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ABSTRACT 
Motivation: The computational identification of non-coding RNA 
(ncRNA) genes represents one of the most important and challeng-
ing problems in computational biology. Existing methods for ncRNA 
gene prediction rely mostly on homology information, thus limiting 
their applications to ncRNA genes with known homologues.  
Results: We present a novel de novo prediction algorithm for ncRNA 
genes using features derived from the sequences and structures of 
known ncRNA genes in comparison to decoys. Using these fea-
tures, we have trained a neural network-based classifier and have 
applied it to E. coli and S. solfataricus for genome-wide prediction of 
ncRNAs. Our method has an average prediction sensitivity and 
specificity of 68% and 70%, respectively, for identifying windows 
with potential for ncRNA genes in E. coli. By combining windows of 
different sizes and using positional filtering strategies, we predicted 
601 candidate ncRNAs and recovered 41% of known ncRNAs in E. 
coli. We experimentally investigated six novel candidates using 
Northern blot analysis and found expression of three candidates: 
one represents a potential new ncRNA, one is associated with sta-
ble mRNA decay intermediates, and one is a case of either a poten-
tial riboswitch or transcription attenuator involved in the regulation of 
cell division. In general, our approach enables the identification of 
both cis- and trans- acting ncRNAs in partially or completely se-
quenced microbial genomes without requiring homology or structural 
conservation.  
Availability: The source code and results are available at 
http://csbl.bmb.uga.edu/publications/materials/tran/. 

1 INTRODUCTION  
Non-coding RNA (ncRNA) or small RNA (sRNA) genes, which 
encode functional RNA molecules that are not translated into pro-
teins, are involved in a variety of cellular processes ranging from 
regulation of gene expression to RNA modification and editing 
(Gottesman, 2005; Huttenhofer, et al., 2002). In humans, it is esti-
mated that about 98% of the genome can be transcribed, of which 
only ~2% encodes protein genes (Szymanski, et al., 2003), sug-
gesting the possibility that a large percentage of the genome may 
encode ncRNA genes. Although the vital importance of ncRNA 
genes in cellular activities is well recognized, our current knowl-
edge about the collection of all ncRNA genes encoded in a particu-
lar genome is very limited because of the lack of effective capabili-
ties, either computational or experimental, for elucidating them.  

  
*To whom correspondence should be addressed.  

   It is generally believed that the identification of ncRNA genes, 
particularly in bacterial genomes, is more challenging than protein-
coding genes. Unlike protein-coding genes, ncRNA genes do not 
contain easily detectable signals such as open reading frames (i.e., 
a sequence between an in-frame start codon and the first in-frame 
stop codon going from the 5’ to the 3’ end of the sequence), codon 
biases, or ribosome binding sites. Although some ncRNA genes 
have recognizable promoters and terminators (Argaman, et al., 
2001; Chen, et al., 2002), the identification of such regulatory sig-
nals is quite challenging. This identification problem is further 
complicated by the fact that most ncRNA genes are much shorter 
than protein-coding genes.  
   A number of computational methods for identifying ncRNA 
genes have been developed and reported (Argaman, et al., 2001; 
Chen, et al., 2002; Klein, et al., 2002; Livny, et al., 2005; Pichon 
and Felden, 2003; Schattner, 2002; Washietl, et al., 2005; Wassar-
man, et al., 2001; Yachie, et al., 2006; Zhang, et al., 2004). These 
methods generally fall into two classes: (1) methods that identify 
members of an ncRNA family based on homology information 
(Argaman, et al., 2001; Wassarman, et al., 2001) and (2) methods 
that find novel ncRNAs based on general features common to 
ncRNA genes. We focus on the latter class of methods since it 
relates to our approach.   
   Two classes of methods have been developed to predict novel 
ncRNAs. The first one identifies conserved and relatively long 
sequences in the intergenic regions across closely related genomes. 
This type of method is based on the assumption, which is generally 
true for prokaryotic genomes, that such conserved regions encode 
functional RNAs and not cis-regulatory DNA motifs. Such a strat-
egy has been used to mine E. coli (Zhang, et al., 2004) and other 
bacterial genomes (Pichon and Felden, 2003) for novel ncRNAs. 
By limiting the search to intergenic regions, one could realistically 
search for ncRNA genes on a genome-wide scale. However, this 
approach will miss ncRNAs that overlap protein-coding genes, 
either sense or antisense, and ncRNA genes that are unique to a 
genome. For example, it is known that ~25% of the C/D snoRNA 
genes overlap protein-coding genes in the Pyrococcus abyssi ge-
nome (Gaspin, et al., 2000). A generalization of this type of 
method is to predict novel ncRNA genes through the identification 
of conserved RNA secondary structures across related genomes 
and further analyze their mutational patterns (Rivas and Eddy, 
2001; Rivas, et al., 2001) or evaluate the folding energy of their 

 Bioinformatics Advance Access published September 10, 2009

http://creativecommons.org/licenses/
http://csbl.bmb.uga.edu/publications/materials/tran/


T.Tran et al. 

