1	Title Page Applied and Environmental Microbiology
2	
3	Title Natural Competence in Thermoanaerobacter and Thermoanaerobacterium Species
4	Running Title Thermonanerobacter Natural Competence
5	
6	Authors and Affiliations
7	A. Joe Shaw ^{1,2} , David A. Hogsett ¹ , Lee R. Lynd ^{1,2,3*}
8	¹ Mascoma Corporation, Lebanon, NH 03766
9	² Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
10	³ Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
11	
12	Corresponding Author
13	Lee R. Lynd
14	Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
15	Phone: 603.646.2231
16	Email: lee.lynd@dartmouth.edu
17	
18	
19	
20	
21	
22	
23	

2	
3	Low G+C thermophilic obligate anaerobes in the class Clostridia are considered
4	among the bacteria most resistant to genetic engineering due to the difficulty of
5	introducing foreign DNA, thus limiting the ability to study and exploit their native
6	hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic
7	competence in 13 Thermoanaerobacter and Thermanaerobacterium strains previously
8	believed to be difficult to transform or genetically recalcitrant. In
9	Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence mediated
10	DNA incorporation occurs during the exponential growth phase both with replicating
11	plasmid and homologous recombination based integration, and circular or linear DNA.
12	In T. saccharolyticum, disruptions of genes similar to comEA, comEC, and a type IV pili
13	gene operon result in strains unable to incorporate further DNA, suggesting that natural
14	competence occurs via a conserved Gram-positive mechanism. The relative ease of
15	employing natural competence for gene transfer should foster genetic engineering in
16	these industrially relevant organisms, and understanding the mechanisms underlying
17	natural competence may be useful in increasing the applicability of genetic tools to
18	difficult-to-transform organisms.
19	
20	

Downloaded from aem.asm.org at Oak Ridge Nat'l Lab on May 14, 2010

2 Introduction

3	The genera Thermanaerobacter and Thermoanaerobacterium contain bacteria
4	which are thermophilic, obligate anaerobes that specialize in polysaccharide and
5	carbohydrate fermentation, producing primarily L-lactic acid, acetic acid, ethanol, CO ₂ ,
6	and H_2 (24, 27, 49). Taxonomically, they are distinguished from other anaerobic
7	thermophilic clostridia by the ability to reduce thiosulfate to hydrogen sulfide or
8	elemental sulfur (21). The majority of characterized Thermanaerobacter and
9	Thermoanaerobacterium strains have been isolated from hot springs and other thermal
10	environments (20-22, 38, 47); however, they have also been isolated from canned foods
11	(4, 10), soil (48), papermills and breweries (41, 43), and deep subsurface environments (5,
12	13, 35), suggesting a somewhat ubiquitous environmental presence.
13	Representatives of the Thermanaerobacter and Thermoanaerobacterium genera
14	have been considered for biotechnological applications such as conversion of
15	lignocellulosic biomass to ethanol (8, 27) or other fuels and chemicals (3, 24). However,
16	the branched fermentation pathways of these organisms generally require modification
17	for industrial application. Several studies have investigated manipulating bioprocess and
18	growth conditions to alter end product ratios and yields, but this has not resulted in
19	reliable conditions to maximize the yield of a single end product (18, 25). Genetic
20	engineering is likely necessary for commercial application of Thermanaerobacter or
21	Thermoanaerobacterium species (26, 27, 44). As genetic systems in these bacteria have
22	emerged (28, 45), increased product yields have been demonstrated by gene knockout of
23	L-lactate dehydrogenase (9, 14), phosphotransacetylase and acetate kinase (40), and

Downloaded from aem.asm.org at Oak Ridge Natl Lab on May 14, 2010

1 hydrogenase (39). Despite this recent progress, genetic transformation is still considered

2 the greatest barrier for engineering these organisms (44).

In contrast, some of the bacteria most amenable to genetic manipulation are those
exhibiting natural competence; for example work with the naturally competent *Streptococcus pneumoniae* first established DNA as the molecule containing inheritable

6 information (42). Naturally competent organisms are found in many bacterial phyla,

7 although the overall number of bacteria known to be naturally competent is relatively

8 small (16).

<u>AEM Accepts published online ahead of print</u>

9 The molecular mechanisms of natural competence are often divided into two 10 stages: early stage genes that encode regulatory and signal cascades to control 11 competence induction, and late stage genes that encode the machinery of DNA uptake 12 and integration (16). The Gram-positive late-stage consensus mechanism for DNA 13 uptake and assimilation, elucidated primarily through work with Bacillus subtilis, occurs 14 through several molecular machinery steps. First, DNA is believed to interact with a type 15 IV pili or pseudopili that brings it into close proximity of the cell membrane. The precise 16 mechanism of this phenomena is unclear; although components of the T4P in both gram-17 positive and gram-negative bacteria have been shown to bind DNA (7, 19), in specific 18 studies, a full pilus structure has been both not observed or shown not to be essential 19 during natural competence (6, 36). Two proteins, ComEA and ComEC, are then

20 involved in creation and transport of single-stranded DNA across the membrane, where it

21 is subsequently bound by CinA-localized RecA and either integrated into the genome or

22 replicated at an independent origin, as for plasmid DNA (6).

