30]). e equations thus established are initially sym-
bolic, which means that numerical values have not yet been
assigned to the parameters. Nonetheless, a big step forward
has been made, and this step would have been much more
difficult without a canonical modeling structure. e next
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step is usually parameter estimation, that is, the assignment of
numerical values to all parameters in the symbolic equations,
including the initial values, for all differential equations in
the system. Uncountedmethods have been developed for this
difficult step, but none of them is ideal in all situations. Inter-
estingly, the history of models has iteratively experienced
phases of relatively high and low data availability, which had
a direct effect on parameter estimation methods [19].

�arameter estimation and structure identi�cation are
arguably the most difficult steps of a biological systems anal-
ysis. In pure parameter estimation tasks, the model structure
is assumed to be fully known, whereas structure identi�-
cation refers to the situation where the topology and regula-
tion of a system are uncertain, as well as the parameter values
[70]. Clearly, the latter is more difficult than the former.

Until recently, almost all parameters of biological systems
were estimated in a bottom-up fashion [49]. In the case of
biochemical systems, one searched for kinetic information
pertaining to individual enzymes,modeled each reaction step
in isolation, and then merged all models of these steps into
comprehensive systems models. In most cases, the pieces did
not truly �t together, with the result that the integratedmodel
exhibited unrealistic responses. ese prompted a revisiting
of the model and the kinetic information and oen resulted
in a long drawn-out process of re�nements and parameter
tuning. Good examples of such extensivemodel construction
efforts are [37, 183–189].

Different approaches were proposed by Sorribas’ group,
who proposed using receiver-operating characteristic curves
[190], or nonlinear regressionmethods [191–193]. An advan-
tage of BST models for all these estimation tasks is the fact
that every parameter has a clear and direct meaning, which
oen permits the de�nition of relatively small search ranges,
especially for kinetic orders [3].

Somewhat of a transition from the local estimation of
process descriptions to global data was an approach that uses
dynamic data, but only close to an operating point. Namely, it
was proposed to use linearized equations for studying system
responses to small perturbations around the steady state
and to estimate the Jacobian by simple multilinear regres-
sion [194, 195]. Similarly, Sorribas proposed the numerical
characterization of BST systems from transient response of
systems to perturbations [191, 196–199]. Savageau noted
that models can be identi�ed, in principle, from sensitivity
pro�les [200].

As early as 1982, Voit and Savageau proposed a drastically
different estimation method for situations where metabolite
concentrations had been measured at successive time points
[16, 201]; similar ideas were presented in the same year by
Varah [202]. e basic idea is to replace the differentials on
the le-hand sides of a system of differential equations with
slopes that are to be estimated from the time series data at
sufficiently many time points. e result of this procedure is
a system of algebraic equations. is system consists of 𝑛𝑛 𝑛 𝑛𝑛
sets, where 𝑛𝑛 is the number of dependent variables and 𝑛𝑛 is
the number of time points at which slopes are estimated. is
conversion of differential into algebraic equations avoids all
numerical integrations, which in typical cases consume more
than 95%, if not 99%, of the overall time to estimate parameter

values [203]. e slope-substitution method is not without
problems though, because the variable time becomes implicit,
which can lead to misinterpretations of the data [203] or a
“time-warping” of the solution [6]. Nonetheless, the slope
estimation strategy is statistically valid [204] and can, at the
very least, be used to develop coarse solutions from which to
start regular parameter optimization approaches. Reviews of
this sub�eld include [68, 69, 205–214].

e early articles did not receivemuch attention, presum-
ably because biologists very rarely generating time series data.
However, when the same ideas were reviewed in a textbook
[3] and declared as a bottleneck in model analyses, a �urry
of algorithms was proposed to deal with time series data.
In almost all cases, these algorithms worked fairly well for
some applications, but failed for others, and the estimation
community is still awaiting a truly exceptional solution.

e vastmajority of estimation strategies from time series
data made use of evolutionary algorithms and, in particular,
genetic algorithms. Very many of these approaches were pro-
posed by the groups of Okamoto, Kimura, and Tomita
and applied to gene regulatory networks of different sizes.
Each strategy presented a new variation or combination of
techniques that improved performance, at least with respect
to the presented applications. As the goal of many of these
studies was the identi�cation of interactions between pairs
of genes, the parameter estimation became almost identical
with structure identi�cation, where corresponding kinetic
orders were either zero (no interaction) or nonzero (interac-
tion). Because numerical estimations seldom return 0 as the
optimal value, different pruning strategies were implemented
to replace small optimal value with 0, thereby simplifying the
inferred network structure. Representative examples of this
line of research in microbial systems are [195, 215–276]. Wu
and collaborators applied similar approaches to the analysis
of a eukaryotic cell-cycle gene network [277, 278].

Genetic algorithms were not the only proposals for the
estimation task. Also using evolutionarymethods, Mendoza’s
group developed a method for estimating parameters in
GMA systems, based on particle-swarm optimization [279–
281]; see also [282, 283]. e group also tested ant colony
optimization [284, 285] and simulated annealing [286, 287]
(see also [288, 289]) and provided a benchmark system for
comparing different approaches [290]. McKinney and Tian
proposed an arti�cial immune system for the same estimation
purposes and compared various underlying models [291].
Lee and Yang used a clustering approach [292].

Alternatives to evolutionary algorithms included least-
squares regression [170, 293, 294], Kalman �lter meth-
ods [295], and neural networks [203, 296, 297]. Yet other
approaches to the same problem employed interval and
Newton-�ow analysis [298–302]. Chou and colleagues
devised a method speci�cally for the estimation of S-systems,
which alternates between the estimation of alpha- and beta
terms [303, 304]; see also [305]. Tian and collaborators
proposed a different type of alternating estimation, where
linear and nonlinear parameters are estimated separately
[306]. Lall et al. made use of precursor-product relationships
in a metabolic pathway to estimate parameters [307, 308].
Chen et al. proposed a network component analysis for
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deducing the dynamic features of regulatory signaling sys-
tems [309].

Wang’s group suggested collocationmethods that convert
ODEs into algebraic systems and combined them with a
hybrid differential evolution strategy that was able to �nd
a global solution [310–314]. e group also proposed a
multiobjective optimization approach of model inference
[315, 316]. Others used fuzzy multiobjective optimization
[317, 318]. Different groups used global optimization meth-
ods, based on branch-and-reduce techniques, to estimate
parameter values in a metabolic system [319, 320].

Several authors used hybrid methods that combined evo-
lutionary algorithms or genetic programming with statistical
analysis or Monte-Carlo techniques [249, 321–323]. Others
proposed various decomposition schemes for different types
of parameters [255, 324–326].

Numerous groups utilized biological or numerical con-
straints to ameliorate the estimation challenge. Hecker et
al. [327] and Mao et al. [328] demonstrated that the incor-
poration of information from different data sources, such
as sequence and protein-DNA interaction data, bene�ts the
network inference process. Hatzimanikatis’ group inferred
gene regulatory networks by using an S-system method that
was constrainedwith additional data on protein kinetics [329,
330]. Lecca and colleagues presented an estimation strategy
for BST models based on a probabilistic model of the noise
in experimentallymeasuredmetabolite concentrations [331].
Daisuke and Horton argued that gene expression networks
are typically scale-free and that this property could be used
to constrain the S-system-based network inference process
[260]. Ko et al. constrained the estimation problem for GMA
systems by using connectivity information of the pathway
system, which is fundamental to metabolic control analysis
(MCA) [332]. Indeed, since elasticity coefficients in MCA
are equivalent with kinetic orders, the estimation techniques
for these coefficients are applicable to BST models as well
(e.g., see [333]). In contrast to these successes, Calçada and
coworkers did not �nd bene�ts from restricting the inference
task with topological constraints [334].

An important prerequisite of all methods that substitute
derivatives with slopes and thereby decouple the system of
differential equations is the adequate estimation of slopes
directly from the time series data. Seatzu proposed B-splines
[335, 336], and Vilela et al. composed a smoother that
accounted for the noise structure in the data [337, 338].Wang
et al. compared various alternatives, including B-splines
[339]. Nounou and coworkers used a multiscale �ltering
approach to denoise the data [340]. In addition to smoothing,
it was also seen as useful to identify details of the system
topology in order to prime the estimation process [341].

�.�. ��t�or� ��co�str�ctio� a�� ��st�� ����ti�catio�. While
essentially all estimation methods described above had as
the ultimate target “the one optimal solution,” several groups
in recent years emphasized that biological systems models
are not necessarily completely identi�able from the available
data [342], but “sloppy” [343], and that one might be better
advised to look for entire domainswithin the parameter space

that correspond to similarly good solutions; for BST related
studies see [322, 323, 344].

For canonical models, the transition between parameter
estimation and structure identi�cation or network recon-
struction is �uid, because the structure of the inferred
system changes if a rate constant or kinetic order parameter
value becomes 0. erefore, many of the estimation studies
described before are to some degree structure identi�cation
or network reconstruction analyses. In addition, several
approaches were proposed speci�cally for structure identi�-
cation, and they are brie�y discussed here.

As already mentioned, Sorribas’ group proposed the
numerical characterization of BST systems from transient
responses of systems to perturbations about the steady state
[191, 194, 195, 197, 199].

Speci�cally addressing the direct relationship between
parameter estimates and the structure of S-system models,
mixed integer linear programs (MILP) and multiobjective
optimization approaches were proposed to estimate both,
structure and parameter values [345, 346]. Marino and Voit
devised a semiautomated model-�nding approach for iden-
tifying the minimal connectivity of a system as well as its
parameters [129]. Khoury and colleagues developed a sym-
bolicmethod for learning dynamicmodels of compartmental
systems, which combined genetic programming with a fuzzy
representation environment [347].

Spieth and collaborators developed novel optimization
methods to evolve the topology of a gene regulatory network
as well as its parameter values, based on microarray data
[348–353]; see also [354]. Liao’s group combined S-system
concepts with the method of network component analysis
(NCA) for the estimation of transcription factor activity
[355]. Given that most genes are regulated by only a few tran-
scription factors, the authors developed criteria for the iden-
ti�ability of transcriptome networks that are effective even
if the input information consists of sparse microarray data.
Alves and colleagues used a combination of bioinformatics
and structural biology, along with genomic, proteomic, and
metabolic time series data, to reconstruct pathways and
generate novel hypotheses [39]. Liu and colleagues devised
a structure identi�cation method that combines parameter
estimation with a pruning strategy that adds a regularization
term to the objective function and prunes the solution
according to a user-speci�ed threshold value [356]. Džeroski
and Todorovski proposed machine-learning methods [212].

Schnell’s group reconstructed a systemmodel for glycoly-
sis in the bacterium L. lactis from time series data (see [357]),
using a global nonlinear modeling technique that identi�es
the elementary reaction steps constituting the pathway [358].

Searson and colleagues developed a hybrid S-system
approach for the inference of chemical reaction networks,
based on time series data from fed-batch experiments, where
essentially no a priori information regarding products and
reactants was available [359, 360].

Kattas et al. [361] compared network identi�cation
strategies using GMA, S-system, or linear models. ey
tested the methods against three benchmark problems (with
and without noise) that were designed to highlight spe-
ci�c features of biochemical pathways. ey implemented
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the methods into algorithms and were able to obtain better
results than competing methods.

Voit’s group proposed methods for identifying the func-
tional shapes of �uxes in a metabolic pathway system, based
on metabolic time series data [362–366].

Ndukum and colleagues addressed a different type of
inference from time series data. Namely, they asked whether
the difference between two dynamic substrate uptake pro�les
in yeast cultures were statistically signi�cant [367]. A similar
task was addressed by Kawagoe et al. [368].

Ferreira and collaborators designed kinetic essays for
optimal model selection, under the assumption that two
models were already parameterized and provided equivalent
solutions [369].

Ve�ingstad and colleagues demonstrated that it is bene�-
cial to obtain as much qualitative information about a system
as possible before the system structure is identi�ed [341].

As noted earlier, the structures of systems have also
been assessed with large-scale simulations and post hoc
�ltering processes that distinguish acceptable from undesired
structures [322, 323, 370–374].

Němcová [375, 376] developed a rigorous theory to
characterize the identi�ability problem for deterministic
classes of polynomial and rational systems and noise-free
data. She used an algebraic approach to realization theory
and demonstrated that the biological systems in question,
including BST systems, are smooth nonlinear Nash systems
[377]. Němcová applied her results to a number of systems,
including a glycolytic pathway model for the bacterium
L. lactis [357]. Papachristodoulou and Recht addressed the
interconnections in chemical networks by minimizing the
one-norm of all possible reaction rates [378]. While they
demonstrated the method with mass action kinetics, this
method also applies to power-law systems.

