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Transforming biology into an engineering practice has great

potential to shape the industrialization of biology that will drive

rapid development of novel microbial manufacturing platforms.

These platforms will be capable of producing a vast number of

sustainable industrial chemicals at scale from alternative

renewable feedstocks or wastes (e.g., biomass residues,

biogas methane, syngas, CO2) without harming the

environment. The challenge is to develop microbial platforms to

produce targeted chemicals with high efficiency in a rapid,

predictable, and reproducible fashion. This paper highlights

recent progress in rational design of heterologous pathways for

combinatorial biosynthesis of a large space of chemicals and

modular cell design for rapid strain engineering.
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Introduction
Underlying the rapid advancement of technological in-

novation during the 20th century was the harnessing of

petroleum for its diverse library of potential products.

Recent research and socioeconomic developments have

revealed the dangers of relying on fossil fuels as a singular

source of specialty fuels and chemicals [1]. Chemicals

derived from engineered microorganisms have been

lauded as a promising sustainable alternative to the thou-

sands of chemicals derived from petroleum [2]. While

some success stories of biosynthesized molecules

achieved commercialization in recent years [3], the com-

plexity of constructing these microbial cell factories is

surpassed by the vastness of the biochemical space open
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to exploration [4]. For biosynthesized products to com-

pete with current solutions economically and in a variety

of applications, research efforts must endeavor to achieve

an understanding of the combinatorial space available,

and devise an effective means for rapid strain engineering

to produce these products based on nature’s inherent

modularity and synergies.

In this paper, we explore the progress made in rational

design of heterologous pathways and highlight the im-

portance of engineering dynamic control of heterologous

pathways coupled with the host cell metabolism to

achieve improved pathway efficiency. We envision the

development of modular cell design principles will enable

rapid strain engineering for combinatorial biosynthesis of

a large, sustainable chemical space in a plug-and-play

fashion requiring minimum strain optimization cycles.

Probing the combinatorial space of biobased
chemicals
Cellular metabolisms are diverse and complex, generat-

ing thousands of unique chemicals. Advancements in

comparative genomics, systems and synthetic biology,

and metabolic engineering have enabled researchers to

access a multitude of biological parts to assemble heter-

ologous pathways and start probing a combinatorial space

of biobased chemicals (Figure 1). Characterized biologi-

cal parts have been compiled into databases such as the

Synthetic Biology Parts Registry (http://parts.igem.org/

Main_Page), KEGG [5], and Biocyc [6] among others that

continue to expand as new genomes are discovered.

While these databases continue to add to the breadth

of biological parts information, the minimal depth of

quantitative knowledge (e.g., transcription rates, enzyme

kinetics, etc.) is limited, and will be the next challenge to

address as the databases evolve to encompass a greater

understanding of parts and their interactions with cellular

systems.

Recent achievements in harnessing biological parts for

chemical biosynthesis include: (i) rewiring central metab-

olism for making non-natural bioplastics from sustainable

feedstocks [7], (ii) redesigning fermentative pathways for

combinatorial biosynthesis of unique esters with tunable

carbon backbones [8,9�], (iii) harnessing synthetic path-

ways of reverse beta-oxidation and non-decarboxylative

Claisen condensation coupled with subsequent beta-re-

duction reactions for combinatorial biosynthesis of alco-

hols, dicarboxylic acids, hydroxyl acids, and lactones

[10,11��], (iv) manipulating polyketide and isoprenoid
www.sciencedirect.com
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The power (a) and the daunting challenge (b) for microbial synthesis of the potential combinatorial space of specialty fuels and chemicals.
biosynthesis pathways to produce alcohol fuels [12], (v)

engineering fatty acid biosynthesis for producing hydro-

carbons [13–16], and (vi) rerouting amino acid biosynthe-

sis pathways for making alcohols, drug precursors, and

industrial chemicals [17,18]. These chemicals have broad

applications related to health, energy, and the environ-

ment, but are sometimes difficult to synthesize by a

conventional chemical method.

