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Abstract There is an important need to assess biomass recal-
citrance in large populations of both natural and transgenic
plants to identify promising candidates for lignocellulosic bio-
fuel production. In order to properly test and optimize param-
eters for biofuel production, the starting sugar content must be
known to calculate percent sugar yield and conversion effi-
ciencies. Pyrolysis molecular beam mass spectrometry (py-
MBMS) has been used as a high-throughput method for de-
termination of lignin content and structure, and this report
demonstrates its applicability for determining glucose, xylose,
arabinose, galactose, and mannose content in biomass. Bio-
mass from conifers, hardwoods, and herbaceous species were
used to create a 44 sample partial least squares (PLS) regres-
sion models of py-MBMS spectra-based sugar estimates on
high-performance liquid chromatography (HPLC) sugar con-
tent data. The total sugar py-MBMS regression model had a
R2 of 0.91 with a 0.17 mg/mg root mean square error of val-
idation indicating accurate estimation of total sugar content for
a range of biomass types. Models were validated using eight
independent biomass samples frommultiple species, with pre-
dictions falling within errors of the HPLC data. With a data
collection time of 1.5 min per sample, py-MBMS serves as a
rapid high-throughput method for quantifying sugar content in
biomass.
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Introduction

With the introduction of the Renewable Fuel Standard, requir-
ing the use of cellulosic biofuels, a surge in research has fo-
cused on determining the optimum conditions for converting
biomass to fuels. One key factor of these studies is the carbo-
hydrate content of plants, specifically on the two most abun-
dant sugars of glucose and xylose. Sugars have a variety of
possible routes for fuels synthesis including microbial conver-
sion to ethanol or other transportation fuels and chemicals [1],
pyrolysis to high energy content oils and gasses, or gasifica-
tion to alcohols or alkanes [2]. All of these routes are directly
affected by the chemical composition of the biomass starting
material and the method used to release the sugars from the
biomass. A simple and effective method to determine the sug-
ar content of starting biomass material is often needed to op-
timize the process of converting biomass to fuels.

Avariety of methods have been developed to quantify sug-
ar content in biomass. The standard method for determining
the composition of biomass uses a procedure that is both
labor- and time-intensive, requiring gram quantities of bio-
mass and taking close to 2 weeks for the full analysis [3–8].
With improvements in genetic modification and transforma-
tion of plants, the time and quantity requirements of traditional
methods of sugar determination are no longer sufficient for the
number of plants that need characterization. High-throughput
methods for screening biomass are needed, and the review
paper by Lupoi et al. [9] describes the benefits and drawbacks
of many of these methods. An NMR method for determining
sugar content in biomass hydrolysates was recently published
[10], but the method still requires the time-consuming hydro-
lysis process. Techniques that use whole biomass are of great-
er interest for high-throughput applications because of the
reduced amount of sample preparation and manipulation.
Near-IR techniques can be combined with chemometrics to
predict biomass composition in a nondestructive manner [11,
12]. However, near-IR regression coefficients can be hard to
interpret due to the molecular overtones of the fundamental
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bands residing in the mid-IR region causing weak and poorly
resolved peaks [13]. The near-IR technique is also very sensi-
tive to moisture content necessitating meticulous sample prep-
aration and storage to ensure accurate results [14].

Pyrolysis molecular beam mass spectrometry (py-MBMS)
provides an information-rich chemical fingerprint of each
sample and has been used to study the cell wall composition
of herbaceous biomass [15, 16], the decomposition of carbo-
hydrates [17], and the production and analysis of bio-oils [18].
More recently, py-MBMS has been used for high-throughput
screening for lignin content and S/G ratio of biomass [19–21].
Although the pyrolysis is destructive, only a small amount
(~4 mg) of sample is needed for analysis, and the technique
has proven to be highly valuable and reliable in the years since
it was introduced. While py-MBMS data has primarily been
used to estimate lignin properties such as content and compo-
sition, the mass spectrum contains additional information
about the plant that can be utilized through chemometrics.
During pyrolysis, the biomass is fragmented into individual
molecular fragments with heat in the absence of oxygen. The-
se molecular fragments retain the information of its parent
structures and are used to quantify the composition of the
starting material. This paper demonstrates a method of using
partial least squares (PLS) modeling to correlate py-MBMS
spectra with sugar contents, determined from traditional wet
chemical analysis, in order to predict sugar contents from the
py-MBMS spectra.

Materials and Methods

Biomass Samples

Biomass samples used in this study were identical to the
Gjersing et al. [10] study, with the exception of several sam-
ples that were fully consumed in the previous study. Briefly,
switchgrass, wheatstraw, poplar, pine, and eucalyptus samples
were selected from historical datasets analyzed at the National
Renewable Energy Laboratory that cover the natural range of
sugar content in plants. The biomass material was milled to
pass through a 20 mesh screen using a mini Wiley mill. For
starch removal and ethanol extraction, approximately 200 mg
of biomass material was wrapped in a standard mesh tea bag.
Starch was removed from the samples using commercial am-
ylases described in Decker et al. [22]. Samples were ethanol
extracted using a soxhlet for approximately 24 h to remove
natural oils and phenolic compounds.