4.4. Steady-State Diagnostics. With BST equations formu-
lated and parameter values assigned, the initial model design
is complete. However, before the model is utilized for its
intended purposes, it should be diagnosed for internal and
external consistency and robustness. is diagnostic phase of
the model analysis typically begins with the identi�cation of
steady states. ese states are characterized by the fact that
none of the variables changes although material may �ow
among the variables. For S-systems, this step is surprisingly
simple [100], while it is much harder for GMA systems.

4.4.1. Steady-State Computations. Suppose that none of the
variables is zero and that every equation in the S-system has
both terms. At the steady state, all differentials on the le-
hand side of the equations must be zero, because none of the
variables changes. us, we obtain

𝛼𝛼𝑖𝑖
𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

𝑋𝑋
𝑔𝑔𝑖𝑖𝑗𝑗
𝑗𝑗 − 𝛽𝛽𝑖𝑖

𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

𝑋𝑋
ℎ𝑖𝑖𝑗𝑗
𝑗𝑗 𝑗 0

𝑖𝑖 𝑗 𝑗𝑖 𝑖𝑖𝑖 𝑖 𝑛𝑛𝑖

(25)

Moving the 𝛽𝛽-term to the right-hand side, we can take loga-
rithms of both sides, which yields

ln 𝛼𝛼𝑖𝑖 𝑛 ln
𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

𝑋𝑋
𝑔𝑔𝑖𝑖𝑗𝑗
𝑗𝑗 

𝑗 ln 𝛽𝛽𝑖𝑖 𝑛 ln
𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

𝑋𝑋
ℎ𝑖𝑖𝑗𝑗
𝑗𝑗  𝑖

(26)

Recalling basic properties of logarithmic, exponential, and
power-law functions, these terms can be simpli�ed. In par-
ticular, if we rename the variables 𝑦𝑦𝑖𝑖 = ln(𝑋𝑋𝑖𝑖) and rearrange
the equation, we obtain the result

𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

𝑔𝑔𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 −
𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗

ℎ𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 𝑗 ln 𝛽𝛽𝑖𝑖 − ln 𝛼𝛼𝑖𝑖 𝑖 (27)

Further renaming 𝑎𝑎𝑖𝑖𝑗𝑗 = 𝑔𝑔𝑖𝑖𝑗𝑗 − ℎ𝑖𝑖𝑗𝑗 for all 𝑖𝑖 and 𝑗𝑗 and de�ning
𝑏𝑏𝑖𝑖 = ln(𝛽𝛽𝑖𝑖/𝛼𝛼𝑖𝑖) leads to steady-state equations of the S-system
model that are linear:

𝑎𝑎𝑗𝑗𝑦𝑦𝑗 𝑛 𝑎𝑎𝑗𝑖𝑦𝑦𝑖 𝑛 𝑎𝑎𝑗3𝑦𝑦3 𝑛 ⋯ 𝑛 𝑎𝑎𝑗𝑖𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛𝑛 𝑗 𝑏𝑏𝑗𝑖

𝑎𝑎𝑖𝑗𝑦𝑦𝑗 𝑛 𝑎𝑎𝑖𝑖𝑦𝑦𝑖 𝑛 𝑎𝑎𝑖3𝑦𝑦3 𝑛 ⋯ 𝑛 𝑎𝑎𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛𝑛 𝑗 𝑏𝑏𝑖𝑖

𝑎𝑎3𝑗𝑦𝑦𝑗 𝑛 𝑎𝑎3𝑖𝑦𝑦𝑖 𝑛 𝑎𝑎33𝑦𝑦3 𝑛 ⋯ 𝑛 𝑎𝑎3𝑖𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛𝑛 𝑗 𝑏𝑏3𝑖

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑎𝑎𝑛𝑛𝑗𝑦𝑦𝑗 𝑛 𝑎𝑎𝑛𝑛𝑖𝑦𝑦𝑖 𝑛 𝑎𝑎𝑛𝑛3𝑦𝑦3 𝑛 ⋯ 𝑛 𝑎𝑎𝑛𝑛𝑖𝑛𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛𝑛 𝑗 𝑏𝑏𝑛𝑛𝑖

(28)

see [100]. is system has 𝑛𝑛 equations and 𝑛𝑛 𝑛 𝑛𝑛 variables,
which include 𝑛𝑛 dependent and 𝑛𝑛 independent variables. In
typical modeling situations, the values of the independent
variables are assumed to be known, so that the linear system
can be solved. For many purposes, it is useful to formulate
these equations in matrix format, which reads

𝐲𝐲𝐷𝐷 𝑗 𝐀𝐀−𝑗
𝐷𝐷 ⋅ 𝐛𝐛 − 𝐀𝐀−𝑗

𝐷𝐷 ⋅ 𝐀𝐀𝐼𝐼 ⋅ 𝐲𝐲𝐼𝐼
𝑗 𝐒𝐒 ⋅ 𝐛𝐛 − 𝐒𝐒 ⋅ 𝐲𝐲𝐼𝐼𝑖

(29)

see [200]. In this formulation, the dependent variables, col-
lected in vector 𝐲𝐲𝐷𝐷, are separated from the independent vari-
ables, which are collected in vector 𝐲𝐲𝐼𝐼. e matrices 𝐀𝐀𝐷𝐷 and
𝐀𝐀𝐼𝐼 refer to the system in (28), with the former corresponding
exclusively to dependent variables and the latter to the effects
of independent on the dependent variables. e matrices 𝐒𝐒
and 𝐒𝐒 contain sensitivity and logarithmic gain values, which
in a different manner describe the effects of parameters and
independent variables on the steady state of an S-system.

e matrix formulation in (29) is very interesting, be-
cause it says that linear algebra may be used to compute
steady states of arbitrarily large S-systems, as long as no varia-
bles or rate constants are zero. If indeed one or more of the
variables are zero, or if terms in the S-system are zero, one
must consider these special cases one by one [1]. For later
biological interpretations, one must remember to translate
the results back from 𝑦𝑦’s to 𝑋𝑋’s with an exponential trans-
formation. While the formulation in (29) re�ects most
situations, the steady-state equations have also been used
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“in reverse” to compute which values of the independent
variables would move the system to a desired steady state
[379, 380].

Although S-systems and GMA systems are very similar,
the computation of steady states inGMA systems is incompa-
rably more complicated. In fact, there is no algebraic method
that generally solves this problem. Complicatingmatters, and
in contrast to regular S-systems, GMA systems can have
multiple nontrivial steady states. ese are to be determined
with search algorithms which, however, are not guaranteed
to �nd all solutions [178, 179]; see also [381–383]. One may
also solve theGMA systemdynamically, but this strategy only
leads to the one stable steady state in whose neighborhood
one initiates the solution.

4.4.2. Local Stability. e next diagnostics is the character-
ization of the model at the steady state(s). e �rst feature
to be tested is local stability. e question is: If the model is
slightly perturbed away from the steady state, will it return to
this steady state on its own accord? If so, the steady state is
locally stable; otherwise it is not. Most, but not all, biological
systems are locally stable, and one typically observes that they
tend to maintain the same steady state, which is sometimes
called homeostasis.

Local stability could be assessedwith perturbation studies
that move the system slightly away from a steady state and
test whether the system returns. A potential issue with this
strategy is that onewould have to select directions for the per-
turbations, therebymaking themethod vulnerable to bias and
possible omissions of interesting cases. A more elegant and
general method is the computation of eigenvalues. ese are
complex numbers, each consisting of a real and an imaginary
part. A system possesses one eigenvalue for each dependent
variable. If and only if all real parts are negative, the system
is stable. For S-systems, the determination of eigenvalues is
relatively simple. For small systems, the eigenvalues can be
determined with a Routh-Hurwitz analysis [1]. For larger
systems, it is achieved essentially immediately with soware
programs like PLAS [89], PLMaddon [94], or any other
soware that supports eigenvalue analysis. If the imaginary
parts are not zero, the system has the potential of exhibiting
oscillations [1, 102]. A useful representation of the stability of
a small system is the root-locus plot [30]. Lin and colleagues
used Lyapunov theory to determine the stability of a cascaded
S-system [384].

In relatively rarer cases, biological systems may also have
two (or more) stable steady states, and it is possible that
external or internal controls cause these systems to “toggle”
between the two states (e.g., see [36, 385, 386]). In such a case,
the system may also exhibit hysteresis, which means that its
approach toward either one of the states depends on its recent
“history.” A BST example of a bistable system with or without
hysteresis is a two-component system, with which microor-
ganisms sense and respond to their environment [387–390];
see also [6]. Depending on the regulatory structure of this
type of system, one observes hysteresis or not.

4.4.3. Sensitivity andRobustness. A second feature that is easy
to compute for S-systems, due to their linear steady-state

equations, is the pro�le of sensitivities. �ach sensitivity
measures how much a steady-state feature changes if one of
the parameters in the system is varied by a very small amount
[10, 200, 391]. Speci�cally, a metabolite sensitivity of �5.4
means that a one percent change in the parameter in question
leads approximately to a 5.4 percent increase in the given
metabolite at the steady state. A sensitivity of −3.2 corre-
sponds to a 3.2 percent decrease. Sensitivities can also be
computed with respect to �uxes. Strictly speaking, sensi-
tivities are in�nitesimal quantities, but they are excellent
predictors for the effects of small, or even moderate, changes.
Changes in steady-state features in response to small varia-
tions in independent variables are called logarithmic gains.
Similar to sensitivities, these quantities are easily computed
for S-systems [163, 200, 391]. ese features can also be com-
puted for GMA systems, but the computation is more com-
plicated [3, 392].

Local stability and sensitivity analyses are the main diag-
nostic tools for assessing the internal consistency of a model.
As an extension, Salvador [393–396] explored the effects of
simultaneous changes in two parameters on the steady state,
using methods of advanced linear algebra. Guebel computed
sensitivities for BST-like models that included the second-
order term of the Taylor approximation [397]. Additional
diagnostic tools include criteria of robustness and noise
attenuation [398–405]. Shi and colleagues studied the balance
between robustness and fragility in biochemical networks
[406]. Several articles expanded the concepts of gains and
sensitivities to questions of dynamics [124–127, 407–412].
ese analyses assess how changes in initial values affect the
transient responses of a system. Horner analyzed sensitivity
pro�les with Monte-Carlo simulations rather than analyti-
cally [413]. Drengstig and coworkers noted that sensitivity
coefficients of reaction networks are closely related to transfer
functions that are used widely in control engineering [414].

Due to the regular structure of BST models, it is even
possible to use computer algebra to characterize steady-state
features of S-systems in symbolic, nonparameterized models
[415].
4.4.4. Structural Stability. Local stability analysis addresses
the response of a system close to a steady-state point. A diff-
erent type of diagnosis, called structural stability analysis,
addresses situations where the behavior of a system changes
in a qualitative manner, which means that not only the
numerical value of some feature changes, but that the feature
changes from one class of behaviors to another. e best-
studied situation consists of a slight persistent change in a
parameter value that causes the system to lose (local) stability.
e steady state thus becomes unstable, and the system may
exhibit a stable oscillation surrounding the now unstable
point. e speci�c value of the altered parameter where this
change happens is called a (Hopf) bifurcation point, and the
stable oscillation is called a limit cycle [416]. An example
is the following small S-system, which could represent two
genes that affect each other’s expression (Figure 9):

�̇�𝑋1 = 0.9 ⋅ 1 − 𝑋𝑋
−0.2
1 𝑋𝑋0.15

2  ,

�̇�𝑋2 = 𝑋𝑋1 − 𝑋𝑋
0.2
2 .

(30)
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e system has a unique nontrivial steady state at (𝑋𝑋1,𝑋𝑋2) =
(1, 1), which is easily checked by computing the eigenvalues,
for instance in PLAS. ey are −0.01 ± 0.3145. In the time
domain, both variables oscillate with decreasing amplitude
toward the steady state (Figure 10), which they strictly only
reach for 𝑡𝑡 𝑡 𝑡.