Rational design of heterologous pathways
Engineering heterologous pathways in a recombinant

host can become very challenging especially as the path-

way complexity increases as seen in the production of

opioids in Saccharomyces cerevisiae [19��]. For assembling

multiple parts into a heterologous pathway, it is critical to

balance and optimize fluxes through not only the heter-

ologous pathway to produce a desirable chemical but also

the host’s native pathways to maintain good cell viability

[20–22]. The challenge is how one can identify an
www.sciencedirect.com 
efficient heterologous pathway and choose a proper com-

bination and assembly of parts for the pathway to create

optimal phenotypes (e.g., efficient production of desir-

able chemicals at high yields, titers, and productivities)

without going through extensive screening. For instance,

designing an optimal multi-gene pathway in a bacterial

host can generate a vast space of solutions that depend on

finding the best pairing of appropriate promoters, ribo-

some binding sites, terminators, gene orders, tunable

intergenic regions, and orthologous genes. In recent years,

a collection of computation-based techniques has been

developed to assist heterologous pathway design and can

be classified into three groups: pathway prediction, yield

analysis, and parts identification.

Pathway prediction is an essential tool to identify all

thermodynamically feasible routes and associated

enzymes to produce desirable chemicals from the existing

databases. Hatzimanikatis and coworkers first developed
Current Opinion in Chemical Engineering 2016, 14:18–25
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the BNICE (Biochemical Network Integrated Computa-

tional Explorer) framework to identify novel heterologous

pathways [23]. Currently, there are a variety of available

tools for pathway prediction [24�] with improved search

algorithms to address the computational challenge in

identifying heterologous pathways from large, putative

biochemical reaction databases [25]. For instance, by

employing both computational metabolic pathway search

and analysis from KEGG, Zhang et al. interrogated the

metabolic potential of Escherichia coli as a microbial plat-

form capable of producing 1777 non-native chemicals,

279 of which have commercial use. Interestingly, more

than 50% of these commercial products require a mini-

mum of three heterologous reaction steps [26�].

Yield analysis. Once a desirable heterologous pathway is

formulated, the next important step is to evaluate the

pathway efficiency. Yield analysis can be employed to

evaluate a pathway’s potential [27] by considering

thermodynamics, electron and carbon constraints for

both the engineered heterologous pathway, and native

metabolism of the host. Constraint-based  metabolic

network modeling such as flux balance or elementary

mode analysis offers powerful tools for performing yield

analysis with a large collection of useful software [28].

Recently, there has been a significant interest in engi-

neering carbon-conserving pathways in the native host

as they not only can potentially improve theoretical

pathway yields but also reduce the CO2 carbon

footprint harming the environment. For instance, a

native carbon-conserving pathway is the succinic

acid-producing pathway that could yield 1 Cmol succi-

nate/Cmol glucose equivalent from sugar fermentation.

In contrast, the synthesis of alcohol fuels (e.g., ethanol

and butanol) can only yield up to 0.67 Cmol product/

Cmol glucose equivalent where 33% of carbon is lost to

CO2 as waste. Recent discovery of the non-oxidative

glycolysis (NOG) pathway opens new opportunities to

potentially engineer heterologous pathways to produce

chemicals with product yields greater than the theoret-

ical limits [29,30]. Other unique pathways like NOG

likely exist, waiting to be discovered to build alterna-

tive novel carbon-conserving pathways.

Parts identification. The next critical step in heterologous

pathway design is to identify parts that can be assembled

to achieve optimal phenotypes. Since these pathway

components are often synthetic and heterologous, it

becomes very challenging to select compatible parts that

display desirable phenotypes without going through iter-

ative optimization. Currently, parts selection is mostly

trial-and-error and relies on high-throughput screening to

generate feedback for the design-build-test-learn cycles

of pathway engineering. Toward addressing this chal-

lenge, Farasat et al. has recently developed the SEAMAP

framework to design heterologous pathways with bal-

anced and enhanced metabolic fluxes by manipulating
Current Opinion in Chemical Engineering 2016, 14:18–25 
ribosome binding sites to fine-tune translation rates and

narrow the experimental strain engineering space [31�].