2 

predicted structures (Coventry, et al., 2004; di Bernardo, et al., 
2003; Pedersen, et al., 2006; Washietl, et al., 2005). These struc-
ture-based methods rely on the need for homology alignments as 
well as having high quality alignments  .  
   The second class of approach predicts novel ncRNA genes based 
on identifying both common and distinguishing features of known 
ncRNA genes in target genomic regions. The features used have 
included predicted promoters and terminators, as well as the base 
compositions of target sequences. Typical requirements mandate 
that such a region be short and flanked by promoter and terminator 
signals (Argaman, et al., 2001; Chen, et al., 2002). Clearly, such 
methods are limited in their effectiveness in reliable prediction of 
novel ncRNA genes for two main reasons: (a) accurate prediction 
of such signals is very challenging and unreliable, and (b) only a 
fraction of terminators, namely, rho-independent terminators in 
prokaryotes, can be computationally predicted (Kingsford, et al., 
2007).  
   Although nucleotide composition-based methods have had some 
success in ncRNA gene prediction, these methods are limited to 
organisms with compositional bias in their ncRNA genes in rela-
tion to their underlying genome. For example, in A/T-rich hyper-
thermophilic genomes, the ncRNA genes are relatively more GC-
rich (Klein, et al., 2002; Larsson, et al., 2008; Schattner, 2002). In 
addition to base composition (or mono-nucleotide composition), 
some programs have employed di- and tri-nucleotide frequencies 
to distinguish ncRNA genes from the genomic background (Wang, 
et al., 2006). Such information has also been further enhanced 
through the use of folding energy and known RNA motifs (Carter, 
et al., 2001) for the prediction of ncRNA genes in E. coli.  
   In this paper, we present a de novo method for predicting 
ncRNAs in bacterial genomes that employs a number of novel 
structural features associated with known ncRNA genes. Our 
method does not require prior homology, multiple sequence align-
ments, or structural conservation but uses only sequence and struc-
ture-based features easily derivable from the genome itself, which 
is a major advantage since the method can be directly applied to 
any organism that may be newly sequenced or partially sequenced. 
A neural network-based classifier was trained to predict the 
ncRNA genes on a genome-wide scale. We have applied this clas-
sifier to RNA gene prediction in E. coli and have compared our 
predictions to other existing programs. Furthermore, we also ex-
perimentally investigated six of the novel candidate ncRNAs pre-
dicted by the algorithm using Northern blot analysis, and identified 
a potential new ncRNA located downstream of the ydgA gene as 
well as a cis-acting regulatory element that helps control the ex-
pression of the essential mreB operon.   

2 METHODS 
To train a classifier for the de novo prediction of ncRNAs genes, we 
first generated a positive data set containing known ncRNA genes and 
identified a set of sequence and structural-based features that could 
distinguish the positive data set from non-ncRNA genes. We assumed 
that ncRNA genes are no longer than 1,000 nucleotides (nt), which 
covers the vast majority of the known ncRNAs in prokaryotes.  We 
refer the reader to the Supplementary Materials for additional details 
presented in each of the following subsections.   

2.1 Data set generation  
Our positive ncRNA data set was derived from three existing sources: 
(1) the NONCODE database (Liu, et al., 2005), (2) published litera-
ture, and (3) GenBank. These searches yielded 427, 426, and 1,105 
ncRNAs from NONCODE, published literature, and NCBI, respec-

tively, for a total of 1,540 non-overlapping ncRNAs, which we refer to 
as “Positive1540” for future reference. 
   To remove redundant sequences from within this data set, we applied 
the Markov cluster (MCL) algorithm to group together similar se-
quences using the default inflation parameter and a BLAST bit-score 
cutoff of 5 (Enright, et al., 2002). Our application of this algorithm 
resulted in 936 clusters from which we randomly selected one ncRNA 
from each cluster to use in our final training data set. We refer to this 
data set as “Positive936” to represent our positive controls.  
   The generation of the negative control represented a challenge in our 
work since there are no known negative sets, i.e., regions of the ge-
nome known not to contain ncRNA genes. Approaches using segments 
of the genomic background (Carter, et al., 2001; Saetrom, et al., 2005; 
Schattner, 2002) as the control inherently assume that ncRNA genes 
make up only a small portion of the entire genome, which may not be 
correct. Other methods use randomly shuffled permutations of known 
ncRNA genes to build a negative training data set (Clote, et al., 2005; 
Klein, et al., 2002; Rivas and Eddy, 2000; Workman and Krogh, 
1999). We constructed our negative set by shuffling sequences of 
known ncRNA genes, while preserving both the mono- and di-
nucleotide frequencies. This approach prevented the negative set from 
being biased to certain regions of the genome. The rationale for pre-
serving the compositional frequencies was that it enabled the calcula-
tion of the minimum folding energy (MFE) without biasing the stabi-
lizing and destabilizing energy from stacked base pairs or loops, re-
spectively (Clote, et al., 2005; Freyhult, et al., 2005; Workman and 
Krogh, 1999). We used the shuffling strategy implemented in (Clote, et 
al., 2005), based on the Altschul and Erickson algorithm (Altschul and 
Erickson, 1985). We use the term “di-shuffle” to represent the shuf-
fling procedure that preserves the mono- and di-nucleotide frequencies 
of the input sequence. For each known ncRNA sequence in “Posi-
tive936,” we generated 1,000 di-shuffled sequences, to which we refer 
as “Dishuffle936.” 

2.2 Features used  
Secondary structures play a key role in the functions of ncRNAs and 
are more highly conserved than the primary sequences. Accordingly, 
we investigated a number of secondary structure-based features in 
terms of their power to differentiate between ncRNAs and their di-
shuffled sequences, including novel features such as structural and 
ensemble statistics, plus a few previously used features such as folding 
statistics. 
 