Here, we report that several *Thermoanaerobacter* and *Thermoanaerobacterium* strains are naturally competent, characterize growth conditions conducive to natural
 competence, and identify genes in *T. saccharolyticum* JW/SL-YS485 required for
 competence exhibition.

5

6 Materials and Methods

7

Strains and Plasmids. Strains and plasmids used in this study are listed in Table 1. The replicating shuttle plasmid pMU131 contains a thermostable kanamycin resistance marker (28), the pUC origin of replication and ampicillin resistance marker, and a thermostable Gram-positive origin of replication isolated from a native plasmid of *Thermoanaerobacterium saccharolyticum* B6A-RI (International patent application no: PCT/US2008/010545 and Caiazza *et al.* in preparation, see Weimer *et al.* (47) for an earlier description of these native plasmids).

15

<u>AEM Accepts published online ahead of print</u>

Media and growth conditions. All culturing of thermophilic bacteria was performed in
modified DSMZ medium 122, containing per liter 5.0 g cellobiose, 1.3 g (NH₄)₂SO₄, 2.6
g MgCl₂ x 6 H₂O, 1.43 g KH₂PO₄, 1.8 g K₂HPO₄, 0.13 g CaCl₂ x 2 H₂O, 6.0 g Na-βglycerophosphate, 0.00013 g FeSO₄ x 7 H₂O, 4.5 g yeast extract, 0.002 g resazurin, 0.5 g
L-cysteine-HCl, and 10 g agarose for solid media. The pH was adjusted to 6.7 with 10 N

21 NaOH or 72% w/v H_2SO_4 if necessary. Chemicals were obtained from Sigma-Aldrich

22 and yeast extract from BD Difco. Cultures were grown at 55°C, unless otherwise noted,

23 in an anaerobic chamber (COY Labs, Grass Lake, MI). For selection of erythromycin

resistant colonies of *T. saccharolyticum*, a medium pH of 6.1 was used, and an incubation temperature of 50°C. *E. coli* was grown in LB medium with kanamycin at 50 µg/mL or gentamycin at 25 µg/mL for plasmid selection and maintenance. *S. cerevisiae* was grown on solid CM minus uracil media for plasmid selection (37). Stock cultures of thermophilic strains were prepared from cultures grown to exponential or early stationary phase by the addition of 5% DMSO and frozen at -80°C.

7

<u>AEM Accepts published online ahead of print</u>

8 Natural genetic competence Natural competence transformations were conducted in an 9 anaerobic chamber by inoculation of 10mL medium with 1-3 µL of a frozen stock culture. 10 After mixing, 1 mL aquilots were transferred to tubes containing 250 ng DNA suspended 11 in 10 mM Tris buffer, pH 8.0 at a concentration of approximately 50 ng/uL. pMU131 12 plasmid DNA prepared in E. coli TOP10 (Invitrogen, Madison WI) was used for natural 13 competence tests of different species. Different types of DNA used to transform T. 14 saccharolyticum were prepared as described in the text. The tubes were then incubated at 55°C for 16-18 hours to an optical density OD₆₀₀ of 0.6-1.0. Dilutions of the 15 16 transformation culture were mixed with liquid agar at 55°C containing the appropriate 17 antibiotic concentration, poured into petri dishes and allowed to solidify at room 18 temperature, and incubated at 55°C in a moisture retaining container until colony 19 formation. Negative controls were performed by the exclusion of DNA. Putative 20 transformants were tested for the presence of the kanamycin marker via PCR with 21 primers X00860 and X00861, and 16s sequencing was performed to confirm culture 22 identity with primers X00050 and X00051 (Table 2).

23

1 **Transformation frequency during batch growth.** Exponentially growing *T*. 2 saccharolyticum cells were diluted to an optical density (OD₆₀₀) of 0.03 in fresh medium, and each hour 1 mL sub-cultures were mixed with 250 ng pMU131 DNA and grown 3 under the same conditions as the main culture. After an hour of incubation, 2 units of 4 5 DNAse (New England Biolabs, Ipswich MA) was added to the sub-cultures to hydrolyze 6 free DNA, and the mixture was incubated for an additional hour to allow expression of 7 the kanamycin resistance marker. Sub-cultures were then diluted and plated in non-8 selective and kanamycin containing solid media to determine the transformation 9 frequency. 10 11 Plasmid and knockout strain construction. Plasmids were constructed by S. cerevisiae 12 based in vivo recombination cloning (37) using the S. cerevisiae - E. coli shuttle plasmid 13 pMQ87. Knockout plasmids were isolated by mini-prep (Qiagen, Germantown MD) in E. 14 coli TOP10 cells prior to transformation in T. saccharolyticum. Primers used to construct 15 knockout plasmids are shown on plasmid maps in Supplemental Figure S1, and primers 16 sequences in Table 2. 17 18 Data Deposition The sequences reported in this paper have been deposited in the 19 GenBank database [accession nos. GU479453 (T4P region), GU479454 (comEA region),