Once the heterologous pathway is designed with appro-

priate parts, a variety of tools and techniques exist for

streamlined synthesis and assembly. One class of parts

assembly techniques is based on homologous recombina-

tion including a large collection of in vitro [32–39] and in

vivo [40–42] assembly methods. In parallel, the other

popular class of parts assembly techniques is based on

non-homologous recombination such as Golden Gate

assembly [43] among many other options [44–49]. Com-

bined, these techniques enable the creation of combina-

torial libraries and large DNA fragments (>1 Mb) for

constructing minimal cells [50��]. Computational tools

(Vector NTI [51], j5 [52], Gene Designer [53], GeneDe-

sign [54], and Gene Composer [55]) make the assembly

process very seamless nowadays.

Pathway evaluation for design-build-test-
learn cycles
Ideally, the engineered heterologous pathways work con-

sistently with design to achieve desired products at high

yields, titers, and productivities. However, the perfor-

mance is often suboptimal in practice due to metabolic

flux imbalances caused by incompatibility of the heterol-

ogous pathways and the host (e.g., inefficient protein

expression, enzyme stability, metabolic burden, and re-

dox imbalances). Metabolic flux analysis coupled with

OMICS data is a state-of-the-art technique to identify

metabolic bottlenecks [56–58]. Once the bottlenecks are

identified, the control of these pathways together with

their interaction with the regulatory machinery of the host

is essential to obtain viable yields through the design-

build-test-learn cycles. Next, we highlight significant

progress in balancing and optimizing metabolic fluxes

through static and dynamic controls at both pathway

and cell population levels.

Balancing Act: Steady-state control. To overcome reaction

bottlenecks, various techniques can be employed to

modulate reaction fluxes via environmental (temperature,

pH, substrates) and genetic (transcription, translation)

manipulation to adjust metabolite concentrations as well

as enzyme stability, concentrations, activities, and locali-

zation [20]. Similar to modularity implemented in the

realm of industrial design, the complexity of pathways can

be modularized for efficient flux control leading to mod-

ular production of related chemicals [8,9�,59–62]. Meta-

bolic control theory has been developed, and should be of

great value for guiding modular pathway engineering in

the future [63,64].

Juggling Act: Dynamic pathway control. Fluctuations in the

cellular environment, whether planned or inadvertent, can

create metabolic imbalances in biological systems opti-

mized for very particular conditions. Natural biological
www.sciencedirect.com
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systems have evolved with efficient sensor and regulator

systems (e.g., the well-known lac operon of E. coli) so that

they can effectively respond to environmental cues to

maximize their fitness. Since heterologous pathways are

often incompatible to the host, dynamic controllers engi-

neered in these pathways would be highly advantageous to

maximize product formation while maintaining healthy

cells. Dynamic pathway control is the forefront of tool

development, going beyond steady-state balance. Next,

we highlight some recent advancement in harnessing

biosensors and genetic circuit tools for dynamic pathway

control.

To engineer dynamic control of any heterologous path-

way, the critical element is to have controllable biosensors

to construct the sensor-regulator system. Biosensors can

be classified into many types including metabolic re-

sponse transcription factors, two-component systems,

regulatory RNAs, and protein allostery [65�]. At pathway

levels, these sensor-regulator systems are hard-wired into

heterologous pathways for sensing intracellular metabo-

lites and/or environmental cues (e.g., temperature, pH,

light) to control metabolic fluxes via feedback and/or

feedforward mechanisms [66,67]. At cell levels, they

can be used to decouple growth and production phases

by implementing transcriptional toggle switches [68,69].