Folding statistics: We examined the MFE (Carter, et al., 2001; Wang, 
et al., 2006; Washietl, et al., 2005) distributions for real ncRNAs and 
their di-shuffled sequences. Although useful, the current thermody-
namic model used in RNA secondary structure prediction is accurate to 
only within 5-10% of the actual MFE, making the accuracy of the 
current MFE-based structure predictions around 50-70% (Eddy, 2004). 
Therefore we used other features in conjunction with MFE to assess 
the reliability of the secondary structure prediction. One of these fea-
tures was the Shannon base-pairing entropy measure (Freyhult, et al., 
2005; Huynen, et al., 1997). Given an RNA sequence, the Shannon 
entropy can be computed from the ensemble of predicted secondary 
structures, as shown in Eqs. 1-2, where Pi,j is the probability of base-
pairing between nucleotides at sequence positions i and j, and n is the 
length of the RNA sequence. Note that the higher the entropy, the 
lower the structural prediction reliability.  

 

(1) 
(2) 

Fig. S1 (Supplementary Materials) shows the folding statistics (MFE 
and Shannon entropy) for each ncRNA in Positive936 compared to 
Dishuffle936. In agreement with (Clote, et al., 2005; Freyhult, et al., 
2005), the ncRNAs in our data set were observed to have lower MFE 
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and Shannon entropy than their di-shuffled sequences.  
 
Ensemble statistics: Besides the Shannon base-pairing entropy, we 
investigated three other ensemble-based features to assess the global 
folding reliability among all structures in the Boltzmann ensemble. 
These features included (1) the free energy of the thermodynamic 
ensemble, (2) the ensemble diversity statistic computed by RNAfold, 
and (3) the frequency of the MFE structure. These features measured 
the average free energy, base-pair distance, and uniqueness of the MFE 
structure (Gruber, et al., 2008). The free energy of the ensemble for 
ncRNAs tends to be lower and hence more stable, while the ensemble 
of ncRNA structures tends to be less diverse, indicating that the 
ncRNA structures were more unique compared to their di-shuffled 
decoys, as shown in Fig. S2. 
 

Fig. 1.  Ensemble statistics. Boxplots for the (A) overall compactness and 
(B) within cluster sum of squares vs. sequence lengths for ncRNAs (Posi-
tive936) and their decoys (Dishuffle936). The outliers indicated by the tick 
marks are values more than two times the inter-quartile range. In general, 
ncRNAs tended to have fewer clusters that were denser (lower compactness 
measure) than their decoys, and their within-cluster sum of squares were 
generally smaller than that of their decoys. 

   Since the prediction accuracy of secondary structures can improve 
substantially with the inclusion of suboptimal structures near the MFE 
(Jaeger, et al., 1989), we applied an RNA secondary structure cluster-
ing algorithm, RNACluster (Liu, et al., 2008), to cluster 1,000 pre-
dicted structures sampled from all possible secondary structures ac-
cording to the Boltzmann equilibrium probability distribution (Ding 
and Lawrence, 2003). Using the base-pairing distance between pre-

dicted secondary structures (Liu, et al., 2008), we calculated various 
statistics to assess the cluster quality of the sampled structures. One 
statistic measured the compactness of each cluster (or cluster density) 
as defined in (Liu, et al., 2008) and shown in Eq. 3, where dij is the 
base-pair distance and m is the number of structures within a cluster.  

 (3) 

  Unlike the clustering analysis of the predicted secondary structures 
done by the authors of Sfold (Chan and Ding, 2008; Ding, et al., 2005; 
Ding, et al., 2006), our approach used a rigorous and unique clustering 
method employed in RNACluster (Liu, et al., 2008). RNACluster iden-
tifies dense clusters in the space of all predicted structures by repre-
senting the structures as a minimum spanning tree (MST) and by iden-
tifying subtrees of the MST that form statistically significant clusters. 
We calculated five statistics, based on (Chan and Ding, 2008), for 
discriminating structural RNAs from their decoys using RNACluster: 
(1) the number of high-frequency base-pairs in the ensemble, (2) the 
average number of high-frequency base-pairs per cluster, (3) the aver-
age base-pair distance between the MFE structure and the ensemble, 
(4) the between-cluster sum of squares (BSS), and (5) the within-
cluster sum of squares (WSS). The BSS statistic measures the base-
pair distance between the cluster centroid and the ensemble centroid, 
while the WSS statistic measures the base-pair distance between the 
cluster centroid with all structures within that cluster (Chan and Ding, 
2008). The centroid definitions may be found in the Supplementary 
Materials.  
   We also calculated the BSS and WSS statistics based on a non-
optimal “centroid” structure, which we denoted as BSS_point and 
WSS_point, respectively. The BSS_point measures the between-cluster 
sum of squares distance between a cluster centroid and the ensemble 
centroid where the centroid is an existing structure unlike the optimal 
centroid used in {Chan, 2008 #867}.  The WSS_point measures the 
within-cluster sum of squares distance between the cluster centroid (an 
actual structure) to all structures within that cluster. In addition, we 
incorporated the following novel statistics related to the compactness 
of a cluster: (i) the average compactness, (ii) the maximum compact-
ness, (iii) the minimum compactness, (iv) the compactness of the larg-
est cluster, and (v) the overall compactness to assess the cluster quality 
generated by RNACluster. Note that the average compactness is the 
mean of the compactness statistics over all the clusters, while the over-
all compactness is taken over the entire collection of structures, i.e., the 
sum of all the distances normalized by the number of structures in the 
entire collection of structures. The average compactness gives a more 
localized view of the density of the clusters while the overall compact-
ness gives a more global view of the density of all the structures. Fi-
nally, we examined the number of clusters as found by RNACluster. 
  The statistics calculated by RNACluster were found to be highly 
discriminatory for separating ncRNAs from their di-shuffled versions, 
as shown by the P-values in Table S1 (Supplementary Materials). Us-
ing the RNACluster method, the structures of known ncRNAs tend to 
form fewer clusters and be more densely clustered than their di-
shuffled versions, as shown in Fig. 1A. Additional compactness-related 
boxplots are shown in Fig. S3. The statistics from the largest cluster, as 
shown in Fig. S4, also reflect the same trend for lower compactness 
statistics in the positive set compared to the di-shuffled set. Our calcu-
lation of the relevant statistics from (Chan and Ding, 2008), utilizing 
RNACluster, agrees with the authors’ results, as shown in Figs. S5-S7 
(Supplementary Materials). We showed that our calculation of the 
WSS_point statistic using RNACluster was more discriminative than 
the WSS statistic from Sfold in Fig. 1B and S6B, respectively. These 
results are also reflected in the P-value in Table S1. 
 