20 GU479455 (comEC region), and GU479456 (cinA recA region)]

21

22 Results

AEM Accepts published online ahead of print

1 Determination of natural competence. To transform T. saccharolyticum JW/SL-2 YS485, we previously used a hybrid chemical-electrotransformation protocol (28) that 3 includes incubation with isonicotinic acid hydrazide to weaken cell walls, cell harvesting, washing, electro-pulsing, and an outgrowth period in fresh media prior to plating with a 4 5 selective antibiotic. This protocol first came into question when a no-pulse control 6 experiment yielded more transformants than one which included an electrical pulse. It 7 was subsequently determined that the only essential step of the protocol was the cell 8 outgrowth period, leading us to conclude that T. saccharolyticum JW/SL-YS485 is 9 naturally competent. 10 **Transformation with different DNA types.** *T. saccharolyticum* was 11 transformable by replicating plasmid and homologous recombination based chromosomal 12 integration vectors (Table 3), and like other naturally competent organisms, can be 13 transformed with genomic DNA containing a selectable genotype (17, 23). pSGD8 (9), 14 (see also supplemental figure S1), a non-replicating knockout vector containing 1.2 kb of 15 upstream homology and 0.4 kb downstream homology to the L-ldh locus, transformed T. 16 saccharolyticum as circular DNA, and after a AclI/EcoRI digestion that created a linear 17 fragment. The linear digested plasmid was confirmed by agarose gel analysis to contain 18 a fragment with the kanamycin resistance marker and flanking homology regions. 19 Evidence of genome integration after transformation was determined by PCR (Figure 1). 20 Natural competence occurs during exponential growth. No obvious induction 21 event was required to bring T. saccharolyticum cells into the competent state beyond 22 growth in a typical laboratory medium. Figure 2 shows the transformation frequency of 23 T. saccharolyticum with the replicating plasmid pMU131 (see materials and methods)

	1	throug
	2	expone
	3	transfo
inh	4	colony
lo j	5	before
0	6	frequer
add	7	DNA f
ahe	8	our har
Je	9	cell der
nlit	10	the ons
0	11	higher
lec	12	phase.
lis	13	
duc	14	phenor
S	15	other s
0	16	pMU1.
CC	17	determ
X	18	sponta
X	19	natural
AL	20	thermo
	21	frequer

hout batch growth. The transformation frequency is highest during early ential growth, and declines until the stationary phase is reached, where the rmation frequency was below the limit of detection (8.0e10⁻⁹ transformants per forming unit (CFU)). In this experiment DNA was incubated with cells for 1 hour DNAse treatment to discern the effect of growth phase on transformation ncy, whereas for all other experiments described here cells were incubated with for 16-18 hours prior to plating on selective media (see Materials and Methods). In nds, transformation efficiencies were highest when DNA was added at low initial nsities (1e10³-1e10⁵ cells/mL) and cells were plated on selective medium prior to set of the stationary phase. Efficiencies were lowest when DNA was added at cell densities $(1 \times 10^8 \text{ cells/mL})$ and cells were plated after entering the stationary Natural competence in related bacteria. To test whether the natural competence nena was unique to T. saccharolyticum YS485 among related bacteria, sixteen trains were tested for the ability to be transformed with the replicating plasmid 31. No optimization of the transformation protocol was made beyond ination of the minimum concentration of kanamycin required to eliminate neous colony formation. As seen in Table 4, a total of thirteen strains exhibited competence, three of which were Thermoanaerobacterium saccharolyticum strains isolated by Mascoma Corporation. Transformation ncies ranged from 1.0e10⁻³ to 1.9e10⁻⁶ transformants per CFU. For each transformation three colonies were checked for the presence of the kanamycin marker by 22 PCR (Figure 3), and a 16s sequence was amplified using universal primers, sequenced, 23