Now, we slightly change the rate parameter with value 0.9
in the �rst equation. For instance, for 0.95, the oscillations
have a similar appearance, but the amplitude decreases more
slowly (results not shown). e speed is even slower for 0.99
and 0.999. In the latter case, the eigenvalues are –0.0001 ±
0.3315. AHopf bifurcation occurs if the parameter crosses the
value of 1, where the real parts of the eigenvalues switch from
negative to positive. For a rate parameter with value 1.01, the
amplitude initially decreases but then stabilizes (Figure 11).
e result is seen more clearly in the phase plane, where 𝑋𝑋2
is plotted against𝑋𝑋1. Here, the expression limit cycle becomes
evident, because the system is �rst spiraling but ultimately
cycling along the same quasielliptic trajectory or orbit. To
generate the blue inward spiral, the system is initiated outside
the limit cycle, here at (𝑋𝑋1, 𝑋𝑋2) = (1, 1.9). e same
system, initiated inside the limit cycle ((𝑋𝑋1, 𝑋𝑋2) = (1, 1.2)),
generates a green outward spiral, which in the illustration
so tight that it appears as a solid ring. e two spirals both
approach the same limit cycle.

e characterization of Hopf bifurcations is usually
very laborious [417], but Lewis showed that it becomes an
amazingly straightforward task for the special structure of S-
systems, especially if the system consists of only two variables
[418]. In fact, Lewis derived a criterion for bifurcations in S-
systems that consists of the evaluation of a simple algebraic
formula. is criterion was subsequently “inverted” and thus
made into a tool for constructing limit cycles of different
shapes from scratch, which otherwise is a rather cumbersome
challenge [419]. A famous example of a limit cycle system is
the Brusselator, which is actually a GMA system [420, 421].

Nikolov and colleagues analyzed a signaling system with
a generic strategy that sequentially integrated sensitivity
analysis, bifurcation analysis and predictive simulations. e
strategy demonstrated how information from one step can
feed into other analyses and thereby help re�ne the structure
of a model [422].

4.5. Diagnostics of Dynamic Features. In addition to these
types of algebraic analyses, which for reasons of practicality
are typically executed with computational soware such as
PLAS [89], PLMaddon [94], BestKit [93], or in Matlab,
system models are typically tested and diagnosed with simu-
lations that help explore ranges of possible system behaviors.
ese simulations require the integration of the differential
equations, which almost always has to be numerical. It is
only possible to a very limited degree to solve small S-system
differential equations analytically [423].

System simulations fall into different categories. e �rst
may be called “what-if ” simulations. Here initial values of the
system variables are changed and the resulting time trajec-
tories are compared with data or the investigator’s expecta-
tions. Similarly, parameters or independent variables may
be altered, to model mutations or altered environmental
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F 9: A small system capable of exhibiting stable limit cycle
oscillations. e variables 𝑋𝑋1 and 𝑋𝑋2 could represent genes or
metabolites that mutually activate each other’s expression or pro-
duction.𝑋𝑋1 furthermore inhibits its own degradation.
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F 10: Oscillations in the small system of Figure 9. With the
parameterization of (30), the system exhibits damped oscillations.

conditions, and a numerical solution of the system reveals
whether the system might be appropriate or is evidently
wrong in some aspects. Essentially all of the applied BST
models described in a later section have used this strategy of
exploration extensively. Simple, didactic examples are given
in [3].

A different type of simulation, which lately has been gar-
nering increased interest, is Monte Carlo (MC) simulation.
is type of simulation is not targeted on a speci�c goal,
as the previously described simulations, but much more
exploratory. Speci�cally, one accounts for the possibility that
not every parameter is 100% certain but in reality comes
from some range. It could be that all values within this
range are equally likely or that they have certain probability
distributions. For instance, the probability of a particular
value could be highest in the center of the range and decrease
to zero toward the upper and lower limits. For each run of
an MC simulation, one randomly selects one value for each
parameter from its range and according to the corresponding
probability pro�le and solves the system. Repeating this step
thousands of times results in a distribution of outputs (e.g.,
see [4]).
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F 11: Limit cycle oscillations in the small system of Figure
9. When the parameterization of (30) is slightly changed, with
the rate parameter value crossing the Hopf bifurcation threshold,
the formerly stable steady state becomes unstable, and the system
exhibits stable oscillations. (a) shows the time courses, whereas (b)
shows the results in a phase-plane plot of 𝑋𝑋2 versus 𝑋𝑋1. Here the
blue trajectory spirals inward toward the limit cycle (a), while the
apparent ring area in green actually consists of a very tight outward
spiral toward the limit cycle.

Let us illustrate the results with the same S-system exam-
ple of a branched pathway that we used for a comparisonwith
the corresponding GMA systems ((18) and (19); Figure 2).
For ease of demonstration we assume that all parameter
values are �xed, except for the value of the input 𝑋𝑋0, which,
instead of being �xed at 4, could be any number between
3 and 5, and the inhibition parameter 𝑔𝑔12, which we allow
to have any value between 0 and −1, instead of the �xed
–0.75. Figure 12 shows the system responses in 𝑋𝑋1 from
two runs of randomly drawing 20 combinations of 𝑋𝑋0 and
𝑔𝑔12. Several observations can be made. First, every Monte-
Carlo simulation is different, which is easy to explain,
because random numbers are sampled. Second, the iterations
typically fall on both sides of the original, deterministic case
(dotted lines), because the �xed parameter values are within
the sampling ranges. ird, for small sets of MC simulations,
the extreme results and their variation can be different. For
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F 12: Results of Monte Carlo simulations with the S-system
model equation (19) of the branched pathway in Figure 2. Every
simulation returns a different set of output trajectories, due to the
randomness of the method.

instance, in one panel of Figure 12 the highest value is
higher than in the other panel, but the spread of steady-state
solutions is smaller. Running thousands of MC simulations,
one obtains a more complete picture of all possibilities and
their likelihoods.

Applying anMCmethod, Horner analyzed the sensitivity
of the uric acid concentration in blood serum in a model
of impaired purine synthesis to initial conditions [413].
Expanding on the traditional MC concept, Balthis developed
a hierarchical MC method to analyze mercury exposure in a
human population that was strati�ed by features such as age
and �sh consumption [424].
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MC simulations render it possible to distinguish ensem-
bles of feasible from infeasible models. e goal of this
approach is not to identify the one best model parameteri-
zation, but an entire cluster of models that all satisfy certain
criteria of quality. Logistically, one launches a large-scale
MC simulation where every uncertain parameter is given
a generous range of possible values. Aer every run, one
checks if the solution satis�es the set output criteria. If so, the
solution is retained; otherwise it is discarded. As an example,
Lee et al. [323] used an MC sampling with �ltering to obtain
feasible models for a metabolic model in plants, and Yin and
Voit [322] applied the method to explaining the functionality
of the enzyme NADPH oxidase, which is involved with the
control of reactive oxygen species.

Ni and Savageau used a somewhat similar “sample-and-
retain-or-discard” strategy for screening many alternative
instantiations of human red-blood-cell models for putative
errors, such as instability or unreasonably high sensitivities,
and for proposing candidate regulatory mechanisms that
were able to alleviate these problems [370, 371]. Alves et al.
applied a large-scale model screening strategy to character-
izing details of the biogenesis of iron-sulfur clusters in yeast
[373, 374].

4.6. Model Validation. Once the repertoire of possible behav-
iors has been sufficiently explored, the model should be
validated against data that had not been used for model
construction. ese data may be quantitative or qualitative,
and model evaluations may be in the form of comprehensive
sensitivity and robustness analyses, simulations, or mixtures
of diagnostic assessments [425]. Essentially all published
models have undergone some degree of validation. Relatively
comprehensive examples for BST models are [188, 426].

An entirely different type of validation uses methods
of an automated, algebraic model checking [427–436]. A
good example in the context of BST is a Simpatica soware
system that explores the time-trajectories of models with an
automaton-based semantic language. is language permits
the asking and answering of questions about the logical
properties of the temporal evolution of a system, such as “is
the system able to reach a steady state?” or “what are the
possible bounds for the trajectories of a particular dependent
variable in the system?” e model checking language also
contains quali�ers such as “eventually” and “always,” as well
as their negation, which leads to the quali�ers “never” and
“sometimes.” As a speci�c example, the soware may
check the truth of the expression “Eventually(Always(zero-
derivatives)),” which corresponds to the situation that the
system will certainly approach a steady state for 𝑡𝑡 going
toward in�nity. In this manner, the system can qualitatively
reason about features of the system by using propositional
temporal logic that succinctly and unambiguously addresses
ordered sequences of events. e authors of this soware
illustrated the power of this type of automatic checking
with the model of a limit cycle [437] and a quite complex
S-system of purine metabolism [186, 438, 439]. Some-
what similar in concept, Gentili proposed a combination
of S-systems with stochastic 𝜋𝜋-calculus, which is essen-
tially a programming language, to analyze gene regulation

networks in an automated fashion [440]. Campagna and
Piazza studied the topic of reachability in dynamic systems,
including S-systems, with semialgebraic hybrid automata
[441].

�� ���licatio� o� BS��o�els to S�eci�c
Biological Systems

BST has been used for rather different purposes throughout
biology and beyond. Within the realm of biology, and using
very broad categories, one may distinguish model analyses
whose purpose was to gain novel insights in a speci�c
biological system from analyses whose prime target was the
development of methods, along with a better understanding
of an entire class of biological systems, such as “all linear
pathways with feedback.” We begin this section with the
latter, and discuss speci�c applications subsequently.

5.1. Design andOperation and theMethod of ControlledMath-
ematical Comparisons. From the very beginning, many BST
studies addressed entire classes of systems of high biological
relevance, without focusing exclusively on speci�c applica-
tions. A long line of such investigations targeted the different
observed modes of gene regulation, especially in microbes.
Spearheading this effort, Savageau early on presented detailed
analyses of classical and autogenous control of inducible
operons and the interplay between gene regulation and
the demands imposed on organisms by their environments
[442–449]. ese analyses revealed that different regulatory
schemes are indeed optimal, depending on environmental
circumstances. Many later articles similarly addressed the
design features of gene regulatory networks [36, 114, 115,
161, 385, 450–461]. e overarching goal of these studies was
the discovery of general rules and mechanisms that were able
to explain in an unbiased manner why different genes and
operons are regulated in distinct ways.

e envisioned generality of these studies made it appar-
ent that new methods of objective, comparative analysis
were needed and led to the development of an unbiased
approach for comparing alternative modes of operation or,
more generally, alternative systems. e ultimate result
was the method of controlled mathematical comparisons
(MCMCs), which aims to explain why certain system features
are observed in a certain situation, rather than others [11,
73, 462–464]. A typical question within MCMC is: What
is the advantage of a feedback inhibition signal in some
speci�c, observed, or hypothesized system and what would
happen without this signal? e basic concept of MCMC
consists of comparing two (ormore) systems that differ in just
one feature, such as the inhibition signal in the previous
example. In addition to setting up these models in parallel,
one de�nes objective biological criteria that render one
structure advantageous over the other. Typical examples
of such criteria of functional effectiveness are the minimal
accumulation of unneeded intermediate metabolites or the
amount of time the systems require to respond to external
stimuli. e alternative systems are assessed against a list of
such criteria, and the system scoring highest against these
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F 13: Different modes of regulating a linear, unbranched
pathway through feedback inhibition. In nature, one essentially
always observes the mode at the top. e method of controlled
mathematical comparisons explains why this is so (adapted from
[1, 10]).

criteria is declared best. Moreover, the advantages of the
winning system can be attributed directly to the one feature
that distinguishes this system form the other(s).

MCMC has been used to analyze the design principles
governing various gene regulatory systems and metabolic
pathway systems. With respect to gene regulation, MCMC
ultimately led to the Demandeory of Gene Regulation [36,
114, 115, 385, 453, 465]. is theory connects environmental
demands, as well as the cycle time, which is de�ned as the
average time for a gene to complete an on-off cycle, to the
mode of gene regulation and the coupling of gene expression
in the form of elementary circuits. Based on these concepts,
Atkinson et al. demonstrated that a deep understanding of
the design of such gene circuits and their regulation is a pre-
requisite for creating new systems, as it is the goal in
synthetic biology [466]. Speci�cally, these authors predicted,
and subsequently validated experimentally, the function of a
sophisticated genetic circuitry exhibiting a toggle switch, as
well as oscillations in gene expression that were sustained in
a bacterial population for several generations.

MCMC was also applied to different classes of metabolic
pathways [467–476], the evolutionary development of dif-
ferent designs of enzyme systems and moiety-transfer cycles
[477–484], bacterial growth phenomena [485], two-com-
ponent sensing systems with and without bistable switches
and hysteresis [387–390, 475], a stress response system in
yeast [486], higher plant systems [487], and even control
systems for lymphocytes and their responses to antigens
[462, 463]. Puigjaner and colleagues compared MCMC for
BST andmetabolic control analysis (MCA; [488]). Zhang and
collaborators emphasized the value of understanding design
principles in the context of toxicity testing [489].

A representative example for the discovery of design
principles is the comparison of all possible patterns of
feedback inhibition in a linear, unbranched pathway (some
possibilities are shown in Figure 13), which reveals that the
very common pattern of the �nal product inhibiting the �rst
step of the pathway has distinct advantages over all other
imaginable designs [1, 10, 467, 468, 471, 472].

While the original MCMC mostly relied on alge-
braic analyses of S-systems, it was later augmented with

simulations and graphical and statistical assessments [464,
471–474, 490].