Hydrolysis

A scaled-down version of the NREL Laboratory Analytical
Procedure BDetermination of Structural Carbohydrates and
Lignin from Biomass^ [3] was used for preparing

hydrolysates. Autoclave pressure tubes (2–5 mL) were loaded
with 7.5 mg (±0.5 mg) milled and extracted biomass. The
samples were then mixed with 75 μL of 72 % H2SO4 and
placed in a 30 °C water bath for 1 h. After the samples were
removed from the water bath, 2.1 mL of water was added to
each tube and the tubes were autoclaved at 121 °C for 1 h. The
samples were allowed to cool to room temperature, and the
liquid hydrolysate fraction was then decanted into 15-mL con-
ical tubes and neutralized with CaCO3 to a pH of 7. The
neutralized samples were spun at 5000 rpm for 10 min; the
liquid hydrolysate fraction was filtered at 2 μm to ensure all
solids were removed from the solution.

HPLC

High-performance liquid chromatography (HPLC) was per-
formed as specified in the NREL Laboratory Analytical Pro-
cedure BDetermination of Structural Carbohydrates and Lig-
nin fromBiomass^ [3]. AnAgilent Infinity 1220 Series HPLC
system with a Bio-Rad HPX-87P column was used. The in-
jection volume was 10–50 μL for each sample, with a mobile
phase of HPLC-grade water at a flow rate of 0.6 mL/min. The
column temperature was 80–85 °C with a run time of 35 min.

Pyrolysis Molecular Beam Mass Spectrometry

Plant cell walls containing cellulose, hemicellulose, and
lignin are pyrolyzed, and the information-rich vapors are
analyzed using a molecular beam mass spectrometer
(Fig. 1). A commercially available molecular beam mass
spectrometer designed specifically for biomass analysis
and an autosampler was used for pyrolysis vapor analysis
[23, 24]. Approximately 4 mg of air-dried 20 mesh bio-
mass was introduced into a quartz pyrolysis reactor at
500 °C with 0.9 L/min helium carrier gas flow via
80-μL deactivated stainless steel Eco-Cups provided with
an autosampler [19]. Mass spectral data from m/z 30–450
were acquired over a 90-s acquisition period on a Merlin
Automation data system version 3.0 using low-energy
(17 eV) electron impact ionization. Low-energy electron
impact reduces fragmentation due to ionization in the
mass spectra [23]. Two technical replicate spectra of each
sample were collected.

Data Analysis

Multivariate analysis including principle component anal-
ysis (PCA) and partial least squares (PLS) modeling was
performed on mean normalized spectral data (m/z 30–
450) using The Unscrambler v. 9.7 (CAMO A/S, Trond-
heim, Norway). The number of factors used in PLS
models was chosen based on recommended values from
the statistical software, as well as interpretation of the
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regression coefficients of the models. The number of fac-
tors selected for the models never exceeded the value
recommended by the software but was lowered if the in-
terpretation of the regression coefficients was simplified
and the integrity of the model was not compromised. The
full cross validation option was in The Unscrambler used
for all PLS models to ensure accurate error calculation.
Full cross validation, also known as leave-one-out (LOO)
cross validation, involves leaving one sample out of the
dataset and calculating a submodel with the remaining
samples. This process is repeated exhaustively for all
samples, creating a series of submodels. Once the series
of submodels are created, all prediction residuals are com-
bined to compute the validation residual variance and the
root mean square error of prediction. The Unscrambler
statistical software package uses these calculations to de-
termine the appropriate number of factors used for PLS
models to prevent overfitting, the description of random
error or noise. The predictions of the various sugar

contents were also produced using The Unscrambler sta-
tistical software.

Results and Discussion

Principal Component Analysis

Pyrolysis MBMS spectra were analyzed using PCA to cluster
the samples together based on similar mass fragment peak
intensities (Fig. 2). PCA is a multivariate statistical technique
that excels at visually mapping differences between samples
in large datasets. The samples in this study separate into three
distinct groups (Fig. 2): conifers, hardwoods, and herbaceous
samples along the x-axis or principal component 1 (PC1). The
unique chemistry of these three groups results largely from
differences in lignin monomer structure. Conifer lignin con-
tent consists of guaiacyl (G) lignin monomers, hardwood lig-
nin includes both syringyl (S), and G lignin monomers, and

Fig. 1 Experimental depiction of a pyrolysis molecular beam mass spectrometry study. Figure created by Anthony Castellano. Photos provided by
Dennis Schroeder and Robert Sykes
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herbaceous samples have S and G monomers but a higher
proportion of p-coumaryl (H) lignin monomers than conifers
and hardwoods [25]. Samples with positive PC1 scores (hard-
woods and herbaceous) in Fig. 2 have higher S lignin content
than samples with negative PC1 scores (conifers).