Structural statistics: We also considered another set of novel structural 
features derived from the predicted RNA secondary structures that are 
useful for the identification of ncRNAs. We examined various proper-
ties of known RNA secondary structural elements, i.e., stems and loops 
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for their possible discerning power between actual ncRNAs and their 
di-shuffled sequences. For each stem, loop, internal-loop, and bulge 
structural element, as shown in Fig. S8, we computed the 18 statistics 
defined in Table S2. To the best of our knowledge, these features have 
not been applied in the de novo identification of ncRNAs. 

 

Fig. 2. Structural statistics. Boxplots for the (A) hairpin-loop count and (B) 
total internal-structure count (internal-loop and bulges) vs. lengths for 
ncRNAs (Positive936) and their decoys (Dishuffle936). The outliers indi-
cated by the tick marks are values more than two times the inter-quartile 
range. In general, ncRNAs tended to have more loop regions and fewer 
internal-loops on average than their decoys. 

   From the structural statistics shown in Fig. S9, real ncRNAs tend to 
have fewer stem branches, but the stems tend to be longer on average. 
This longer stem preference contributes to more stability in the RNA 
secondary structure. Real ncRNAs in our dataset also tend to have 
more loops, as shown in Fig. 2A. The presence of more loops may also 
be related to the functional role of the ncRNAs. When multiloops are 
present, theretend to be more loops in real ncRNAs than in their di-
shuffled version, as shown in Fig. S10. Not all single-stranded regions 
were more dominant in real ncRNAs. As seen in Fig. 2B, the total 
internal-loops consisting of internal loops and bulge regions were actu-
ally less in ncRNAs than in their di-shuffled sequences. This tendency 
for ncRNAs to have fewer of such structural elements may have some 
functional interpretation that can be applied to ncRNA gene finding. 
Additional boxplots for loop-related structures are shown in Figs. S11-
S12 (Supplementary Materials). 
 
Significant features: For all the features examined above, we used 
hypothesis testing to identify those features that can potentially distin-

guish known ncRNAs from their di-shuffled sequences. We performed 
a paired t-test, comparing the mean of the features from the Posi-
tive936 data set with the mean from the Dishuffle936 data set, and 
computed the P-value estimating the probability that these samples 
have the same means, as summarized in Table S1. Since the t-test 
assumes distributions of equal variances, we also computed the signifi-
cance according to the Wilcoxon signed rank because the rank sum test 
is not based on this assumption; the rank sum test gave similar results. 
We manually selected a set of 25 features with significant P-values 
below 0.05, which we refer as the f25 feature set. This set included two 
folding statistics, two ensemble statistics, 14 RNACluster statistics, 
and seven structural statistics, as shown in Table S1. All features were 
length normalized (when applicable) before using them for genome-
wide prediction. We have also calculated the mean and the variance 
area under the receiver operating curve (AUROC) for each of the f25 
features in Table 1. The AUROC is a qualitative measure of the per-
formance not dependent on a specific threshold.  Generally, the under-
lying predictor has higher AUROC for higher sensitivity and specific-
ity. Over ten of our features have consistent AUROC values above 0.6.  
Of additional interest is that some ensemble statistics-based features 
are found to have higher AUROC values than the commonly used 
single structure-based MFE measures. 

Table 1.  The mean and variance for each feature’s AUROC value.  The 
normalized feature values from “Positive936” were compared to 1,000 runs 
of its “Dishuffle936” to assess each feature’s ability to discriminate be-
tween ncRNAs and the corresponding di-shuffled set.  The performance 
below is organism-independent that allows for an unbiased comparison 
among the features.  Over ten features have an average AUROC value 
above 0.6 that is highly stable across 1,000 runs, each of which uses a 
different negative set.      

Features mean(AUROC)var(AUROC)

rnacluster_wss_point 0.7316 5.09E-05 
rnacluster_maxcompactness 0.6437 7.14E-05 
entropy_entropy 0.6329 5.54E-05 
structuralstatistics_stem_ave 0.6325 4.51E-05 
diversity_ensemble_diversity 0.6263 8.10E-05 
rnacluster_overallcompactness 0.6249 8.07E-05 
rnacluster_avecompactness 0.6059 3.18E-05 
rnacluster_num_hifreq_bp_ensemble 0.6041 6.27E-05 
rnacluster_bss_point 0.6039 7.73E-05 
rnacluster_ave_bpdist_mfe_ensemble 0.6011 7.29E-05 
rnacluster_compactnesslargest 0.5988 8.54E-05 
structuralstatistics_stem_count 0.5960 6.55E-05 
rnacluster_ave_num_hifreq_bp_percluster 0.5901 2.00E-05 
structuralstatistics_mfe 0.5900 7.04E-06 
diversity_free_energy_thermo_ensemble 0.5856 5.94E-06 
structuralstatistics_total_internal_count 0.5848 7.69E-05 
rnacluster_bss 0.5747 7.59E-05 
rnacluster_nclusters 0.5630 3.99E-05 
rnacluster_wss 0.5601 6.19E-05 
structuralstatistics_total_internal_nt 0.5551 7.77E-05 
structuralstatistics_loop_ave 0.5402 8.60E-05 
rnacluster_nlargest 0.5292 7.93E-05 
rnacluster_mincompactness 0.5237 7.99E-06 
structuralstatistics_multiloop_ave 0.5169 5.11E-05 
structuralstatistics_loop_count 0.5133 5.96E-05 
 