Recent advances have expanded the concept of design
principles to design spaces [480, 481, 491–494]. A design
space is a dimensional compression of the parameter space
of a system that reveals and characterizes generic relation-
ships between system parameters, environmental variables,
and qualitatively different system behaviors. Speci�cally, the
entire space of possible responses of a system is partitioned
into regions of the parameter space that corresponds to
distinct phenotypes of qualitative system behavior [492].
Using local S-system approximations, these regions can be
investigated in terms of their �tness and tolerance to external
perturbations, and it is possible to compute the boundaries
between these phenotypic regions. An application of this
concept was an analysis of the role and regulation of the O2
sensor FNR in E. coli [495, 496]. Soware has been proposed
to automate the key steps of such an analysis [99].

A different extension of methods for the discovery of
design principles was the corresponding analysis of operating
principles, where the focus is not so much on the structural
design of systems, but on their operation in response to
stimuli [76, 77, 380, 484]. A recent review of design and
operating principles can be found in [78].

Chen and colleagues developed adaptive design rules
for biochemical systems, based on the criterion of sufficient
robustness toward mutations and environmental changes
during evolution [402, 497]. ey found that systems satis-
fying these criteria exhibit increased diversity in phenotypes.

Wu et al. formulated complex genetic trait formation as
a dynamic system [498]. ey used a simple S-system to
quantify how alterations in different system constituents can
lead to global changes in traits and provide a quantitative
tool for testing the interplay between genes and development.
e authors found that the genetic mapping of complex traits
may be improved through an increased understanding of
biological design principles.

5.2. Case Studies. In contrast to the general design studies
described in an earlier section, many BST analyses have
focused on speci�c applications and oen used actual exper-
imental data in the form of kinetic properties or measure-
ments of metabolite concentrations, �uxes, or other quantita-
tive features. In line with the original purpose of BST,many of
the earlier analyses addressed biochemical pathway systems,
but over time the scope widened within and even beyond
biology. Representative studies are brie�y summarized in
the following vignettes. ey start with microorganisms and
progress toward higher organisms, including plants and
humans. Inmany cases, this sequence roughly corresponds to
the time of publication. Additional studies will be discussed
in the context of system optimization.

5.2.1. Microbial Studies. Early on, Savageau and colleagues
analyzed intriguing mechanisms that ensure the correct
translation of RNA into proteins [499–507]. Based on exper-
imental in vitro and in vivo data from E. coli, these authors
used power-law models within BST to investigate in detail
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the kinetic proofreading mechanisms for the aminoacylation
of tRNAs, which typically occurs with a high degree of
accuracy.

Arguably the �rst numerical data analysis with BST was
yeast fermentation of glucose into ethanol [201]. Based on
experimental data, alternative models were constructed and
parameterized. One conclusion from comparing the models
was that high ethanol concentrations in these cultures led
to cell death by lysis. A much more detailed model of yeast
fermentation was later introduced by Curto and coworkers
[185, 508, 509]. is series of papers was interesting for a
number of reasons. In particular, it showed how traditional
enzyme kinetic information can be validly converted into
power-lawmodels that offer additional modes of analysis and
novel insights. is more complex model was later used as a
test bed for various optimization and estimation [3, 4, 255,
319, 409, 510–520].

Conceptually similar modeling studies addressed the
production of amino acids, enzymes, proteins, and other
valuable organics in E. coli [58, 521–523]. Lall and Mitchell
used an S-system model to characterize the reduction of
metal in the bacterium Shewanella oneidensis [524]. Sheridan
and colleagues successfully engineered and validated the
meta-cleavage pathway of Pseudomonas putida, based on BST
simulations and logarithmic gain analysis [525]. Sun and
collaborators modeled glycerol fermentation by Klebsiella
pneumonia [526].

Lactococcus lactis is a bacterium of great relevance in the
dairy industry, where it is used in the production of yoghurts,
cheeses, and other food products. Its appeal for modeling
derives from the fact that the organism has been used for in
vivo NMR studies that characterized the temporal dynamics
of glycolytic metabolites in response to a glucose bolus aer
a period of starvation. ese time series data opened new
avenues of parameter estimation and model construction in
general [342, 357, 358, 362, 363, 527].

Different groups analyzed cultures of the alga Chlamy-
domonas reinhardtii for the purpose of producing hydrogen.
Horner and Wolinsky [528] used an S-system model to
investigate the sensitivity of H2 production to photosynthetic
activity and the production of protons by photolysis [528].
Jorquera and colleagues [529] studied sulfur deprivation,
while Zhang suggested S-system equations for the reactions
in a space-dependent advective-diffusive representation of
the system [530, 531]; see also [532].

Torres developed the �rst BST models that compre-
hensively captured the dynamics of citric acid generation
in the fungus Aspergillus niger [183, 184]. is mold is
industrially very important, as it produces the lion share of a
worldwide annual citric acid production of almost 2 million
tons [533, 534]. e initial model, as well as several more
sophisticated successors, was used later for testing various
optimization methods [66, 535–539]. De Jongh explained
formerly puzzling experimental �ndings based on themodels
[540].

Alves developed a model for iron metabolism in yeast
[373, 374, 541]. Particularly interesting in this study is the
combination of dynamic modeling with the use of infor-
mation regarding the molecular structure of key enzymes.

Huang and Wang studied the growth dynamics of Sac-
charomyces diastaticus in mixed sugar culture designed to
produce ethanol and glycerol [165].

Alvarez-Vasquez spearheaded the development of a series
of models describing sphingolipid biosynthesis in yeast [187,
426, 542]. Sphingolipids are specialized lipids that not only
contribute to ras in lipid membranes, but also exert distinct
signaling functions. Interestingly, the general structure of
their biosynthesis has been conserved from yeast to humans.
In a recent expansion, the pathway wasmerged with a second
pathway, describing the de novo synthesis of ergosterol [188].

Stress responses in microbes have been studied for a long
time, because they offer insights into the cellular machinery
that mounts appropriate responses to adverse environmental
conditions. Several BST models have addressed heat stress
responses in yeast. Voit and Radivoyevitch demonstrated
that the glycolytic gene expression pro�le following heat
stress is all but intuitive, yet appropriate for the required
metabolic response [543]. Sorribas’ group analyzed the same
phenomenon and showed that the cellular response is essen-
tially optimal, given the constraints within which it has to be
mounted [484, 544–546].

One hallmark of the heat stress response in yeast is a dra-
matic increase in the intracellular concentration of trehalose.
is disaccharide is a stress response metabolite that is found
in a variety of microorganisms, plants, and invertebrates.
Its synthesis normally occurs at a low rate, but increases
enormously and within minutes of severe stresses. Due to
the strong metabolic and genomic responses, various aspects
of trehalose dynamics, and other heat stress responses have
been modeled in recent years. ey included an analysis of
the design and operating principles of the trehalose pathway
itself [486], as well as detailed assessments of the multiscale
processes that lead to the appropriate stress response [6,
547]. In addition to trehalose, yeast sphingolipids respond
to heat stress within minutes in a coordinated fashion [548,
549].e interactions between the trehalose and sphingolipid
responses at different organizational levels constitute a very
intriguing regulatory system [550].

A different stress response in yeast is starvation, to which
the organism reacts by reversing the direction of glycolysis,
a phenomenon called the diauxic shi. Alvarez and col-
laborators showed that this response is coordinated with a
global small-magnitude up- or downregulation of very many
metabolic steps, rather than more pronounced changes in a
few steps [542] (see also [380]).

Shiraishi and Savageau [37, 551–555] presented what
one might call the �rst complete standard BST analysis of a
complex pathway system. Addressing the TCA cycle in the
slime mold Dictyostelium discoideum, they discussed the
advantages, disadvantages, and relationships between differ-
ent model structures, set-up equations, based on the path-
way diagram, executed steady-state and dynamic analyses,
and discovered and remedied problems in earlier non-BST
models.

All organisms rely on robust signal transduction systems,
which possess some aspects of metabolic and proteomic
systems, but also their own genuine features. BST has
been employed for a rich variety of analyses of signaling
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systems. In particular, the group of Vera and Wolkenhauer
has contributed much to our understanding of such sys-
tems. Working at the interface between experimentation and
theoretical biology, they demonstrated how modeling can
complement data collection and interpretation in the context
of the JAK2/STAT5 pathway [556–558]. In [41], the group
compared detailed and simpli�ed power-law models [559].
Not surprisingly, the preference for one or the other model
choice depends critically on the amount and quality of the
data used and the speci�c questions asked. For example, the
article [560] successfully used simple power-law models to
analyze the dynamics of feedback loops in the ERK signal
transduction system. In a different, yet related line of work,
Nikolov and colleagues developed a multiscale model that
accounted for the effect of erythropoietin mediated JAK2-
STAT5 signaling in erythropoiesis [422, 561]. e group also
assessed oscillations in the NF𝜅𝜅B pathway with a model
that had BST components, as well as Michaelis-Menten-type
functions [562].

Lin and colleagues studied options for controlling cas-
caded systems, including signal transduction systems, which
were formulated as S-systems [384, 563]. Boykin and Ogle
investigated the sonic hedgehog-signaling pathway [564].
Ray and Kirschner analyzed signaling processes associated
with the primary role of macrophages to use chemicals
like nitric oxide and the iron regulatory apparatus to kill
pathogens [565].

Schwacke and Voit analyzed the generic features of MAP
kinase cascades and rationalized with computational means
why the parameter values in different layers of the cascade
must fall into distinct domains of the parameter space [566].
ey also demonstrated that cross-talk between two cascades
is sufficient to create all genuine information responses,
including negation and the exclusive-or function [567].

While higher organisms tend to use multilayer protein
cascades for signaling purposes, bacteria oen use two-
component systems for sensing their environment and
responding adequately. From an analytical point of view,
these systems are very intriguing in that they are bistable and
can exhibit hysteresis [387–390, 475]. Other articles on signal
transduction included [568, 569].

5.2.2. Studies on Higher Plant and Animal Systems. Shortly
aer the introduction of BST, Smith used power-law models
to study the functional interactions between the components
of an ecosystem [570–572]. Speci�cally, he studied pathways
of nutrient �ux with tracer experiments. e rationale for
using BST was that earlier studies had proposed ratios of
polynomials for the description of ecological processes, and
that these were adequately approximated with power-law
models, as Savageau had demonstrated [1, 101]. us, Smith
converted an earlier model into an S-system and used this
model to characterize steady states, stability, and species
extinction. In a similar vein, Torres developed a model of
magnesium �ow in a tropical forest, where the variable pools
represented plants, animals, litter, and soil [573].

Voit and Sands developed a model describing nutrient
allocation in trees within planted forests and studied the
effects of different fertilization regimens [119, 574–576]; see

also [577]. Interestingly, the allocation patterns changed with
the age of the trees and their fertilization regimens. Martin
used BST to condense a complex forest simulationmodel into
an S-system model that was much easier to analyze [578].
Renton and colleagues combined power-law modeling with
the structural modeling framework of L-systems to generate
functional-structural plantmodels that permitted a spectrum
of granularity in detail ranging from accurate and descriptive
to mechanistic and explanatory models [579–581].

In a more theoretical study, Voit showed that a widely
observed rule of forest growth, the so-called 3/2 rule, is a
direct consequence of an appropriate S-system model formu-
lation [582, 583]. e rule posits that growing forests
approach a power-law relationship between tree density and
average tree size that has a slope of about 1.5. He also
proposed a statistical method, using an S-distribution (see
later), to characterize the changes in tree size distributions
during the aging of a forest [575, 584]. Torsella showed how
simpli�ed S-systems with only one nonzero term per equa-
tion permitted linear regression methods for the estimation
of tree growth in planted stands [181]. Johnson modeled the
growth of pine trees [293, 585] and studied economic aspects
of dynamic agricultural systems [586].

Lee was the �rst to develop comprehensive models of
lignin synthesis in poplar trees and alfalfa [323, 487, 587].
Lignin is a biopolymer in secondary plant cell walls which
hardens them and also makes them resistant to foraging by
animals and the attempt to extract ethanol for biofuels from
inedible plant parts.

Chaudhuri and colleagues developed an S-system model
to analyze bioeconomic features of �sheries, using a realistic
catch-rate function, as well as costs, taxes, and regulatory
controls [588, 589]. Methods of variational calculus and
control theory led to an optimal harvesting policy. Brown
used an S-system model to optimize the feed and slaughter
age of turkey [590, 591]. Torres’ group used BST methods
to optimize a feeding regimen for economically valuable
octopus populations kept in captivity [592].

Torres presented a BSTmodel of the glycolytic and glyco-
genolytic pathways in rat liver, whose predicted responses
correlated well with experimentally determined results [593].
is model was later made into a detailed case study for
analyzing BST models [3] and used as a benchmark for the
application of control theoreticalmethods to steering systems
toward a desired goal [406, 594–597].