PLS Regression Models

PLS models were constructed using HPLC sugar content data
and MBMS spectra from 44 mixed biomass samples, from
switchgrass, wheatstraw, poplar, pine, and eucalyptus sam-
ples. Models were created for the two major sugars, glucose
and xylose, and the minor sugars, arabinose, galactose, and
mannose (Figs. 3 and 4). In addition, a PLS model was con-
structed for total sugar content (Fig. 5). The major sugar
models, glucose and xylose, have R2 values of 0.83 and
0.97, respectively, indicating good correlation between tradi-
tional HPLC measured sugar contents and py-MBMS spectra.

The results presented here are in agreement with the nucle-
ar magnetic resonance (NMR)method for sugar determination
reported in Gjersing et al. [10] with R2 values for glucose
(0.82) and xylose (0.93). Xu et al. [26] also reports similar
values with an R2 of 0.87 for glucan and 0.78 for xylan using
near-infrared spectroscopy. The arabinose model with R2 of
0.85 has a good correlation with HPLC. Both the py-MBMS
andNMR galactose models display a poor correlation, withR2

of 0.60 compared to R2 of 0.66 by NMR [10], most likely due
to the fact that the detection limit of the HPLC method of
0.05 mg/mL causing higher error at these low galactose

Fig. 3 PLS regression models for
the two major sugars in biomass,
glucose, and xylose, and their
associated regression coefficients.
R2 of validation, number of
factors used to create the model,
root mean square error of
calibration (RMSEC), and root
mean square error of validation
(RMSEV) are shown

Fig. 2 Principal component analysis plot of conifer, hardwood, and
herbaceous samples
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contents. While the mannose model results in a good R2 value
of 0.91, the model is skewed by the conifer samples that typ-
ically have high mannose content compared to all other sam-
ples, essentially making this a two-point regression model that
has limited validity (Fig. 4). Combining the major and minor
sugars together for a total sugar model results in a model with
an R2 of 0.91 (Fig. 5).

Additional models were also created for each biomass cat-
egory (hardwood, conifer, and herbaceous) for comparison to
models containing samples from all categories. The individual

biomass categorymodels generally resulted in lower R2 values
than models using all the samples available and, therefore, are
not presented here. For example, using hardwood samples to
predict glucose and total sugars resulted in R2 values of 0.76
and 0.79, respectively, compared to 0.83 and 0.91 when all
samples were used in the model. Errors for calibration and
validation associated with the individual biomass category
models were also approximately 25 % higher. Combining
the hardwood, conifer, and herbaceous samples together into
one dataset extended the overall range of the sugar content in

Fig. 4 PLS regression models for
the minor sugars in biomass,
arabinose, galactose, and
mannose, and their associated
regression coefficients. R2 of
validation, number of factors used
to create the model, root mean
square error of calibration
(RMSEC), and root mean square
error of validation (RMSEV) are
shown
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the models and helped elucidate which compounds were driv-
ing the predictions of the various sugar component contents.

One advantage the py-MBMS technique has over other
high-throughput techniques is the ability to directly attribute
spectral peaks to compounds associated with parent chemi-
cal structures. The regression coefficients associated with the
PLS models for glucose and xylose are shown in Fig. 3. The
regression coefficients consist of molecular fragments asso-
ciated with lignin, cellulose, and hemicellulose shown in
Table 1. In the glucose PLS model, a prominent C6 sugar

peak (m/z 60) appears in the positive regression coefficients,
while C5 sugar peaks (m/z 85 and m/z 114) are in the
negative regression coefficients indicating an inverse rela-
tionship between cellulose and hemicellulose (Table 1)
[23]. Analyzing the regression coefficients for the xylose
PLS model shows that the model is driven primarily by
lignin content, with S and G lignin fragments in both the
positive and negative regression coefficients (Fig. 3). Peak
120 (vinylphenol), which is a major low molecular weight
lignin peak from grasses, is also prominent in the positive

Fig. 5 PLS regression model for
total sugars in biomass and
associated regression coefficients.
R2 of validation, number of
factors used to create the model,
root mean square error of
calibration (RMSEC), and root
mean square error of validation
(RMSEV) are shown