A CRISPRi/a (interference and activation) system with

RNA scaffolding, or a genetic switchboard using ribos-

witches, prove to be powerful tools to dynamically toggle

between heterologous pathways [70�,71]. Population

quality control (PopQC) is also a useful genetic circuit

to enforce the optimal performance of the heterologous

pathway [72�]. Because of growth competition fitness,

heterogeneity in a cell population carrying heterologous

pathways often causes low product production. To ad-

dress this problem, Xiao et al. developed the PopQC

strategy by dynamically coupling heterologous pathway

flux with antibiotic selection to select for the most hyper-

producing strain in the population during the chemical

production phase. The team demonstrated a 3-fold im-

provement in production of fatty acids and tyrosine. Since

specificity toward target metabolites is critical for engi-

neering controllable biosensors of heterologous pathways,

Taylor et al. took a de novo protein design approach to

reengineer an allosteric transcription factor (aTF) LacI of

E. coli to sense alternative ligands [73]. This approach is

powerful to design new properties of abundant, native

aTFs for dynamic pathway control.

Genome and combinatorial engineering. With the ability to

create a large number of variants no longer a limiting step,

focus is necessarily shifting toward improved methods of

genome and combinatorial engineering. Instead of char-

acterizing individual cells carrying pathway variants one

by one, the entire population can be probed simulta-

neously. The approach is very powerful if one can screen

or select for the desirable phenotype, that is, high-yield
www.sciencedirect.com 
production of target chemicals. For instance, if a heterol-

ogous pathway produces a chemical that can emit

light, chemical-hyperproducing strains in the cell popu-

lation can be isolated via fluorescence-activated cell

sorting (FACS) or solid plate screening [74,75]. If pro-

duction of a chemical is coupled with growth, chemical-

hyperproducing strains can be isolated based on simple

growth selection. Deep sequencing can also be employed

for rapid strain isolation [76]. Both TRMR [77] and

TRACE [78] are powerful genome engineering tools to

identify potential targets for manipulation; when coupled

with MAGE [74] outperforming strains can be generated.

While TRMR and MAGE rely solely on the homologous

recombination machinery of the host for effective ge-

nome editing, recent advances in the CRISPR technology

streamlines the genome editing process for rapid strain

engineering by utilizing double strand breaks (DSB) and

single strand nicks to improve homologous recombination

efficiency and perform multiplexing [79]. Even though

these methods are powerful to improve engineered phe-

notypes, they do not often generate the most optimal

phenotypes due to incomplete sampling spaces and un-

foreseen native regulation.

Challenges in heterologous pathway
engineering
One significant challenge in engineering heterologous

pathways is to deal with non-model organisms because

availability of genetic tools and parts libraries does not

exist. Parts incompatibility is very common because cel-

lular machinery and its regulation can vary greatly be-

tween different microbes. For instance, Clostridium
thermocellum is one of the potential consolidated biopro-

cessing thermophiles that is very efficient and robust in

degrading complex plant biomass [80]. While many

attempts have been explored, no engineered E. coli or

S. cerevisae mutants reported to date could degrade bio-

mass as efficiently as native C. thermocellum. It is of great

interest to introduce heterologous pathways into C. ther-
mocellum and rewire its metabolism for production of

specialty biofuels and chemicals while exploiting its

biomass-degrading machinery; however, reliable genetic

tools and parts availability remain formidable bottle-

necks. This challenge presents itself for each new organ-

ism and hence breaking these barriers will help

industrialization of biology to exploit nature’s best.

Advances in the CRISPR technology shows potential

for manipulating non-model organisms for metabolic en-

gineering applications [81,82].

One other significant challenge in engineering heterolo-

gous pathways is the host cell must be re-engineered in an

iterative manner to produce different chemicals. This

process is laborious and expensive (Figure 2a). Ideally,

it is advantageous to develop a blueprint of the universal

modular cell that, when combined with optimized ex-

changeable production modules, creates microbial
Current Opinion in Chemical Engineering 2016, 14:18–25
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Figure 2
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(a) Conventional cell design. This approach is laborious and expensive with multiple iterative trial-and-error optimization cycles to engineer a

desirable cell (N � 1). (b) MODCELL design. This approach minimizes optimization cycles (N ! 0) and can create desirable microbial platforms in

a rapid and systematic manner from the modular cell and exchangeable production modules.
manufacturing platforms in a plug-and-play fashion for

optimal production of desirable chemicals (Figure 2b).