Although not addressing a living organism, one might
add that Streichert and colleagues used an S-system repre-
sentation in a reaction-diffusion approach to investigate the
endogenous evolution of a head-tail pattern in an arti�cial
embryo without the prior de�nition of spatial gradients
[532].

5.2.3. Human Physiology and Disease. Human metabolism
and its failure have received increasing attention with the
availability of more comprehensive data and the correspond-
ing development of analytical techniques. As an early exam-
ple of a BST analysis, Ni and Savageau developed models of
the metabolic dynamics of red blood cells [370, 371]. Reilly
and colleagues studied renal hemodynamics [598], and Vera’s
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group studied with a multiscale model the signaling role of
erythropoietin on erythropoiesis [422, 561].

Salvador et al. modeled the NADPH redox cycle in
human erythrocytes and used these models to connect the
molecular properties of glucose 6-phosphate dehydrogenase
mutants to clinical phenotypes [478–481]. Interestingly, the
design space of this system partitioned cleanly into three
regions of qualitatively distinct performance. Within this
design space, the distances between mutants and normalcy
correlated negatively with the severity of the phenotypes.

Also related to the blood system in humans, Yin and
collaborators showed with a BST model how different mech-
anical shear stresses affect the metabolic and signaling res-
ponses of endothelial cells in vasculature [599]. Also in
vasculature, they analyzed the role of the enzyme NADPH
oxidase, which controls the dynamics of reactive oxygen
species, and whose malfunction can contribute to diseases
like atherosclerosis [322].

Sorribas and González developed a BST model for the
hypothalamus-anterior pituitary-thyroid network. ey
translated this complex physiological system into a relatively
simple S-system model, which qualitatively captured the
responses of healthy subjects to an injection of thyrotropin-
releasing hormone. e authors also studied the dynamics
of the system’s regulatory signals under physiological and
pathological conditions [600].

Curto and colleagues developed a series of models of
purine metabolism in humans and demonstrated that an S-
system model was able to serve as a novel classi�cation tool
of purine-related mental diseases [3, 186, 438, 439]. omas
adopted Curto’s model with some adjustments to clarify
confusing effects of the drug mizoribine on guanine and
adenosine nucleotide synthesis [601]. Horner used a variant
of the model to study the effects of parameter variations in
the case of one of the most devastating purine-related dis-
eases, namely, hypoxanthine-guanine phosphoribosyltrans-
ferase (HGPRT) de�ciency, which in severe cases is known
as Lesh-Nyhan syndrome [413].

Qi and collaborators developed severalmodels describing
the dynamics of dopamine metabolism. Dopamine is a
crucial neurotransmitter in the reward system of mammals,
including humans, and changes in dopamine concentrations
can lead to Parkinson’s disease, schizophrenia, sleep disorder,
and attention de�cit�hyperactivity disorder [44, 174, 602–
609], (see also [175, 610–612]). e work of Qi’s group
contains models for the presynapse, which is a nerve ending
in the midbrain where dopamine is produced, as well as the
postsynapse in the forebrain, where dopamine signals are
interpreted. Sass and colleagues used a complementary BST
model to investigate the dynamics of the protein 𝛼𝛼-synuclein,
which is the second hallmark of Parkinson’s disease, outside
changes in dopamine levels [613].

Liu and colleagues proposed an S-system model to
characterize the dynamic regulatory characteristics of the p53
signaling pathway, which is crucial in tumor suppression
and apoptosis [614]. Simulations with the model assisted the
identi�cation of key molecules in this signaling pathway.
Vera and colleagues [615] showed with a model contain-
ing power-law and ratio terms that the dynamics of p53

expression and its role as a transcription factor are affected
by epigenetic silencing of 14-3-3 proteins, which can bind to
various signaling proteins.

Broome and Coleman developed a model of cell death
in multiple sclerosis, which they used to identify possible
triggers of the disease as well as potential drug therapies,
particularly with respect to reactive oxygen and nitrogen
species [616].

Ferreira and colleagues modeled a biochemical system
that has a typical time scale seconds, but can cause disease
due to the accumulation of metabolites during a human’s
lifetime [617]. Namely, they studied the glyoxalase system
and its role in the very slow formation of advanced glycation
end products, due to the Maillard reaction, which in the long
run can lead to Alzheimer’s disease and to alterations in the
proteins in the lens of the eye.

Several groups used BST models to analyze infectious
diseases. Garcia and her collaborators developed a detailed
model of the parasite Cryptococcus neoformans, which is a
common cause of fungalmeningitis [618, 619].is organism
can grow in the respiratory tract or within the phagolysosome
of phagocytic cells and therefore must adapt readily to
strikingly different acidity milieus within the human body.
Berg and collaborators demonstrated how S-system models
can be used to study the antimicrobial efficacy of drugs in
humans [620]. Vera and colleagues analyzed model-based
strategies for identifying potential drug targets in cases of
known enzymatic dysfunction [621]. Torres’ group proposed
a model for the dynamics of Leishmaniasis and explored
possible applications of the model to the design of effective
therapies [622]. Magombedze and Mulder developed an S-
system model of tuberculosis [623].

Rather than focusing on speci�c diseases, several authors
developed and analyzed generic disease models, using BST.
Some of these focused on risk groups, risk factors, and
epidemics [25, 28, 424, 598, 624–627], while others studied
the trajectories from health to disease in general and in a
personalized setting [379, 628]. ey also described generic
modeling approaches for understanding in�ammation [629],
which were speci�cally applied to a simple cystic �brosis
model [182]. Faratian and colleagues suggested S-system
modeling as a very promising approach for integrating data
in cancer research [630, 631].

A few investigations pointed out the use of BST models
for drug development [43, 620]. Torres’ group proposed a
generic strategy of data integration through modeling for
disease caused bymalfunctioning enzymes [621]. Some addi-
tional studies are discussed as applications of optimization
methods.

Boege and colleagues studied the intracellular dynamics
and localization of the enzyme topoisomerase II𝛽𝛽 [632].

6. Optimization

e speci�c application models discussed before had various
purposes. Some were developed to test whether the scienti�c
community understood a pathway correctly, some were
constructed to explore what-if scenarios, and others were
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the starting point for various kinds of manipulations, such
as the remediation of a disease. A prominent role for some
models was the optimization of some bene�cial model
feature. In particular, severalmicrobial models were designed
with the goal of engineering and optimizing microbes to
make, in a cost effective manner, desirable high-volume
products, such as ethanol or citric acid, or low-volume,
valuable organic compounds, such as feed additives and
pharmaceutical precursor compounds. Hand in hand with
these goals, general andBST speci�cmethodswere developed
to make such optimization tasks feasible and effective. us,
over the years, metabolic engineering became a prime area
of optimization within the realm of BST. e generic task
of this endeavor is to alter the metabolic �ux distribution
within a microorganism such that this organism produces
and excretes a desired end product in much larger quantities
than the wild type.

As in other areas of mathematics, there is huge difference
between linear and nonlinear optimization tasks. While it
is fairly easy to solve linear optimization problems with
hundreds of variables, nonlinear problems become compu-
tationally expensive even if only a few dozen variables are
involved. As a consequence, it is desirable to explore to what
degree application problems can be assessed with linear
optimization methods.

6.1. Stoichiometric and Flux Balance Analysis. Although
metabolic systems are intrinsically nonlinear, they do have
fundamental linear features, and these have been exploited
in metabolic engineering (e.g., [130, 633�). e �rst is
distribution of �uxes at the steady state of a system. �onsider
as an example the illustration diagram in Figure 14. Here,
every �ux 𝐹𝐹 is typically nonlinear, but the overall structure
of the �ux network is linear.

Suppose that the system receives input through the �ux
𝐹𝐹01, which subsequently distributes throughout the system.
e change in any of the nodes (i.e., metabolite pools) can
be expressed as a function of all contributing �uxes. For
instance, the dynamics of 𝑋𝑋3 is governed by the following
equation:

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑑𝑑

= 𝐹𝐹13 + 𝐹𝐹23 − 𝐹𝐹34, (31)

which directly expresses that 𝐹𝐹13 and 𝐹𝐹23 contribute to the
growth in 𝑋𝑋3, while 𝐹𝐹34 moves material away from 𝑋𝑋3. e
�uxes 𝐹𝐹13, 𝐹𝐹23, and 𝐹𝐹34 are typically nonlinear functions of
metabolites, enzymes, and modulators. ey could be
Michaelis-Menten or power-law processes or take any struc-
tural format from among an unlimited repertoire. As inmany
other cases, the steady state is of particular interest. In order
for all nodes to remain constant, the �uxes at each node must
balance. is balance requires, for instance, for𝑋𝑋3:

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑑𝑑

= 0 = 𝐹𝐹13 + 𝐹𝐹23 − 𝐹𝐹34. (32)

In general, the �ux balance of a metabolic pathway system at
a steady state is characterized by a system of linear algebraic
equations. ese derive directly from the generic system
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F20

F34

F23

F40

F24
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X2

X3

X4

F 14: Generic network of �uxes in a metabolic system. e
structure of the network is linear, but the �uxes themselves are
typically nonlinear. ey may also be affected by some of the
metabolites, which are here shown as “nodes” of the network.

representation in (2), which are expressed for no change in
the𝑋𝑋 variables and can be expressed in matrix format as

�̇�𝐗 = 𝐗𝐗 𝐗 𝐗𝐗 = 0. (33)

Here 𝐗𝐗 is the vector of metabolite concentrations, 𝐗𝐗 is the
stoichiometric matrix, and 𝐗𝐗 is the vector of all reactions
steps in the system.

As an example, let us revisit the GMA model of the
branched pathway system in Figure 2 and (18). e stoi-
chiometric matrix has three rows, one for each dependent
variable, and �ve columns for the �ve reaction steps in the
system. us,

𝐗𝐗 = 
𝑋𝑋1
𝑋𝑋2
𝑋𝑋3

 ,

𝐗𝐗 = 
1 −1 −1 0 0
0 1 0 −1 0
0 0 1 0 −1

 ,

𝐗𝐗 =



𝛾𝛾11𝑋𝑋
𝑓𝑓110
0 𝑋𝑋𝑓𝑓112

2
𝛾𝛾12𝑋𝑋

𝑓𝑓121
1

𝛾𝛾13𝑋𝑋
𝑓𝑓131
1

𝛾𝛾22𝑋𝑋
𝑓𝑓222
2

𝛾𝛾32𝑋𝑋
𝑓𝑓333
3





.

(34)

Typical optimization tasks in these systems consist of opti-
mizing a �ux that represents the production of a desired
metabolite. Inmany cases, the optimized system should oper-
ate at the steady state, and the stoichiometric equation serves
as a set of linear algebraic constraints. us, the solution
maximizes the desired �ux, while ensuring that the system
operates under steady-state conditions. In most practical
cases, the number of �uxes is quite a bit larger than the
number of metabolites, with the consequence that (in�nitely)
many solutions are possible. Since the equations refer to a
biological system, it is reasonable to constrain metabolites
and �uxes in magnitude so that they cannot be smaller or
larger than some limits. ese constraints can ensure that the
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system does not deviate too much from its normal operation
in most of its components, that thermodynamic constraints
are satis�ed, and that the system is not metabolically over-
burdened with the need to produce and maintain too many
enzymes at signi�cantly elevated levels. e subspecialty
of metabolic engineering pursuing optimization with these
types of concepts and strategies is stoichiometric and �ux
balance analysis (FBA) (e.g., [130, 633]).

FBA ismathematically elegant and has been very success-
ful in practical applications. Its enormous advantages are the
linearity of the optimization task and the associated fact that
very large and even genome-wide systems can be optimized
with reasonable effort. However, FBA also has intrinsic
disadvantages. First, by its nature, it predicts new steady-state
levels of �uxes but does not allow inferences on metabolite
levels. Second, it largely ignores regulatory features at the
metabolic level, which in reality tend to keep systems from
deviating too far from their wild type steady state. us, FBA
runs the risk of predicting a steady-state �ux distribution
that the actual cell would avoid, due to regulatory controls.
Attempts have beenmade to account for regulatory processes,
but these have been rather coarse. Finally, FBA requires
the speci�cation of an objective function, which typically
reduces the in�nite number of solutions to a single optimal
solution. Inmicrobial systems, this objective function usually
formalizes that microbes tend to maximize their growth rate.
In other cases, a valid objective is not always easy to pose. For
instance, cells in higher organisms have different objectives.
Nonetheless, the concepts and simplicity of FBA are very
appealing, and recent attempts have been made to begin with
FBA and then to convert the results into nonlinear dynamical
systems.