AEM Accepts published online ahead of print

1 and compared to that of the original starting culture. In no case was there evidence of spontaneously kanamycin resistant colony formation or a transformable contaminant within the tested culture. Thermoanaerobacterium zeae, Thermoanaerobacter mathranii, Caldicellulosiruptor saccharolyticus, and Clostridium thermocellum were not transformed with this protocol. However, the ability of these strains to become naturally competent cannot be excluded based on this result, as several factors could result in a lack of transformants, such as the pMU131 resistance marker or replication origin not functioning in the host organism, an unmet condition for competence induction, or a native mechanism for limiting foreign DNA such as a restriction or CRISPR system (29, 46). Gram-positive competence homologues are required for natural competence. To begin elucidation of the natural competence mechanism in *T. saccharolyticum*, gene knockouts were made in loci with high similarity to genes involved in natural competence in other gram-positive bacteria. Knockouts of a putative T4P locus (of which only one was identified on the genome), comEA, comEC, and a cinA, recA locus were made using an erythromycin resistance marker. Deletions with chromosomal integration of both flanking regions were confirmed by PCR with primers external to the areas of homologous recombination (Figure 4). The subsequent knockout strains were assayed for transformability with the replicating plasmid pMU131. As seen in Table 5, the Δ T4P, $\Delta com EA$, and $\Delta com EC$ strains had transformation frequencies below the limit 21 of detection, while the $\Delta cinA$, $\Delta recA$ strain had a 250-fold reduction in transformation 22 efficiency compared to the wildtype. 23

1 Discussion

<u>AEM Accepts published online ahead of print</u>

We were unable to identify previous reports of natural competence in members of the class Clostridia, although the 80 or so prokaryotic species known to be naturally competent are widely distributed phylogenetically (16). With 13 of the 15 tested *Thermoanaerobacter* and *Thermoanaerobacterium* strains demonstrating natural competence in this study, the phenomenon is apparently widespread among these organisms.

8 Most studied naturally competent bacterial species induce competence in response 9 to external factors such as pheromone density (quorum sensing) or stringent nutritional 10 conditions; prominent examples include that of Streptococcus pneumoniae and Bacillus 11 subtilis (11, 15). T. saccharolyticum falls within the smaller subset of studied bacteria, 12 including Acinetobacter calcoaceticus, Neisseria gonorrhoeae, Deinococcus radiodurans, 13 and the cyanobacteria Synechococcus and Chlorobium, that are naturally competent 14 during the exponential growth phase without the requirement of special stimuli (16, 33). 15 As seen in Figure 2, the transformation frequency for *T. saccharolyticum* is highest 16 during early growth in fresh medium and decreases towards zero as the stationary phase 17 is reached. Further study of the physiology and regulation of natural competence in T. 18 saccharolyticum will be required for a better understanding of how and why this 19 organism enters the competent state. 20 With the protocol reported here, the transformation efficiency of T. saccharolyticum JW/SL-YS485 with pMU131 was observed to be 1.4e10⁻⁴ transformants 21 22 per CFU. Thermoanaerobacter ethanolicus JW200 had the highest transformation frequency at 1.0e10⁻³ transformants per CFU, while *Thermoanaerobacter brockii* had the 23

1	lowest at 1.9e10 ⁻⁶ transformants per CFU. DNA concentration, divalent cation
2	concentration, pH, temperature, carbon source, exposure time to DNA, and the selective
3	maker type have all been shown to influence transformation frequencies of other
4	naturally competent organisms such as A. calcoaceticus and Thermus thermophilus (17,
5	34). It is possible that many of these factors also influence transformation efficiency in
6	Thermoanaerobacter and Thermoanaerobacterium strains, and that the maximum
7	transformation efficiencies remain to be determined. Nevertheless, with the efficiencies
8	reported here standard genetic manipulations such as plasmid transformation, gene
9	knockout, and gene integration are easily performed, and transformation via linear DNA
10	enables rapid PCR-based transformation strategies (12, 32).
11	The genome of T. saccharolyticum carries several genes that have homology to
12	Gram-positive late stage competence genes, including a 13 gene cluster with homology to
13	type IV pili (T4P) assembly genes which bind DNA during natural competence (6),
14	comEA and comEC homologues, which are involved in DNA transport across the cell
15	membrane (6), and <i>cin</i> A and <i>rec</i> A homologues, which are thought to be involved in
16	single strand DNA protection and chromosomal integration after passage into the cytostol
17	(31). cinA, also referred to as colligrin or DNA damage/competence induced protein, has
18	been shown to mediate recA localization to the membrane when cells are in the
19	competent state (30).
20	In T. saccharolyticum, homologues for T4P genes, comEA, and comEC are
21	required for observable natural competence. This strongly suggests that natural
22	competence occurs via a conserved Gram-positive mechanism involving these enzymes.
23	Based on sequence similarity, the Δ T4P region (Supplemental Figure 2) contains many