Table 1 Peak and precursor
assignments in mass spectra of
lignified samples

m/z Assignment Precursor Type

57, 73, 85, 96, 114 C5 Sugars

57, 60, 73, 98, 126, 144 C6 Sugars

94 Phenol H, S, G

120 Vinylphenol H, S, G

124 Guaiacol G

137a Ethylguaiacol, homovanillin, coniferyl alcohol G

138 Methylguaiacol G

150 Vinylguaiacol, coumaryl alcohol G

152 4-Ethylguaiacol, vanillin G

154 Syringol S

164 Allyl-+propenylguaiacol G

167a Ethylsyringol, syringylacetone, propiosyringone S

168 4-Methyl-2,6-dimethoxyphenol S

178 Coniferyl aldehyde G

180 Coniferyl alcohol, vinylsyringol, α-D-glucose S, G

182 Syringaldehyde S

194 4-Propenylsyringol S

208 Sinapaldehyde S

210 Sinapyl alcohol S

From Evans and Milne [23]
a Fragment ion
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regression coefficients in Fig. 3 [23]. While the vinylphenol
molecule can be associated with H, S, and G lignin mono-
mers, here, we attribute m/z 120 as a fragment of p-
coumarate, which acylates the side chains of the
phenylproanoid polymer backbone [27]. Regression coeffi-
cients for the minor sugars show similar trends, but due to
the inherently small content range among the samples, the
coefficients are more complicated (Fig. 4). The total sugars
model in Fig. 5 has C6 sugar and S lignin molecular frag-
ments in the positive regression coefficients and C5 sugar
and G lignin molecular fragments in the negative regression
coefficients. The large presence of lignin peaks in the sugar
models is expected due to their intimate relationship within
the cell wall.

The py-MBMS technique also allows visual inspection of
the spectra in real time to see if changes in cell wall chemistry
have occurred. Genetically modifying biosynthetic pathways

may result in new compounds appearing in plants that are not
naturally occurring. These compounds can ultimately cause
additional errors associated with PLS models as they are not
accounted for in the original model. Pyrolysis MBMS can
quickly highlight these types of compounds by visual inspec-
tion of spectra from transgenic plants compared to controls.
Peaks that are unique or present in different ratios compared to
controls can be studied for identification and quantification.

Future implementation of these sugar cell wall component
PLS models will require that calibration samples be included
with each py-MBMS dataset to ensure accuracy and robust-
ness. The inclusion of calibration samples in each dataset ne-
gates differences in detector response associated with spec-
trometer tuning and electronic drift over time. Direct compar-
ison of py-MBMS spectra between datasets is not recom-
mended due to the possible instrumental and experimental
errors mentioned above. Multiple standards totaling 10 % of

Fig. 6 PLS sugar content
predictions using py-MBMS
spectra for glucose, xylose,
mannose, galactose, arabinose,
and total sugar content. Black
bars represent sugar content
predictions using py-MBMS, and
gray bars represent HPLC
measured sugar contents
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the samples are included with each experiment to provide a
measurement of instrument drift.

PLS Model Validation

The PLS regression models were validated by using eight
randomly selected biomass samples: three conifer (pine), three
hardwood (eucalyptus and Populus), and two herbaceous (ba-
gasse and switchgrass). The major and minor sugar contents
were predicted using PLS regression and compared to the
HPLC measured values (Fig. 6). Results from the HPLC data
and the py-MBMS model predictions agree within error,
where the py-MBMS PLS error bars indicate the root mean
square error of prediction (RMSEP) and the HPLC error bars
are the standard deviation of replicate samples (Fig. 6). Error
bars on the minor sugars are higher due to relatively small
amount of each sugar and limited range in the biomass. These
sugar content predictions verify the ability of py-MBMS as a
substitute for HPLC sugar measurement in a high-throughput
capacity. The overall sugar content range and the variety of
species present in the dataset make the PLS models very ro-
bust. This is especially useful with increased use of transgenic
samples, where models must predict chemical composition
that pushes the boundaries of the normal range of natural
variation.

Conclusions

Pyrolysis molecular beam mass spectrometry is shown to be a
potential high-throughput method for determining glucose,
xylose, arabinose, galactose, and mannose content in biomass.
PLS regression models of py-MBMS spectra have strong cor-
relations with total sugar content models with an R2 of 0.91
with a 0.17 mg/mg root mean square error of validation.
Models were validated using eight independent biomass sam-
ples from multiple species, with the sugar content predictions
falling within errors of the HPLC data. The short (1.5 min)
sample analysis time for quantifying sugar content in biomass
is a significant improvement of traditional HPLCmethods and
equivalent to other techniques such as FT-NIR and NIR. In
addition, the py-MBMS technique can provide superior mo-
lecular structural information associated with quantification of
other cell wall components such as lignin and S/G ratio. De-
velopment of these techniques allows researchers to fully an-
alyze larger experiments that were not feasible previously due
to time and money constraints. High-throughput techniques
contribute to continued improvement and discovery of ligno-
cellulosic feedstocks used for biofuel production.
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