2.3 Application to genome-wide prediction 
In order to construct an unbiased positive set for genome-wide predic-
tion, we included in it all 93 known ncRNAs in E. coli from the Posi-
tive1540 data set. Using these ncRNAs as queries, we ran an all-
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versus-all BLASTN search against the Positive936 data set and re-
moved all the Positive936 hits with E-values below 10-5. We reduced 
the original Positive936 data set to 800 unique ncRNAs after removing 
sequences homologous to the 93 known ncRNAs. We then used this 
data set without known ncRNAs in E. coli for training and refer to it as 
Positive800_ecoli.   
   For the negative set, we di-shuffled 800 randomly selected sequence 
segments in E. coli with the same length distribution as Posi-
tive800_ecoli to ensure no ncRNA-related secondary structures were 
present. Other negative training sets were examined but the results 
were not as significant as the final negative set used. Details of the 
other negative sets tested can be found in the Supplementary Materials. 
We computed all the f25 significant features and an additional 20 se-
quence-based statistics, namely, four mono- and 16 di-mer frequencies 
because they were useful in distinguishing between real ncRNAs and 
decoys by previous algorithms (Carter, et al., 2001; Klein, et al., 2002; 
Liu, et al., 2006; Schattner, 2002; Wang, et al., 2006). 
 
Meta-learner classifier to combine information from different window 
sizes:  We applied the genome-wide prediction classifier approach 
shown in Fig. 3 as follows. For each sample in the training data set, we 
calculate all 45 features (f25 significant features + 20 sequence-based 
features) within a sliding window of length w which slides from left to 
the right with step size = w/2. The features can undergo a feature rank-
ing selection method before being used to train a window length-
specific neural network classifier. The AUROC values of our method 
using different feature sizes are compared in Table S6. 
 
 

 
Fig. 3. A schematic of the classifier architecture used for genome-wide 
prediction. The results of each NN-based classifier were then post-
processed and combined into a final NN-based classifier to make the final 
prediction. The output of the length-specific NN-based classifiers and 
voting classifier were labeled by score ri for 0 ≤ i ≤ N and score s, respec-
tively. 
 
   Neural networks (NN) are a class of machine learning algorithms, 
widely used for solving classification problems based on multiple 
sources of information without assuming the underlying relationships 
among the individual information sources. This technique is robust for 
noisy data and has been widely used for many biological data analysis 
problems (Carter, et al., 2001; Tran, et al., 2007). We have trained an 
NN-based classifier using MATLAB®’s NN toolbox using 45 features 
derived from our data set. The network parameters were optimized 
using the Levenberg-Marquardt algorithm to obtain the desired binary 
(1/0) classification label depending on whether each sample contains 
an ncRNA or not. Our classifier has a single layer, one-neuron archi-
tecture using a logsig activation function. Other NN architectures with 
more neurons in the current one-layer and two- and three- layer net-
works were also examined, but the performance improvements were 

negligible (data not shown). Our neural network classifier is able to 
account for the discerning power of each feature and its redundancy in 
the context of the other features during its training to select an optimal 
combination of features. We found that using a smaller subset of fea-
tures (~10-15), we can train a classifier with only slightly lower predic-
tion accuracy (details omitted). We have also used support vector ma-
chines to train our classifier but found that the results were not as good 
(data not shown).  
    The results from different window length-specific classifiers are 
combined through a meta-learner neural network classifier to predict 
the final score. We omit further details about dealing with overlapping 
windows of different sizes. For testing, we repeated the same proce-
dure using overlapping sliding windows on the entire genome of E. 
coli. By training multiple window length-specific classifiers, each 
classifier was tuned to distinguish the positive (ncRNAs) from the 
negative training data for genes of different lengths. 
   The main computational cost of our approach is in computing the 
feature set. It takes less than one minute per window to calculate all the 
features used in the classifier on a 2.2 GHz, 2 GB RAM AMD Opteron 
dual-processor single-core computer.  In order to scan the whole E. 
coli genome using window size w=120 requires approximately 54 days 
on a single processor. Distributed computing is required to make the 
computation practically feasible.             
 
Filter with positional information to compare with other prediction 
programs:To reduce the false positive rate in our prediction, we have 
analyzed the position of known ncRNAs in E. coli by classifying all 
ncRNAs into four classes based on their locations: (1) intergenic, (2) 
cds_samestrand, (3) antisense, and (4) other cases. The cases of an-
tisense and cds_samestrand were further subcategorized into those 
ncRNAs that fully or partially overlapped a protein-coding region. We 
focused on the partially overlapping subcategory because (1) in both 
Positive800_ecoli and our E. coli data set, the partially overlapping 
case was approximately twice as common as the fully overlapping case 
and (2) experimental validation of fully overlapping cases is difficult 
(Huttenhofer and Vogel, 2006). For the partially overlapping cases, we 
computed the log likelihood score using Eq. 4, where ntoverlap is the 
number of overlapped nucleotides between the ncRNA and the protein-
coding region. The log likelihood for the antisense and cds_samestrand 
cases with partial overlap is shown for the Positive800_ecoli dataset in 
Fig. S13. We noted that for the vast majority cases, ncRNA genes 
partially overlapped protein-coding regions by no more than ~50 nt, 
which is good for discriminating between the positive and negative 
sets. 