1	T4P components, including putative traffic NTPases PilB and PilT (or1961, or1960),
2	pseudopilins PilE and PilV (or1958, or1955), a prepilin processing peptidase PilD
3	(or1957), a polytopic membrane protein PilG (or1959), and T4P or competence
4	associated proteins FimT, PilW, ComFB, PilM, PilN, and PilO (or1956, or1954, or1952,
5	or1951, or1950, and or1949, respectively). The <i>com</i> EA and <i>com</i> EC genes of <i>T</i> .
6	saccharolyticum are not located adjacent to other known competence genes, although the
7	genetic organization at these two loci are conserved in other Thermoanaerobacter and
8	Thermoanaerobacterium strains. The observed 250-fold drop in transformation
9	efficiency of the $\Delta cinA \Delta recA$ strain suggests that CinA, RecA, or both also play a role
10	during natural competence, as has been shown in <i>B. subtilis</i> and <i>S. pneumoniae</i> (30, 50).
11	Model organisms such as S. cerevisiae and E. coli are often considered for
12	lignocellulosic biofuel and biochemical production due to the relative ease of genetic
13	engineering, even though they lack one or more of the traits required of an ideal
14	biocatalyst such as hydrolytic capabilities, high productivities, or broad substrate
15	utilization (1). Organisms such as Thermoanaerobacter and Thermoanaerobacterium
16	bacteria have inherent advantages relative to these model organisms, such as the ability to
17	rapidly hydrolyze and ferment low-cost polysaccharides and sugars (2, 27), and the
18	ability to grow at temperatures above 50°C, which could improve process metrics such as
19	fermentation heat load, microbial contamination, substrate solubility, and product
20	recovery (44). Still, the absence or rudimentary status of genetic systems in such
21	thermophilic anaerobes constrained their development as biocatalysts. The simple and
22	powerful transformation system described here, along with recent genomic sequencing
23	projects for several Thermoanaerobacter and Thermoanaerobacterium strains (DOE

Joint Genome Institute, http://www.jgi.doe.gov/), should greatly accelerate the pace and
 extent to which genetic manipulations can be made in these biotechnologically relevant
 organisms.

4

5 Acknowledgements

This work was supported primarily by Mascoma Corporation and in part by the
Department of Energy under Award Number DE-FC36-07G017057; LL was supported
from the Department of Energy via grants DE-FG02-02ER15350 and the BioEnergy
Science Center.
We would like to thank Paul Weimer for generously providing *Thermoanaerobacterium saccharolyticum* B6A, and Larry Feinberg, Nicholas Orem, and

12 Justine Folden of the Mascoma Corporation for isolating and providing

13 Thermoanaerobacterium thermosaccharolyticum strains M0523, M0534, and M0795.

14

<u>AEM Accepts published online ahead of print</u>

15 Disclaimer "This report was prepared as an account of work sponsored by an agency of 16 the United States Government. Neither the United States Government nor any agency 17 thereof, nor any of their employees, makes any warranty, express or implied, or assumes 18 any legal liability or responsibility for the accuracy, completeness, or usefulness of any 19 information, apparatus, product, or process disclosed, or represents that Its use would not 20 infringe privately owned rights. Reference herein to any specific commercial product, 21 process, or service by trade name, trademark, manufacturer, or otherwise does not 22 necessarily constitute or imply its endorsement, recommendation, or favoring by the 23 United States Government or any agency thereof. The views and opinions of authors

2	or an	y agency thereof."
3		
4		
4		
5		
6	Refe	rences
7		
8	1.	Alper, H., and G. Stephanopoulos. 2009. Engineering for biofuels: exploiting
9		innate microbial capacity or importing biosynthetic potential? Nat. Rev.
10	•	Microbiol. 7:/15-/23.
11	2.	Altaras, N. E., M. R. Etzel, and D. C. Cameron. 2001. Conversion of sugars to
12		1,2-propanediol by Thermoanderobacterium thermosaccharolyticum HG-8.
13	2	Bioleciniol. Prog. 17:52-50.
14	5.	Cameron, D. C., N. E. Anaras, N. L. nonnian, and A. J. Snaw. 1996. Metabolic angineering of proponedial nathways. Distachnol. Drog. 14,116–125
15	4	Carlier I B I Bonne and M Badara Fours 2006 Isolation from canned
10	4.	foods of a novel <i>Thermognagerobacter</i> species phylogenetically related to
18		Thermognagerobacter mathranii (Larsen 1997): emendation of the species
10		description and proposal of <i>Thermoanaerobacter mathranii</i> subsp. alimentarius
20		subsp. nov Anaerobe 12:153-159
20	5	Caval I I B Ollivier B K Patel C Ravot M Magat F Ageron P A
$\frac{21}{22}$	5.	Grimont and L L Garcia 1995 Description of Thermoanaerobacter brocki
23		subsp <i>lactiethylicus</i> subsp nov isolated from a deep subsurface French oil well
24		a proposal to reclassify <i>Thermoanaerobacter finnii</i> as <i>Thermoanaerobacter</i>
25		<i>brockii</i> subsp. <i>finnii</i> comb. nov., and an emended description of
26		Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45:783-9.
27	6.	Chen, I., and D. Dubnau. 2004. DNA uptake during bacterial transformation.
28		Nat. Rev. Microbiol. 2: 241-249.
29	7.	Chen, I., R. Provvedi, and D. Dubnau. 2006. A macromolecular complex
30		formed by a pilin-like protein in competent <i>Bacillus subtilis</i> . J. Biol. Chem.
31		281: 21720-21727.
32	8.	Demain, A. L., M. Newcomb, and J. H. Wu. 2005. Cellulase, clostridia, and
33		ethanol. Microbiol. Mol. Biol. Rev. 69:124-154.
34	9.	Desai, S. G., M. L. Guerinot, and L. R. Lynd. 2004. Cloning of L-lactate
35		dehydrogenase and elimination of lactic acid production via gene knockout in
36		Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol.
37		Biotechnol. 65:600-605.