6.2. Steady-State Optimization of BST Models. As a gen-
uine alternative to stoichiometric and �ux balance analysis,
attempts were made to optimize fully regulated metabolic
pathway systems. However, these immediately involve non-
linearities that seem unavoidable. Intriguingly, a compromise
was found in S-systems [634, 635]. As discussed before, S-
system models within BST do capture the nonlinearities of
metabolic systems, but, at the same time, possess steady
states that are characterized by systems of linear equations
in logarithmic coordinates (see (28)-(29)). Furthermore,
�uxes become linear in logarithmic coordinates as well, and
it is mathematically equivalent for optimization purposes
whether typical constraints on �uxes or metabolites are
formulated inCartesian or logarithmic coordinates. As a con-
sequence, the entire optimization task becomes linear in
a logarithmic space, and one obtains the following linear
program:

(1) maximize ln(�ux)

subject to

(2) steady state equations, expressed in logarithms of
variables,

(3) ln(dependent or independent variable) ≤ constant,
(4) ln(dependent or independent variable) ≥ constant,

(5) ln(dependent or independent variable) = constant,
(6) ln(dependent or independent variable)

unrestricted,
(7) ln(�ux) ≤ constant,
(8) ln(�ux) ≥ constant,
(9) ln(�ux) unrestricted,

(10) ln(�ux 1/�ux 2) ≤ constant.

Here, (1) is the objective function, (2) ensures operation of
the system at steady state, and (3)–(10) are biologically moti-
vated constraints on various metabolites and �uxes in the
system [4, 634]. us, arbitrarily complex S-system models
can be optimized under steady-state operation with linear
optimization methods.

Of course, the simplicity of this strategy does not come
for free. An important argument against this approach is
that S-system models are local approximations, so that the
ranges around the operating points, where metabolites are
validly represented, are limited. us, this strategy has to
address questions regarding the accuracy of the power-law
approximation (see later), which are difficult to answer in
the abstract, but which have been addressed in comparative
optimization studies (e.g., [4, 511, 512, 519]). Furthermore,
it is possible to pursue an iteration of optimization steps,
where each individual step is likely to remain within its
range of validity [634]. A related question is to what degree
imprecise implementations of the optimized enzyme pro�le
would compromise the results [636].

e second argument against S-systems is their nonintu-
itive aggregation of �uxes at branch points, as was discussed
before. is issue is seen as a particular problem if one of
several branches has to be altered for optimizing the declared
objective. Over the years, three compromises between the
simplicity of S-system optimization and the more intuitive
GMA representation were suggested. e group of Torres
proposed the Indirect Optimization Method (IOM), which
iteratively formulates a GMA model, converts it locally into
an S-system, optimizes this S-system with strict constraints,
and converts the predicted optimal solution back to the GMA
form [4, 511, 637]. e results of this mixed strategy were
compared with direct nonlinear optimizations and found
sufficiently accurate and, at the same time, computationally
much cheaper to implement and solve.

e IOM method was later extended to take static as
well as dynamic features into account and to facilitate the
optimization of bioprocesses with efficient methods of linear
programming [638]. Xu corrected the approximation error
by proposing a �modi�ed IOM� with a �agrangian analysis,
where the objective function includes an extra term that
compares the derivatives of the metabolite concentrations
with respect to the enzyme activities in the original and
the S-system model [639]. Subsequently, the group analyzed
how uncertainties affect the results of the modi�ed IOM
approach [640]. e same investigators proposed two vari-
ations of a biobjective optimization approach based on
S-system representations and a weighted-sum or iterative
minimax procedure [518, 520]. Chang and Sahinidis used
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a complex bilevel optimization scheme to optimize S-system
models of metabolic pathways, while ensuring their stability
[517]. Xu’s group, as well as Sun et al. compared alternative
optimization methods for biological systems, including those
based on S-systems and IOM methods [209, 641].

A second strategy for avoiding accuracy problems with
S-systems, which at �rst sounds reasonable but is more
complex than one might expect, is the separation of GMA
optimization tasks into two linear models, one using the
stoichiometric structure as linear steady-state constraints,
and a second set of constraints that formulates every �ux term
as a linear equation in logarithmic coordinates [4]. So far, this
simultaneous optimization in a Cartesian and a logarithmic
space has not been implemented efficiently.

e third proposal for optimizing GMA system was the
use of linear or geometric programming [637, 642]. e
latter optimization method is designed for tasks where both
the objective function and the constraints consist of positive
power-law terms, called posynomials. e only, but unfortu-
nately crucial, issue for a direct application to GMA systems
is the fact that the GMA models almost always contain terms
with negative signs. Approximation methods for condensing
positive and negative power-law terms into strictly positive
terms may be used to remedy this issue and accomplish the
optimization task. is process of “condensing” is equivalent
to the aggregation process that governs the conversion of
GMA into S-system models, which we discussed with the
example of a branched pathway.

e group of Gatzke approached the GMA optimization
task without capitalizing on similarities to the S-system
structure. Instead, this group proposed a branch-and-reduce
(BR) method, which guarantees the identi�cation of the
global optimum, and not just some local optimum [513–
515]. In the BR approach, the entire solution space is
subdivided into subspaces, and the clever construction of
so-called underestimating functions permits the elimination
of subspaces based on the fact that no solution within this
subspace can possibly be better than some solutions in other
subspaces. In the case of GMA systems, the construction of
underestimating functions is facilitated by the fact that the
only possible functions encountered are power-law functions,
whose mathematical structure is well known. In a variation
on this global approach, Sorribas’ group recently used a
global optimization method that makes direct use of the
structure of GMA systems [546, 643–645]. ese authors
also showed that the nonlinear global optimizationmethod is
compatible with certain types of recasting (see later), which
makes the approach available for larger classes of nonlinear
systems [646], including an extension of BST toward Hill-
type processes, which constitute the so-called Saturable and
Cooperative Formalism (SC formalism; [168, 169]).

As another alternative, Rodríguez-Acosta and collabo-
rators proposed a stochastic optimization algorithm [510].
Similarly, Zheng and colleagues devised a stochastic opti-
mization approach, based on information theory and cluster-
ing analysis, that assisted in the identi�cation of local optima,
while permitting the exploration of regulatory signals [647].

Shiraishi’s group proposed means for identifying bottle-
necks in S-system models that prevent optimization toward

higher yields [409–411, 648, 649]. Torres’ group compared
different optimization approaches based on BST and lin-log
models [160] and developed a soware tool for optimizing
metabolic system models in BST format [98].

An important extension of all strategies discussed so far
is the simultaneous optimization of multiple objectives. For
instance, one might want to optimize the production of a
valuable organic compound, while simultaneously minimiz-
ing cost. In most cases, such multiobjective optimizations
cannot optimize all criteria but have to arrive at a compromise
where some objectives are addressed in an inferior way in
order to allow better performance in other criteria.Within the
realm of BST,multiobjective optimization has been discussed
several times (e.g., [4, 318, 512, 650, 651]). As an exam-
ple, Vera and colleagues simultaneously maximized ethanol
production and minimized each of the internal metabolite
concentrations [512]. For this task, they used an S-system
representation, which they found well suited. ese authors
also considered investment costs and “paracosts,” which
included stability, �exibility, and controllability [652]. Link
et al. proposed a hybrid genetic algorithm-based method
to solve constrained multiobjective optimization problems
and applied it to the fermentation reaction network in yeast
[651]. e simultaneous goals were to maximize ethanol pro-
duction and reduce metabolic burden. Other multiobjective
optimization methods were already discussed in the context
of parameter estimation.

Yet another type of steady-state optimization of S-systems
was proposed by Hatzimanikatis and colleagues [345, 346].
Recognizing the one-to-one mapping between parameters
and system structures in BST models, the authors proposed
a mixed integer linear program (MILP) to optimize not just
parameter values but the entire regulatory structure of a
model. In this case, the presence or absence of regulatory
features was modeled by setting the corresponding kinetic
orders to zero or to nonzero positive or negative values and
optimizing the system within these settings.

ree applications of several of these optimization meth-
ods have received particular attention. e �rst is citric acid
production in the black fungus Aspergillus niger, which was
originally modeled by Torres [183, 184], as discussed earlier.
Over the years, the system was optimized, the model was
re�ned, and it was optimized again; examples are [4, 66, 535–
539, 653].

e second application has been the optimization of
metabolites in the fermentation pathway of yeast. Here, the
original BST model had been developed by Curto et al. [185,
508, 509], and optimization studies included [3, 4, 255, 319,
409, 510–520].

e third application targeted the improved production
of L-(−)-carnitine. is substance is a valuable food sup-
plement, especially for individuals receiving HIV treatment.
While it is possible to synthesize carnitine in vitro, the result
is a racemicmixture that is expensive to separate.e strategy
was therefore to produce carnitine in a modi�ed E. coli
strain. e original model was developed and optimized
by Alvarez-Vasquez and colleagues, who used the IOM
method described before [523]. Some of the predictions
from the optimization analysis were subsequently tested in
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an experimental lab and found to be correct [654, 655].
Speci�cally, the investigators altered the dilution rate and the
initial precursor concentration in amounts suggested by the
model optimization and obtained a substantial increase in
carnitine production rate. In subsequent modeling studies,
the group analyzed the induction of carnitine by cAMP [656]
and studied the effects of salt stress conditions on carnitine
metabolism and thereby elucidated the role of carnitine as an
osmoprotectant in E. coli [657].

Other model applications addressed the increased pro-
duction of tryptophan in bacteria bymeans of geneticmanip-
ulations of the tryptophan operon, which led to the not-
yet validated prediction of a strongly increased tryptophan
�ux [658]; see also [640, 659, 660]. Similar methods were
furthermore used to detect drug targets in cases of diseases
caused by enzyme failure [621], and for studies of the catalytic
efficiency of the enzyme triosephosphate isomerase [661].

6.3. Optimization of Transients. All optimization tasks so far
were related to optimal system operation under steady-state
conditions. A conceptually and mathematically different task
is the steering of a system toward a desired state or along
a desired trajectory. For instance, it might be important to
reach a desired operating state in as short a time period as
possible. e simplest situation is the following. Suppose that
a system needs to be moved to a new steady state, and the
question is how (independent) control variables would have
to be set to make the system reach the desired state. It is easy
to imagine that the problemhasmany solutions. For instance,
one might be able to change a few control variables a lot or
many control variables a little. Also, some approaches of the
new state may be faster than others.

If themodel is formulated as an S-system, the task is again
much facilitated by the linearity of the steady-state equations.
Indeed, the task becomes a matter of inverting the system
matrix in (29) [379, 380]. If the numbers of dependent and
independent variables are such that the systemmatrix has full
rank, the solution just requires a simple matrix inversion. In
other cases, pseudoinversion is required. In typical cases, this
pseudoinversion permits additional features to be optimized.
For instance, one could demand that the control variables
deviate from their normal values as little as possible.

A more complicated situation arises if the desired state
is not a steady state or if the time allowed to reach the
desired state is �nite. �rvadi-Radhakrishnan and �oit
approached this problem by transforming an S-system into
an affine nonlinear control system [594]. Controllability
through independent variables was achieved with an exact
feedback linearization method. e method was illustrated
with a small glycolytic-glycogenolytic pathway model that
had been proposed byTorres andwhich subsequently became
a benchmark example for these types of control tasks [593].
For instance, the group of Meskin and Nounou proposed
several variations of control schemes, for instance, based on
�alman �lters or fuzzy algebra, for moving the variables in
this system to new states [595–597, 662]. Lin et al. studied
the control of signaling cascades [384].

Domingues et al. considered the problem of identifying a
control function that, within a �nite time interval, produced

the maximally possible concentration of a desired product
[663]. ey proposed a combined strategy of optimal control
that combined stoichiometric and kinetic features BSTmodel
in S-systems form. Using Pontryagin’s Maximum Principle,
the authors showed that the control function, de�ned within
the interval [0, 1], achieved optimality at one of the extremes
and that a control regimen consisted of optimized switches
between 0 and 1.

In a different line of work, Long and colleagues developed
a predictive control method for inferring states of a system
that are impossible or difficult to measure directly [664].
Speci�cally, they designed a controller that operates by
taking process data at discrete time intervals and uses the
measured information to formulate an optimization problem
that minimizes some objective function. e optimization
task is solved repeatedly and leads to an optimal control
trajectory.

7. Methodological Extensions of BST

e initial rules for setting up BST models were established
in Savageau’s early work [1, 10, 100–102], and they were later
reviewed in a variety of papers addressing different audiences,
as was discussed before. Not surprisingly, with an expansion
in scope, speci�cmethodswere developedwhere needed, and
some of these capitalized on the particular structure of BST
models, while other were more generic and did not explicitly
utilize the particular power-law structure.