 

 
(4) 

2.4 Experimental validation 
To identify a manageable list of candidates for experimental validation, 
we employed data from positional, conservation, promoter, terminator, 
and a high-density tiling array (Argaman, et al., 2001; Chen, et al., 
2002). Conservation denotes candidates with BLASTN hit sequences 
with E-value < 10-5. Promoter and transcription factor binding site 
information from RegulonDB was used to compile promoter regions 
within 300 nucleotides upstream of the predicted ncRNA. Tran-
sTermHP (Kingsford, et al., 2007) was used to predict rho-independent 
transcription terminators downstream of our predicted ncRNAs. A 
tiling array permits an unbiased analysis of complete genomic tran-
scription, including ncRNAs. The whole genome-tiling array data set 
was derived by comparing an RNase E deletion strain of E. coli with a 
wild type control (Stead et al., manuscript in preparation). This strain 
was chosen because RNase E has been shown to play an important role 
in general RNA metabolism in E. coli (Bernstein, et al., 2004; Ow and 
Kushner, 2002). The authors identified 402 possible ncRNA candidates 
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based on increased steady-state RNA levels in the RNase E deletion 
strain compared to a wild type control (Stead et al., manuscript in 
preparation). Overall, we filtered our program’s predictions based on 
the following conditions: (1) the potential ncRNA was conserved; (2) it 
contained either a predicted promoter or terminator; (3) its overlap 
with a protein-coding region (if applicable) was < 50 nt; and, (4) it 
overlapped candidates derived from the tiling array. 

 
Bacterial strains, isolation of total RNA and Northern analysis:    The 
E. coli strains used in this study were MG1693 (thyA715 rph-1), which 
was provided by the E. coli Genetic Stock Center (Yale University) 
and an isogenic derivative, SK3564 (rne∆1018::bla thyA715 rph-1 
recA56 srlD::Tn10/pDHK30(rng-219 Smr/Spr)/pWSK129 (Kmr) 
which has been described previously (Mohanty and Kushner, 2008). 
Both strains were grown in Luria broth supplemented with thymine (50 
µg/ml) at 37oC. For MG1693, cells were harvested at 3.5, 6, 8, and 10 
hours post-inoculation, corresponding to mid-log, early stationary, mid 
stationary and late stationary phase growth. For SK3564 the cells were 
grown in the same manner, but in order to account for its slower 
growth rate, were harvested at 11.5, 17.5, 20 and 23 hours post-
inoculation. Harvested cells were mixed with an equal volume of 
crushed frozen TM buffer (10 mM Tris [pH 7.2]/5 mM MgCl2) con-
taining 20 mM NaN3 and 0.4 mg/ml chloramphenicol (O'Hara, et al., 
1995). The cells were then centrifuged at 5,000 rpm for 10 min at 4oC. 
The cell pellets were subsequently resuspended in Trizol® (Invitrogen) 
and total RNA was extracted according to the manufacturer’s instruc-
tions.  
   The RNA samples were treated with DNase I using a DNA-free kitTM 
(Ambion), ethanol precipitated, quantitated with a Nanodrop apparatus 
(NanoDrop Technologies) and visualized on 1.0% agarose gels. For 
Northern analysis, 30 µg of total RNA were loaded in each lane and 
separated on either 6% or 8% polyacrylamide/8.3 M urea gels and 
subsequently transferred onto Magnacharge nylon membranes (GE 
Water & Processing technologies) by electroblotting (1 h, 80 V, 4oC). 
Membranes were prehybridized in ULTRAhyb® Ultrasensitive Hy-
bridization Buffer (Ambion) at 68oC and probed with internally la-
beled, in vitro transcribed RNA oligomers (oligonucleotide sequences 
used to generate the probes are available on request). Hybridization 
was visualized on a Storm 840 PhosphorImager (GE Healthcare).  

3 RESULTS 
By utilizing folding, ensemble and structure-based features, we 
developed an NN-based meta-learner for the de novo prediction of 
ncRNAs on a genome-wide scale. We compared our prediction 
results in E. coli to existing programs relying on homology and 
other information. We found that our results are as good or in some 
cases better than these methods.  

3.1 ncRNA prediction in prokaryotes 
Table 2 summarizes the detailed prediction performance of the 
meta-learner. Our trained meta-learner achieved an average predic-
tion sensitivity of 68%, specificity of 70%, and an overall accuracy 
of 70% for predicting windows containing ncRNAs in E. coli. By 
combining prediction results from individual window-specific NN-
based classifiers, our meta-learner improved the prediction per-
formance of the best individual window-specific classifier. The 
optimal AUROC performance was achieved using three window 
sizes, w = 100, 120, and 160 nt, corresponding to the three peaks of 
the ncRNA-length distribution in E. coli, as shown in Fig. S14. 
The AUROC curve for E. coli is given in Fig. S15. For other or-
ganisms, users can select a threshold necessary to obtain a desired 
sensitivity and specificity trade-off for their application. 

Table 2.  AUROC values of our predictions for E. coli and S. solfataricus 
using its optimal three window sizes for both the direct and reverse com-
plement strands.  