expressed herein do not necessarily state or reflect those of the United States Government

1	10.	Dotzauer, C., M. A. Ehrmann, and R. F. Vogel. 2002. Occurrence and
2		detection of Thermoanaerobacterium and Thermoanaerobacter in canned food
3		Food Technol. Biotechnol. 40:21-26.
4	11.	Dubnau, D. 1993. Genetic exchange and homologous recombination, p. 555-584.
5		In A. L. Sonenshein, T. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other
6		gram-positive bacteria: physiology, biochemistry, and molecular genetics.
7		American Society for Microbiology, Washington, D. C.
8	12.	Fabret, C., S. D. Ehrlich, and N. Philippe, 2002. A new mutation delivery
9		system for genome-scale approaches in <i>Bacillus subtilis</i> . Mol. Microbiol. 46 :25-
10		36.
11	13.	Fardeau, M. L., M. Bonilla Salinas, S. L'Haridon, C. Jeanthon, F. Verhe, J. L.
12	101	Cavol. B. K. Patel. I. L. Garcia, and B. Ollivier. 2004 Isolation from oil
13		reservoirs of novel thermonhilic anaerobes phylogenetically related to
14		Thermognaerobacter subterraneus: reassignment of T subterraneus
15		Thermoanaerobacter subterraneas, reassignment of T. subterraneas, Thermoanaerobacter vonseiensis, Thermoanaerobacter tenocongensis and
16		Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen nov sp
17		nov comb nov as four novel subspecies Int I Syst Evol Microbiol 54.467-74
18	14	Georgieva T and B Abring 2007 Evaluation of continuous ethanol
10	17.	fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic
20		bacterium Thermoangerobacter BG11 1 Appl Microbiol Biotechnol 77:61-68
20	15	Håvarstein I S C Coomaraswamy and D A Morrison 1995 An
21	15.	unmodified bentadecapentide pheromone induces competence for genetic
22		transformation in Strantococcus nagumonida, Proc. Natl. Acad. Sci. U.S. A
23		02 •11110 11111
24	16	Johnshorg O V Eldholm and I S Håvarstein 2007 Natural genetic
25 26	10.	transformation: prevalence, mechanisms and function. Res. Microbiol 158.767
20		778
27	17	Kovama V. T. Hoshino, N. Tomizuka, and K. Furukawa, 1986. Genetic
20	17.	transformation of the extreme thermophile <i>Thermus thermophilus</i> and of other
30		Thermus spn I Bacteriol 166:338-340
31	18	Lecis I S and H C Lawford 1991 Thermoanaerobacter ethanolicus growth
32	10.	and product yield from elevated levels of xylose or glucose in continuous cultures
32		Appl Environ Microbiol 57:579-585
37	10	Long F K Hougan R Flackonstain H Hambarsat S A Frya O H
35	19.	Ambur and T. Tonium 2000 Identification of neisserial DNA hinding
36		components. Microbiology 155:852 862
30	20	Lorson I D Nielson and B K Abring 1007 Thermognatic bacter mathranii
38	20.	sp. nov. an ethanol producing extremely thermophilic anaerobic bacterium from
30		s hot spring in Iceland, Arch. Microbiol 168 :114, 110
39 40	21	Lee V F M K Join C Lee S F Lewe and L C Zeikus 1002 Tevenomia
40	21.	distinction of saccharalytic thermonbilic anaerobes: description of
41		Thermographic thermophilic and the power of
+∠ //3		Thermognagerobacterium syncholyticum gen, nov., sp. nov., and
		Thermognagraphium brockii Clostridium thermosulfurogenes and Clostridium
-+-+ 15		thermolydrosulfuricum E100.60 os Thermognage objector brockii comb. nov
4J 16		Thermonyarosulfuncum E100-09 as Inermounderoducier drockii comb. nov.,
40		i nermounderodacierium inermosuijurigenes comb. nov., and