Several BST articles addressed the topic of metabolic
channeling [61, 323, 665]. is phenomenon is associated
with the observation that enzymes are oen located close to
each other, for instance by being anchored in a membrane,
which facilitates the transfer of substrates in a chain of enzy-
matic reactions. As a consequence, the individual reactions
in the chain are not independent of each other, and the
implicit assumption of a homogeneous spatial distribution of
substrates and enzymes is no longer valid.

More generally, the question was asked how kinetic rate
equations are affected by nonhomogeneous milieus. Inspired
by precise experimental and biophysical work on intracel-
lular kinetics [666–670], Savageau treated this situation by
introducing power-law representations for fractal kinetics,
which were shown to capture spatially restricted reaction
systems better than, for instance, Michaelis-Menten for-
mulations [60, 671–673]. Intriguingly, the spatial restric-
tions of reactions lead to much higher kinetic orders than
for Michaelis-Menten reactions in a homogeneous three-
dimensional space. Bajzer’s [674–676] group tested fractal
power-law representations with carefully designed experi-
ments and found them to be valid and more appropriate
than models with time-dependent reaction rates. Wu et al.
analyzed the same data with stochastic equivalents of GMA
systems [176].

Goel and others asked to what degree ill-characterized
systems may be represented with BST models. ey assumed
that a “concept map” of the topological interactions of an
otherwise ill-de�ned system was known and that additional
biological insights or intuition permitted a coarse description



26 ISRN Biomathematics

of the dynamics of the system components, following some
stimuli. Based on this information, they suggested the use
of a BST representation combined with inverse methods for
constructing a �rst, broad-stroke model [45, 612]. Somewhat
related is the construction of mesoscopic models of medium
granularity, which may be abstracted toward the discovery
of design principles or expanded toward more detailed
simulation models [44].

Ubiquitous metabolites like ATP or NADH are always
problematic for modeling studies, because they are involved
in dozens, if not hundreds of reactions. As a consequence, the
modeler faces the conundrum of either trying to include all
reactions, which is typically infeasible, or tomake simplifying
assumptions, such as constancy of the metabolites or factors
themselves or of constructs like the total ATP + ADP +
AMP pool, which have their own issues. Voit and Ferreira
therefore translated a common strategy from biochemistry,
namely, the use of buffers, into corresponding computational
buffers, which are modules within BST that either absorb
excess materials or release materials that are temporarily in
demand [677].

Some authors introduced slight variations on the pure
BST structure. For instance, if an inhibitor is modeled with a
negative kinetic order, the corresponding terms growwithout
bound for small concentrations. A simple remedy is the
de�nition of the inhibitor In by a term like (In +1) [564, 620].

Delays are oen ignored in purely biochemical systems.
However, if additional time scales must be incorporated in a
model, the explicit representation of delays may be needed.
Interestingly, delays can be used in BST models without
destroying their mathematical structure. While the delays
are approximated, the approximation error can be made
arbitrarily small [172, 174, 678]. It was demonstrated that the
inclusion of delays is sometimes mandatory in multi-time-
scale models, lest the model results are quantitatively, and
even qualitatively, compromised [422, 599].

Of course it is possible to model some components of a
system with power-law models and some with other struc-
tures. However, this strategy destroys some of the advantages
of canonical models. If the heterogeneous components are
also ODE models, the method of recasting can be used to
regain a complete model in BST (see later). However, this
strategy has its own issues, as arti�cial variables must be
introduced. Nonetheless, it is, for instance, possible to con-
struct recast input modules, such as circadian oscillators, that
govern the temporal features of a system [3, 421, 679]. If the
heterogeneous components are not representable with ODEs,
other strategies are needed. For instance,Wu andVoit showed
how BST models can be merged with discrete and stochastic
effects through their embedding in the framework of Hybrid
Functional Petri Nets (HFPNs) [172, 173]. Searson and col-
leagues used a hybrid S-system model for the analysis of fed-
batch data [360]. Vinga and colleagues discussed advantages
of integrating BST models with aspects of dynamic energy
budget theory, a modeling framework that represents certain
constraints on the organization of metabolic network at the
organismic level in a nonspecies speci�c manner [170].

While many studies have described the distribution of a
radioisotope label in network systems at steady state, Voit and

colleagues developed models to capture the exact dynamics
of this distribution upon an input of radioactive material
[680, 681]. e group also investigated the effect of spacing
in radiotherapy, in order to develop isoeffect relationships
[682], and pointed to the importance of dynamic modeling
in the analysis of radiation damage [683].

Marin-Sanguino and colleagues studied the question of
whether a BST model, which is expressed in terms of meta-
bolites, could also be expressed in terms of �uxes. In other
words, this �dual� system contains �uxes as dependent
variables. Such a transformation to the dual form is indeed
possible with methods of advanced algebra [684].

8. Mathematical Features of BSTModels

8.1. Accuracy. BST models are usually developed as approx-
imations, and their accuracy of representation is a priori
unknown. Nonetheless, four aspects are clear. First, the
functions to be approximated by power-law expressions are
in truth almost always unknown for biological systems. ey
are typically complex, convoluted aggregates of functions
without an evident mathematical representation. us, it
is immediately difficult, if not impossible, to assess with
generality how well BST models or other representations
perform. Second, with the correct parameter values, a BST
model is absolutely exact at an operating, and it is very
accurate close by, as it is guaranteed by Taylor’s theory.
In principle, the accuracy of representation could also be
estimated fromTaylor’s theory, if the approximated functions
were known, but such an assessment is practically infeasible
in most cases [685]. ird, except for rare cases, the quality
of representation eventually degrades in a distance from the
operating point. is simple fact has been used as a generic
argument against the use of power-law models [62, 151,
686, 687]. However, the argument is not quite fair, because
all dynamic models in biology suffer this problem in one
form or another. Finally, it is always possible to improve
the accuracy of representation, at least in principle. One
option is the use of piecewise approximations, which were
already mentioned in the original BST papers [101] and
which are directly related to breakpoint analysis [112], which
is one root of BST models. e pieces may be concatenated
in an ad hoc fashion, in response to some input, or in an
automated fashion that optimizes the overall data �t [36, 385,
386, 688]. A second option is the inclusion of higher-order
derivatives in the Taylor approximation. Cascante et al. [689]
and Guebel [397] described the details for a second-order
representation. While this representation is more accurate,
its format becomes so cumbersome that this approach has not
been used in practical applications.

Hernández and collaborators suggested the use of power-
law models, in which the parameter values were not obtained
from approximation at a single operating point, but by
regression over a reasonable domain of the involved variables
[192, 193]. In this case, the error between the original
and the power-law function is distributed over an a priori
determined range. e use of computational buffers was
already mentioned [677]. By absorbing excess material and
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releasing material on demand, these buffers permit larger
variations in system variables.

Finally, the technique of recasting permits increases in
accuracy. Recasting is a method that uses equivalence trans-
formations to convert a system of arbitrary ODEs exactly into
a GMA or S-system; it will be discussed in the next section.
As an illustrative example, consider the so-called Brusselator,
which is a limit cycle system in the format of a GMA system
[420]. Approximating two power-law terms in this system
with a single power-law term, which would convert the GMA
into an S-system, is locally quite accurate, but the S-system
format loses the limit cycle property, whereas recasting the
GMA into and S-system retains this feature perfectly [421].

In addition to these unambiguous mathematical facts,
one may speculate more generically about the accuracy of
BST systems. Two arguments seem reasonable. First, the fact
that power-law representations permit nonlinearities seems
to imply that these functions are probably better suited for
biological modeling than linear functions. Second, onemight
argue that the accuracy of power-law approximations tends
to become better for larger systems, because larger systems
are usually better buffered against perturbations, and this
buffering keeps the system variables in small ranges around
a normal operating point. Related to this supposition is the
conjecture that kinetic orders tend to become smaller in
magnitude for larger systems, which in turn reduces many
of the sensitivities of the system model and thus increases
robustness [3].

Other assessments of accuracy fall into three categories.
In the �rst, power-law models may be compared to func-
tions that are assumed to be correct, at least in certain
situations. e second, semiheuristic category covers cases
where carefully generated experimental data suggest power-
law relationships, while the third category contains cases
where BST models �t experimental data very well.

8.1.1. Comparisons with Other Approximations. Before dis-
cussing details of model comparisons, one should note that
many representations perform similarly well, if variables stay
relatively close to their operating values, which are oen
taken at the normal steady state of the system. As a con-
sequence, dynamic simulations with different model types
oen exhibit very similar results (e.g., [63, 186, 187]).

Shiraishi and Savageau discussed different typical alter-
natives for representing biochemical reactions [37]. ey
showed that several of these standard models are in fact
special cases of power-law models and that the level of
approximation plays a role in the assessment of accuracy. For
instance, the Michaelis-Menten (MM) model in its explicit
form is not a special case of a power-law model. However,
formulating the MM processes in terms of elementary chem-
ical reactions makes the model a mass action system and
therefore a special case of a GMA system.

Several studies compared BST models against other
dynamic modeling formats. Examples included comparisons
with lin-log models, which perform better for very high sub-
strate concentrations, but lead to negative rates for very small
concentrations [58, 62, 63, 71, 151]. Kaddi and colleagues
compared several modeling frameworks, including GMA

systems, but could not identify a clear winner [690]. Similarly,
Dräger et al. 2009 compared various rate laws, especially
with respect to their optimization potential and obtained
mixed results. Depending on the situation, a GMA model or
a combination of MM with so-called convenience kinetics
produced the best results [691]. Costa et al. considered a
combination of lin-log and MM models best, unless the
concentrations in the system were small [167]. Hadlich and
colleagues (2009) compared several modeling formats for
biochemical networks and found that there is “no silver
bullet of metabolic model formulation,” primarily because
all models are approximations with a limited range of valid
representation [692]. Similarly, Grima and Schnell compared
GMA models with kinetic formulations permitting time-
dependent rate coefficients, and the results were not clear cut
[693].

Addressing systems with relatively few molecules,
Wolkenhauer’s group compared GMA models with a
compact version of a Gillespie representation for stochastic
kinetic systems in the format of the Chemical Master Equa-
tion [694]. Wu characterized under what conditions such
stochastic systems can be modeled as power-law functions
with sufficient accuracy [176].

Maybe surprisingly, the S-system variant is more accurate
than the corresponding GMA model if MM or Hill rate laws
are to be represented [695]. is �nding was explained with
the fact that power-law approximations tend to overestimate
hyperbolic functions, such as MM, while the aggregation
of terms tends to underestimate sums of processes, thereby
leading to a partial compensation of errors. Similar results
were demonstrated for reversible reaction systems, where
different types of aggregation are possible [54–56, 454].

8.1.2. Semiheuristic Analyses of Accuracy and Heuristic Evi-
dence. Much circumstantial support for power-law repre-
sentations comes from good model �ts to data character-
izing systems in vitro and in vivo. Indeed, most of the
applied studies described before were tested against some
data and found sufficiently accurate. Of course, these �ts
are neither proof of correctness nor superiority over other
models, because the data oen were not detailed enough
to permit such assessments. Nevertheless, some types of
data lend direct support to the use of power-law functions.
For example, Savageau observed that many processes in
vitro and in vivo naturally follow power-law relationships
over surprisingly wide ranges of variation that span several
orders of magnitude. Good examples include the induction
characteristics of several genes [1, 10].

Kopelman’s group conducted careful experiments charac-
terizing the kinetics of chemical reactions in homogeneous
three-dimensional environments as well as in constrained,
lower-dimensional spaces, such as membranes or channels
[666, 667, 669, 670]. ey determined that fractal kinetics,
as described by Savageau [13, 60, 671], represented reality
well. Similarly, Neff and Bajzer compared different model
representations against experimental data in viscous media
and found that fractal kinetics within BST seemed to be
slightly superior to other alternatives [675, 676].
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Vlad and colleagueS-systematically analyzed data charac-
terizing a speci�c recycling process in a prothrombin assay.
For the slow processes, they formulated a variant of a mass-
action law, while fast reactions were modeled with delay
expressions. ey concluded that GMA models capture the
empirical equations well [696]. In other contexts, several
analyses of metabolic time series data were �tted quite
well with GMA and S-system models. Examples included
bacterial and yeast systems (e.g., [201, 357, 547]).

Growth may be seen as a heuristic manifestation of the
long-term dynamics of organisms. To demonstrate this point,
Savageau derived growth functions and the phenomenon
of allometry from �rst principles of cellular processes [128,
697, 698]. Indeed, allometry, which describes the rate of
growth of one part of an organism in relation to other
parts, is directly and uniquely commensurate with power-
law functions [3, 582, 697, 699–701]. More generally, many
growth phenomena were represented well with power-law
models within BST, sometimes directly, and sometimes using
the method of recasting, which will be discussed next [25,
119, 128, 165, 423, 447, 485, 575, 576, 582, 584, 620, 697, 698,
702–705].