Organism Strand Sn Sp AUROC 

 E. coli + 0.7182 0.6638 0.7557 
 E. coli - 0.6457 0.7275 0.7628 
 S. solfataricus + 0.6235 0.7614 0.7502 
 S. solfataricus - 0.5149 0.8224 0.7214 
  
   We then obtained a unique list of candidates for the genome by 
labeling continuous regions with NN scores above the user-chosen 
threshold. The cutoff for the NN threshold will vary depending on 
the application and the user’s preference in trading off the predic-
tion sensitivity and specificity. For our study, we bias in favor of 
sensitivity rather than missing potential candidates by selecting a 
low threshold resulting in 16,571 positive candidates. After filter-
ing with positional information by requiring the prediction to (1) 
fall into an antisense case and (2) have nucleotide overlap < 50 nt 
with a protein-coding region, we obtained 601 candidates and re-
covered 41% of known ncRNAs in E. coli with a PPV of 6%. 23 of 
our 601 predicted candidates overlap known strand-specific 
ncRNAs, four candidates overlapped annotated tRNAs, and 574 
novel predictions. A summary of the prediction sensitivity (Sn) and 
positive prediction values (PPV) for the different programs is 
summarized in Table 3.  

Table 3.  Comparison of prediction accuracies by different programs for E. 
coli. The number of predictions, sensitivity (Sn=TP/(TP+FN)), and positive 
prediction value (PPV=TP/(TP+FP)) is given for each program (Carter, et 
al., 2001; Chen, et al., 2002; Rivas, et al., 2001; Saetrom, et al., 2005; 
Wang, et al., 2006).  

Program # predictions Sn PPV 

 Carter 563 0.3441 0.0568 
 Chen 227 0.2903 0.1189 
 Rivas 275 0.4086 0.1382 
 Saestrom 306 0.1183 0.0359 
 Wang 420 0.0753 0.0167 
 Tran 601 0.4086 0.0632 
 
  Rivas et al. (Rivas, et al., 2001) had an overall better sensitivity 
and PPV than ours. However, their program relied on prior knowl-
edge of multiple alignments for identification of conserved re-
gions, which may not be generally available for all genomes. Chen 
et al. (Chen, et al., 2002) had better PPV but lower sensitivity than 
our program. Compared to (Carter, et al., 2001), we had over 6% 
improvement in sensitivity with approximately the same PPV. Our 
predictions were also significantly better in Sn and PPV compared 
to (Saetrom, et al., 2005) and (Wang, et al., 2006). The results of 
our de novo prediction using structure and sequence-based features 
is highly promising given the fact that we do not rely on additional 
promoter/terminator or sequence alignment information as required 
by other programs. We also illustrated the robustness of our 
ncRNA predictor by searching for ncRNAs in the thermophilic 
archaeon, S. solfataricus (NC_002754). Our application to S. solfa-
taricus yielded an average prediction sensitivity of 57%, specific-
ity of 79%, and an overall accuracy of 71% for predicting windows 
containing ncRNAs, as shown in Table 2. Additional discussion 
can be found in the Supplementary Materials.  
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3.2 Experimental verification of selected ncRNA can-
didates in E. coli 

As an application of our de novo prediction for use in wet lab stud-
ies, we incorporated additional information available to an experi-
mentalist and filtered by conservation, promoter/terminator, posi-
tional, and tiling array data to further narrow down our predicted 
candidates in E. coli. Using this filtering approach, we identified 
31 candidates as summarized in the Fig. S16 for further validation. 
Out of the 31 candidates, 17 overlapped with known ncRNA genes 
or annotated tRNA/rRNA genes in E. coli. From the 14 remaining 
novel predictions, eight were excluded because they overlapped 
with predicted ncRNA genes derived from other programs (Carter, 
et al., 2001; Chen, et al., 2002; Rivas, et al., 2001; Saetrom, et al., 
2005; Tjaden, et al., 2006; Wang, et al., 2006). The remaining six 
candidates (#5, 6, 8, 9, 11 and 12), as shown in Table S7, did not 
overlap with predictions by the other prediction programs, and had 
higher steady-state levels in the RNase E mutant. Based on our 
Northern analysis, three of the candidates (5, 6, and 8) were not 
observed in either the RNase E mutant or the wild type control 
(data not shown). Since the tiling array has a higher sensitivity than 
the Northern analysis, we suspect that these potential ncRNAs are 
transcribed at such low levels that they could not be detected even 
in the RNase E deletion mutant. 
   Candidate 9 maps to a region downstream of a predicted strong 
rho-independent transcription terminator associated with the ydgA 
gene. It also overlaps a repetitive extragenic palindrome called 
RIP126 (Rudd, 1999). Using an RNA probe of 130 nt, a large spe-
cies of 480 nt was observed in mid-log phase cells in a wild type 
strain (data not shown). In addition, significant amounts of smaller 
species of 140, 170, and 215 nt appeared as the cells entered sta-
tionary phase (data not shown). However, because there is consid-
erable nucleotide sequence conservation among the various RIP 
elements, we designed a second RNA probe (a 30-mer) that was 
specific for RIP126. With this probe, we observed only the 480 nt 
species, which was most abundant in both mid-log and early sta-
tionary phase cells (Fig. 4A). While we cannot rule out at this time 
that this species is a stable decay intermediate of the upstream 
ydgA mRNA, based on the predicted strength of the ydgA rho-
independent transcription terminator, we hypothesize that candi-
date 9 is indeed a ncRNA that contains a significant region of an-
tisense sequence to the 3’ terminus of the adjacent uidC mRNA, 
which is transcribed in the opposite direction.  
  Candidate 12 is located in the 5’ untranslated region (UTR) of the 
crp gene, encoding the catabolite repressor protein. Previous ex-
periments have shown the existence of three potential promoters 
(P1, P2, and P3) for this gene (Ishizuka, et al., 1994). Transcription 
initiation from P3 would generate a 5’ UTR of 167 nt. The RNA 
probe used was 89 nt in length and would detect RNA species 
arising from all three promoters. As shown in Fig. 4C, in exponen-
tially growing wild type cells a large number of discrete species 
were detected, but most of them rapidly disappeared as the cells 
entered stationary phase (data not shown). Strikingly, in the RNase 
E deletion mutant the ∼700 nt transcript was the predominant spe-
cies, demonstrating that almost all of the smaller products observed 
in the wild type control probably arose from RNase E cleavages. 
An ∼150 nt species was still detected in the RNase E mutant and 
could have arisen from inefficient cleavages by another endoribo-
nuclease such as RNase G. Since the large species detected in both 
the RNase E mutant and the wild type control was the approximate 
size of the full-length crp mRNA, we speculate that all of the spe-
cies observed in wild type cells (Fig. 4C) are probably stable 
mRNA decay products that retain some or all of the 5’ UTR. 