Modular cell design toward industrialization of
biology
Complexity has kept metabolic engineering confined to

time-consuming validation and optimization via multiple

design-build-test-learn cycles, despite best efforts to

standardize and characterize parts [83]. The grand chal-

lenge is how to streamline pathway and strain engineering

to rapidly explore the combinatorial space of chemicals

(Figure 1). While the high-throughput screening ap-

proach is powerful, it is not advantageous and proportion-

ally scaled to deal with the large chemical space; a need

for rational modular chassis cell design is required.

Trinh et al. has laid out the computational framework

named MODCELL (modular cell) for designing modular

cells that couple with a diverse class of production mod-

ules (i.e., heterologous pathways) [84��]. The MODCELL

design principles are formulated such that the modular cell

must be auxotrophic and contain the core metabolic path-

ways that are necessary but insufficient to support cell

growth and maintenance under controllable physiological

conditions (e.g. anaerobic conditions). The modular cell is
Current Opinion in Chemical Engineering 2016, 14:18–25 
designed to be auxotrophic by imposing cofactor imbal-

ance and/or insufficient supply of precursor metabolites

required for biosynthesis of biomass and targeted chemi-

cals. To efficiently produce targeted chemicals, the mod-

ular cell must be tightly coupled with exchangeable

production modules, auxiliary metabolic pathways

designed to synthesize target chemicals. The tighter the

coupling between the modular cell and production mod-

ule, the faster the cell growth, substrate consumption, and

desirable chemical production rate become. Here, the

modularity of the design will enable rapid development

of microbial platforms from the modular cell and ex-

changeable production modules in a plug-and-play fash-

ion, whereas the metabolic coupling will provide powerful

selection for production of targeted chemicals at high

efficiency during both growth and non-growth associated

phases. The MODCELL has shown promise through the

demonstrated production of alcohol fuels [85,86,87] and

combinatorial biosynthesis of esters [9�].

Modular cells can be constructed from a bottom-up ap-

proach where a minimal cell can be synthetically designed

and constructed as a host [88–95]. Alternatively, native

metabolism of the existing strains must be restricted based

on the MODCELL design [84��]. The metabolic coupling
www.sciencedirect.com
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design in modular cells is an ideal chassis for dynamic

pathway engineering as well as genome and combinatorial

engineering. One could envision the modular cell being

constructed with the production module(s) integrated into

the host chromosome and transcriptionally controlled by

an environmental signal (e.g., light, temperature, IPTG,

nutrients, and/or a desirable chemical) in a controllable

genetic circuit. This design can impose the auxotrophic

characteristic of the modular cell and trigger cell growth

and chemical overproduction only if environmental signals

are received to activate the production module(s). An

additional advantage is the MODCELL design can

provide an alternative, secure strategy for microbial con-

tainment due to the auxotrophic characteristic of modular

cells [96].

Conclusions
Developments in synthetic biology, as well as rapid

discovery of novel organisms and their genes, enzymes,

and regulatory mechanisms continually grow, enabling

metabolic engineers to explore the boundless chemical

space. Computational models and curated databases of

biological parts play vital roles in driving systematic

pathway design, and continued effort into standardizing

and improving these sources of information is imperative.

Research into building dynamic sensor-regulator devices

is still in its infancy, and must be developed if we are to

succeed in producing targeted chemicals at high yields,

titers, and productivities. The need to develop modular

chassis cells for tight coupling with optimized heterolo-

gous pathways can potentially minimize the iterative

design-build-test-learn cycles. Further, high-throughput

technologies will enable rapid selection of the best phe-

notype amongst the set of the rationally designed path-

ways. It is of our opinion that achieving the goals of these

research areas will lead to the successful engineering of

economical microbial factories for efficient production of

specialty fuels and chemicals, replacing traditional petro-

leum-based products.
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