9. Recasting

e growth functions just mentioned present a good oppor-
tunity to discuss a feature of BST models that is very intrigu-
ing. Namely, any system of ODEs can be converted into an
exactly equivalent BSTmodel in GMAor S-system format, or
even in the much simpler format of a binary Half-system that
only has exponents of 0 or 1 [113, 706]. is generality of the
BST format �rst became evident during the development of
the fundamental theory underlying BST. Namely, Savageau
noted that growth functions can be converted in to equivalent
S-systems through the introduction of one or two auxiliary
variables [128, 698]. It was shown later that even a simple
two-variable Half-system format can be used to classify most
of the standard growth laws found in the literature [25, 624,
706].

e general principles of recasting are surprisingly sim-
ple. For each function that does not appear in an ODE
system as a power-law term, one de�nes a new variable and
differentiates it. Iterating this process eventually leads to
a GMA system. Furthermore, the repeated de�nition of a
product of two new variables for the sum or difference of
two terms within a GMA system reduces this system to the
S-system or Half-system form. e �rst component of this
strategy was independently observed in the �eld of math-
ematical physics [707], while the second component was
shown somewhat later for BST models [113, 136]. At the
same time, Peschel and Mende showed that all ODE systems
can be recast as Lotka-Volterra (LV) systems [134], and the
equivalence of the two formats was con�rmed soon a�er
[21, 136].

e observation that essentially all nonlinearities could
be equivalently represented as either LV or BST systems
elevated thesemodel representations to the status of universal
formats. Hernández-Bermejo and Fairén combined the two

formats into the representation of a Generalized Lotka-
Volterramodel, which allowed unique algebraic classi�cation
tasks, and declared this format as truly “canonical” [144, 145,
147, 708–710]. Papachristodoulou and Prajna demonstrated
that recasting can be used to study nonpolynomial vector
�elds by recasting them into rational vector �elds [711].

As an illustrative example, consider the differential equa-
tion

�̇�𝑋 𝑋 𝑋𝑋𝑋 (𝑡𝑡) −
𝑉𝑉𝑋𝑋
𝐾𝐾 𝐾 𝑋𝑋

𝐾 3 (35)

with 𝑋𝑋(𝑋) 𝑋 𝑋, 𝑉𝑉 𝑋 3𝑉𝑉, and 𝐾𝐾 𝑋 𝑋𝑉𝐾. Clearly, the sine fun-
ction needs to be replaced, andwe de�ne𝑌𝑌𝑋 𝑋 𝑋𝑋𝑋(𝑡𝑡) 𝐾 3. Dif-
ferentiation of 𝑌𝑌𝑋 yields co𝑋(𝑡𝑡), and we de�ne, for instance,
𝑌𝑌𝐾 𝑋 co𝑋(𝑡𝑡) 𝐾 𝐾. us, we obtain the two derivatives

�̇�𝑌𝑋 𝑋 co𝑋 (𝑡𝑡) 𝑋 𝑌𝑌𝐾 − 𝐾,

�̇�𝑌𝐾 𝑋 − 𝑋𝑋𝑋 (𝑡𝑡) 𝑋 3 − 𝑌𝑌𝑋𝑉
(36)

In addition, we reduce the Michaelis-Menten function by
de�ning 𝑌𝑌3 𝑋 𝐾𝐾 𝐾 𝑋𝑋, which has the derivative ̇𝑌𝑌3 𝑋 �̇�𝑋. e
initial values are set according to the de�nitions of the new
variables, namely,𝑌𝑌𝑋(𝑋) 𝑋 𝑋𝑋𝑋(𝑋)𝐾3 𝑋 3,𝑌𝑌𝐾(𝑋) 𝑋 co𝑋(𝑋)𝐾𝐾 𝑋
3, and 𝑌𝑌3(𝑋) 𝑋 𝐾𝐾 𝐾 𝑋𝑋(𝑋) 𝑋 𝐾𝑉𝐾. Taken together, we obtain

�̇�𝑋 𝑋 𝑌𝑌𝑋 − 𝑉𝑉𝑋𝑋𝑌𝑌
−𝑋
3 ,

�̇�𝑌𝑋 𝑋 𝑌𝑌𝐾 − 𝐾,

�̇�𝑌𝐾 𝑋 3 − 𝑌𝑌𝑋,

�̇�𝑌3 𝑋 𝑌𝑌𝑋 − 𝑉𝑉𝑋𝑋𝑌𝑌
−𝑋
3 𝑉

(37)

A plot of the original and the recast 𝑋𝑋 is shown in
Figure 15.e auxiliary variables are usually not of particular
interest.

In the case just discussed the original “system” has one
variable, where the recast system has four. e recast system
is thus much “bigger.” However, correctly �xing the initial
values completely de�nes a trajectory that is equivalent to
the original equation. us, the original is embedded in a
higher-dimensional space, where it is described exclusively by
power-law functions. Several articles have discussed generic
features of recasting and highlighted the fact that the process
is not unique. For instance, polynomials may be recast in dis-
tinctly different ways [25, 706, 712]. Different recast versions
of the same original system intersect in a high-dimensional
space, and this intersection contains (or is equivalent to) the
original.

e last step of a typical recasting process is the reduction
of a GMA system to the S-system format [113]. is step
raised the question of whether it is possible to transform
S-systems equivalently back into GMA systems with fewer
variables. As one might expect, such a reduction in dimen-
sionality is not possible in general. However, it is possible in
select cases, some of which can be characterized algebraically
with methods of Lie transformations [712–714].

Recasting can be very bene�cial and may, for instance,
speed up numerical solutions [87, 113], but it does not



ISRN Biomathematics 29

0 50 100
0

5

10

Xoriginal

Xrecast

Time

X

F 15: Con�rmation that recasting leads to equivalent solu-
tions.e red trajectory describes𝑋𝑋𝑋𝑋𝑋𝑋 in the original ODE shown in
(35). e variable𝑋𝑋𝑋𝑋𝑋𝑋 of the recast system (37) is shown with dots,
because a line would exactly cover up the red line.

eradicate complicated problems with the original system.
For instance, the computation of a steady state is not much
simpli�ed, because the recast S-system tends to have a system
matrix with lower than maximal rank.

Recasting can be used as amodeling tool. For example, if a
system is affected by a circadian process, it may not be feasible
to model this process in detail. Instead, the periodic process
may bemodeled by a sine function and recast as shown above
[3, 421]. It is even possible to study the effects of chaos on a
systembymodeling the chaotic process as a recast BST system
[679].

It is also to some degree possible to recast other systems of
ODEs into the GMA or S-system format and then to use BST
methods for further analysis. As examples, one can optimize
this recast system toward the maximization of yield [646] or
study features of bistability [36, 385, 386].

Outside growth functions, recasting has been widely
applied to statistical distribution functions. Savageau ini-
tiated this effort by showing how all typical univariate
probability functions can be embedded in a “suprasystem”
of S-system models [715]. Rust, Chen, and others extended
this idea to probability density functions that are otherwise
difficult to evaluate, such as the noncentral 𝑋𝑋, 𝐹𝐹, beta, gamma,
andChi-square distributions, as well as the distribution of the
correlation coefficient [79, 716–730].

While recasting provided a means for numerically eval-
uating complicated probability distribution functions, the
high dimensionality of Savageau’s suprasystem suggested the
search for simpler alternatives. Recognizing that cumulative
distribution functions always grow monotonically from 0 to
1 and very much resemble growth functions, Voit proposed a
single S-system equation as a good approximation of cumula-
tive distribution functions, calling it the S-distribution [731].
It turned out that this S-distribution has interesting features.
For instance, the initial value is directly related to the median

of the distribution, the rate constant, which must be the same
for both terms in the S-system equation, is related to the
variance, and the kinetic orders determine the shape of the
distribution. Indeed, the two kinetic orders were used as a
shape classi�cation system for continuous as well as discrete
distribution functions [731–733]. e same distribution was
subsequently used in survival analysis and risk assessment
[28, 625, 734–738], and as a tool for random number
generation and quantile analysis [739, 740], as well as for
inference [741, 742]. e efficiency and �exibility of random
number generation permitted the use of S-distributions for
traditional and hierarchical Monte-Carlo simulations [424,
743, 744].

Further analysis showed that the S-distribution has inter-
esting scalability features that permit analyses analogous to
z-score computations with normal distributions [81, 745].

Parameters of the distribution were estimated with least-
squares and maximum likelihood methods [731, 740, 746].

Yu generalized the S-distribution to multiple variates,
through the introduction of copulas [747].

Sorribas’ group used the S-distribution, as well as a
generalized GS-distribution [748], in a clinical setting to ana-
lyze reference intervals of normalcy and receiver operating
characteristic (ROC) curves, which offer an effective method
for the evaluation of the performance of a diagnostic test
[190, 749, 750]. ey also used the GS-distribution to study
questions in survival analysis [751]. Voit’s group used the S-
distribution for health-economical questions [752].

Considering dynamic systems as modulators of the S-
distribution, changes in distributional shapes over time were
characterized. As examples, the sizes of girls in healthy
populations and the changes in size distributions of growing
tree stands were analyzed [575, 584, 702].

10. Conclusions

During the past decade, the �eld of systems biology has been
expanding at an amazing speed, and as this paper indicates,
the technological developments and applications of BST have
grown at a similar rate. e question then arises: what’s
next? Of course, predictions are always treacherous, but some
trends are emerging at the horizon, and they appear to be very
well aligned with BST.

First, paralleling the increased scope in data generation,
larger and larger systems are being tackled with computa-
tional models. Typically, large systems are better buffered
against perturbations than small systems. As a consequence,
key variables in larger systems tend to remain within smaller
ranges of variation. As far as this is true in speci�c situations,
the accuracy of BST will be sufficient in many cases.

Second, the search for design and operating principles has
become popular [78]. is search has been a central theme
in BST for a long time [1]. Most of the BST analyses in this
area focused on small modules that could be investigated,
at least partially, with crisp mathematical methods. It seems
that the next phase of this theme might be the investigation
of functional and operational principles that are embed-
ded within, or distributed throughout, larger systems [44].
e relatively new focus on design spaces is a �rst signi�cant
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step in this direction [492, 493], but itmight be that additional
concepts must be conceived to grasp design and operating
features spanning large systems and several organizational
scales.

ird, the community of systems biologists is fully rec-
ognizant of the fact that our current tools for addressing
multiscale systems are not powerful enough. is de�ciency
pertains to models for several overlapping time scales, where
neither slow nor fast processes can validly be ignored or
considered constant, for spatial scales, where it is not feasible
to represent all processes at similarly detailed molecular
scales, as well as for organizational scales, where system
responses extend from molecular to organismic scales and
beyond. e telescopic property of power-law systems has
been discussed theoretically [128], especially for different
organizational scales, but it has not been used all that much
in practical applications. is property may work well with
ideas of mesoscopic modeling, because these models are
located at a medium scale, which is extendable toward larger,
more detailed systems, and also to more abstracted skeletal
systems of smaller size that permit design analyses [44].
e telescopic property may also align well with methods of
conceptmapmodeling [45], where the topology of a system is
complemented with coarse information, or even a biologist’s
intuition, in order to convert a conceptual diagram into an
initial dynamicalmodel that can be used to sharpen intuition,
gain novel insights, and suggest a new set of experimental
hypotheses.

Fourth, recent developments in experimental biology
have been empowering the �eld to generate molecular time-
series data. ese data mandate the creation of more efficient
inverse methods for parameter estimation than are cur-
rently available. Moreover, in spite of recent and future
advancements, these data can seldom be expected to be
complete.us, systems biologymust develop computational
methods for �lling gaps, merging heterogeneous data, and
stitching series of static measurements together into dynamic
trajectories. Given that the processes underlying these data
are usually not fully known, theminimally biased, procedural
model design methods of BST might provide excellent initial
default models for this purpose. In particular, the power to
get started, quasi-automatically, with the design of symbolic
equations from biological diagrams, the rich repertoire of
experience with parameter values, and the efficacy of the
tools available for BST analyses provide superb starting
conditions that may lead to the full completion of an analysis
or at least show where �ner or different approximations
are needed. As an alternative to starting from a biological
diagram, one might also start with the static results of
stoichiometric or �ux balance analyses and develop methods
for converting these into a dynamic BST models. Some
rudimentary analyses of this type have been proposed [323],
but much more effort is needed. As one intriguing aspect of
this pursuit, computational systems analysts might become
enabled to propose minimal combinations of data generation
experiments that would permit valid conversions of static
into dynamic models.

BST has been around for slightly over forty years, and,
indeed, this may be its prime time.
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