  
Fig. 4. Analysis of predicted ncRNA candidates 9, 11 and 12. For the 
Northerns shown, 30 µg of total RNA was loaded in each lane and tran-
script sizes were estimated using a New England Biolabs low range ssRNA 
ladder.  (A) Analysis of candidate 9. RNA isolated from a culture of 
MG1693 (rne+) at various times throughout exponential and stationary 
phase and separated on a 6% PAGE as described in Materials and Methods.  
(B) Analysis of candidate 11. Total RNA from exponentially growing 
MG1693 (rne+) and SK3564 (∆rne) was separated on a 8% PAGE. (C)  
Analysis of candidate 12. Total RNA from exponentially growing MG1693 
(rne+) and SK3564 (∆rne) were separated on a 6% PAGE. (D) Candidate 
11 falls within the 5’ UTR of the mreB gene. RNAstar secondary structure 
prediction of a portion of the mreB leader (nucleotides -269 to -51).  Nu-
cleotides shown in red at positions -269 and -106 correspond to the primer 
extension products detected by Wachi et al. (81).  Position –106 was origi-
nally identified as a potential transcription start site but may in fact repre-
sent an RNase E cleavage site since it occurs in a single-stranded A/U rich 
region and there is no apparent σ70 upstream of this site. Furthermore, we 
hypothesize that the distal stem-loop that ends of -51 represents a rho-
independent transcription terminator that is functional in the ∆rne strain. 
 
   Candidate 11 falls within the 5’ UTR of the mreB gene, an essen-
tial locus that is involved in establishment of cell shape and cell 
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division (Shih, et al., 2005). Transcriptional analysis of this gene 
has identified three potential promoters based on primer extension 
analysis (Wachi, et al., 2006). Transcription from the most distal 
promoter would generate a 5’ UTR of 267 nt. Using an RNA probe 
of 145 nt specific for the 5’ UTR, we detected numerous species in 
exponentially growing wild type cells (Fig. 4B). However, in the 
RNase E deletion mutant, only a single 215 nt species was detected 
(Fig. 4B). . When this 5’ UTR fragment was folded using the 
RNAstar program, a highly structured molecule was predicted 
(Fig. 4D). We hypothesize that the 215 nt species observed in the 
RNase E mutant represents a premature termination of transcrip-
tion of the mreBCD operon that arises because of a defect in cell 
division that is an indirect effect of the reduction in RNase E activ-
ity. In wild type cells, where the mreB protein is required for nor-
mal cell division, transcription proceeds beyond the putative ter-
minator shown in Fig. 4D. Thus our algorithm described here has 
identified either a riboswitch or a transcription attenuator that is 
important in the process of bacterial cell division.  

4  DISCUSSION 
In this study, we identified a number of sequence and structure-
based features that can distinguish known ncRNAs from their di-
shuffled versions, which do not rely on a priori knowledge of se-
quence alignments, conservation with closely related organisms, or 
structural conservation. By utilizing these novel features, we de-
veloped a classifier for ncRNA gene prediction. The use of training 
samples from a large class of ncRNAs from diverse organisms 
enabled us to find different categories of ncRNAs from various 
organisms. We have successfully applied our de novo predictor to 
E. coli and S. solfataricus.  
   Application of our program has led to a number of novel ncRNA 
gene predictions. Using Northern blot analysis for E. coli, we were 
able to find expression in three out of six target candidates under 
our tested conditions. We believe the expressed candidates are 
stable decay products and one has the potential to be a riboswitch. 
Further functional experimental studies will be needed in order to 
fully verify these as real ncRNAs since transcription does not im-
ply function.                     
   The results of our ncRNA prediction in E. coli are shown to be 
highly competitive with or better than the existing prediction pro-
grams as we have well demonstrated in this study. Overall our 
genome-scale prediction results indicate that there may be many 
more ncRNAs in E. coli, particularly in non-intergenic regions, 
which have been missed by previous studies. Further functional 
studies on these predicted ncRNA genes are needed to better un-
derstand its role and mechanism in regulation.  
  The promising set of features identified in this study could possi-
bly aid in predicting ncRNAs in eukaryotic genomes. Additional 
changes to the training set and methodology of the current win-
dowing approach must be made to account for more complex ge-
nomic organization in higher-order genomes. Future studies may 
involve the comparison of other machine learning algorithms and 
meta-learning approaches.  
  The de novo aspect of our approach makes it easily applicable to 
newly or partially sequenced genomes since it is not homology-
based nor it requires the computation of multiple sequence align-
ments among related organisms.  The ensemble-based features 
identified in our study perform significantly better than established 
MFE-based methods.  All these capabilities led to the identification 
of two new regulatory RNAs among other possibly new ncRNA 
genes.            
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