1		Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and
23		ethanolicus Int I Syst Bacteriol 43:41-51
4	22	Liu S V F A Rainey H W Morgan F Mayer and I Wiegel 1996
5	22.	Thermoanaerobacterium actearoense sp. nov., a slightly acidophilic, anaerobic
6		thermophile isolated from various hot springs in new zealand and emendation of
7		the genus <i>Thermoanaerobacterium</i> Int I Syst Bacteriol 46 :388-396
8	23.	Lorenz. M. G., and W. Wackernagel. 1994. Bacterial gene transfer by natural
9	201	genetic transformation in the environment. Microbiol. Mol. Biol. Rev. 58:563-602.
10	24.	Lowe, S. E., M. K. Jain, and J. G. Zeikus. 1993. Biology, ecology, and
11		biotechnological applications of anaerobic-bacteria adapted to environmental
12		stresses in temperature, pH, salinity, or substrates. Microbiol. Mol. Biol. Rev.
13		57: 451-509.
14	25.	Lynd, L. R., H. J. Ahn, G. Anderson, P. Hill, D. S. Kersey, and T. Klapatch.
15		1991. Thermophilic ethanol-production - investigation of ethanol yield and
16		tolerance in continuous culture. Appl. Biochem. Biotechnol. 28-9:549-570.
17	26.	Lynd, L. R., W. H. van Zyl, J. E. McBride, and M. Laser. 2005. Consolidated
18		bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577-
19		583.
20	27.	Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial
21		cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.
22		66: 506-577.
23	28.	Mai, V., W. W. Lorenz, and J. Wiegel. 1997. Transformation of
24		Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1
25		conferring kanamycin resistance. FEMS Microbiol. Lett. 148:163-167.
26	29.	Marraffini, L. A., and E. J. Sontheimer. 2008. CRISPR interference limits
27		horizontal gene transfer in <i>Staphylococci</i> by targeting DNA. Science 322: 1843-
28		1845.
29	30.	Masure, H. R., J. P. Barbara, S. Helen, and S. Barbara. 1998. Membrane
30		targeting of RecA during genetic transformation. Mol. Microbiol. 27:845-852.
31	31.	Mathieu, B., MB. Isabelle, M. Bernard, and C. Jean-Pierre. 2003.
32		Transformation of <i>Streptococcus pneumoniae</i> relies on DprA- and RecA-
33		dependent protection of incoming DNA single strands. Mol. Microbiol. 50:52/-
34	22	
35	32.	Metzgar, D., J. M. Bacher, V. Pezo, J. Keader, V. Doring, P. Schimmel, P.
36		Marilere, and V. de Crecy-Lagard. 2004. Acinetobacter sp. ADP1: an ideal
3/		model organism for genetic analysis and genome engineering. Nucl. Acids Res.
38 20	22	32: 3780-3790.
39 40	<i>33</i> .	Paimen, K., P. Buijsman, and K. J. Heilingwerl. 1994. Physiological regulation
40		of competence induction for natural transformation in Activetobacter
41 42	31	Culcoucencus. AICH. MICIODIOI. 102;344-331. Dolmon D. R. Vosmon D. Ruijsmon C. K. D. Brook, and K. I. Hallingwarf
42 13	34.	rannen, K., D. Vosnian, F. Duijsman, C. K. D. Dreek, and K. J. Heinigwert.
+3 44		calcoaceticus I Gen Microbiol 130 -205 205
-+-+ 45	35	Rob V S V Lin C Li H Huang T I Dealne and I 7hou 2002 Isolation
46	55.	and characterization of metal-reducing <i>Thermoangerobacter</i> strains from deep
		THE ADDRESS AND AN ADDRESS AND ADDR

AEM Accepts published online ahead of print

1		subsurface environments of the Piceance Basin, Colorado. Appl. Environ.
2	26	MICIODIOI. 00:0015-0020. Dudal T. D. Facing D. Porton I. Schouernflug F. Nonnonmacher and T. F.
5 1	50.	Mover 1005 Pole of nili and the phase variable PilC protein in natural
4 5		competence for transformation of <i>Neisseria against house</i> Proc. Natl. Acad. Sci
6		$U \leq \Delta 97.7086.7090$
7	37	Shanks R M O N C Cajazza S M Hinsa C M Toutain and C A
8	57.	O'Toole 2006 Saccharomyces cerevisiae-based molecular tool kit for
9		manipulation of genes from Gram-negative bacteria Appl Environ Microbiol
10		72: 5027-5036
11	38	Shao, W., S. DeBlois, and I. Wiegel, 1995. A high-molecular-weight cell-
12	50.	associated xylanase isolated from exponentially growing <i>Thermoanaerobacterium</i>
13		sp Strain IW/SL-YS485 Appl Environ Microbiol 61 :937-940
14	39	Shaw A. L. D. A. Hogsett and L. R. Lynd. 2009. Identification of the [FeFe]-
15	57.	hydrogenase responsible for hydrogen generation in <i>Thermoanaerobacterium</i>
16		saccharolyticum and demonstration of increased ethanol yield via hydrogenase
17		knockout I Bacteriol 191 :6457-6464
18	40	Shaw, A. L. K. K. Podkaminer, S. G. Desai, I. S. Bardsley, S. R. Rogers, P. G.
19	10.	Thorne, D. A. Hogsett, and L. R. Lynd, 2008. Metabolic engineering of a
20		thermophilic bacterium to produce ethanol at high vield. Proc. Natl. Acad. Sci. U.
21		S. A. 105: 13769-13774.
22	41.	Sommer, P., T. Georgieva, and B. K. Ahring, 2004. Potential for using
23		thermophilic anaerobic bacteria for bioethanol production from hemicellulose.
24		Biochem. Soc. Trans. 32: 283-289.
25	42.	Stewart, G. J., and C. A. Carlson. 1986. The biology of natural transformation.
26		Annu. Rev. Microbiol. 40: 211-231.
27	43.	Suihko, M. L., L. Partanen, T. Mattila-Sandholm, and L. Raaska. 2005.
28		Occurrence and molecular characterization of cultivable mesophilic and
29		thermophilic obligate anaerobic bacteria isolated from paper mills. Syst. Appl.
30		Microbiol. 28:555-561.
31	44.	Taylor, M. P., K. L. Eley, S. Martin, M. I. Tuffin, S. G. Burton, and D. A.
32		Cowan. 2009. Thermophilic ethanologenesis: future prospects for second-
33		generation bioethanol production. Trends Biotechnol. 27:398-405.
34	45.	Tyurin, M. V., C. R. Sullivan, and L. R. Lynd. 2005. Role of spontaneous
35		current oscillations during high-efficiency electrotransformation of thermophilic
36		anaerobes. Appl. Environ. Microbiol. 71:8069-8076.
37	46.	van de Werken, H. J. G., M. R. A. Verhaart, A. L. VanFossen, K. Willquist,
38		D. L. Lewis, J. D. Nichols, H. P. Goorissen, E. F. Mongodin, K. E. Nelson, E.
39		W. J. van Niel, A. J. M. Stams, D. E. Ward, W. M. de Vos, J. van der Oost, R.
40		M. Kelly, and S. W. M. Kengen. 2008. Hydrogenomics of the extremely
41		thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ.
42		Microbiol. 74: 6720-6729.
43	47.	Weimer, P. J., L. W. Wagner, S. Knowlton, and T. K. Ng. 1984. Thermophilic
44		anaerobic bacteria which ferment hemicellulose: characterization of organisms
45		and identification of plasmids. Arch. Microbiol. 138:31-6.

AEM Accepts published online ahead of print

1 2	48.	Wiegel, J., L. G. Ljungdahl, and J. R. Rawson. 1979. Isolation from soil and properties of the extreme thermophile <i>Clostridium thermohydrosulfuricum</i> . J.
3 4 5	49.	 Bacteriol. 139:800-810. Wiegel, J., C. P. Mothershed, and J. Puls. 1985. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and <i>Clostridium</i>
6 7 8 9 10 11 12	50.	<i>thermocellum</i> . Appl. Environ. Microbiol. 49 :656-659. Yasbin, R. E., D. L. Cheo, and K. W. Bayles. 1992. Inducible DNA repair and differentiation in <i>Bacillus subtilis</i> : interactions between global regulons. Mol. Microbiol. 6 :1263-1270.
13		
14		
15	Figur	e Legends
16		
17	Figure	e 1
18	PCR 1	reactions used to confirm kanamycin marker integration in the T. saccharolyticum
19	genon	ne. Primers were external to homologous recombination regions for the L-ldh locus
20	of pSO	GD8 and the <i>pta ack</i> kanR locus of ALK2. Lane 1: NEB 10 kb ladder, lane 2: wild-
21	type v	with L-ldh external primers X01177 and X01178, lanes 3-5: kan ^R colonies
22	transf	ormed with the knockout plasmid pSGD8 with L-ldh external primers, lanes 6-8:
23	kan ^R c	colonies transformed with restriction digested pSGD8 linear vector with L-ldh
24	extern	al primers. Predicted sizes are 3863 bp for wild-type, 5160 bp for kanamycin
25	resista	ance marker integration. Lane 9: wild-type with <i>pta ack</i> external primers X00004
26	and X	00021, lanes 10-12 kan ^R colonies transformed with ALK2 genomic DNA with <i>pta</i>
27	ack ex	sternal primers. Predicted sizes are 3209 bp for wild-type, 4245 bp for kanamycin
28	resista	ance marker integration.
29		

AEM Accepts published online ahead of print

2	Transformation efficiency of <i>T. saccharolyticum</i> JW/SL-YS485 during batch growth. \diamondsuit
3	– optical density, \blacksquare – transformation frequency. Exponentially growing cells were
4	transferred into fresh media at an initial OD of 0.03. To evaluate transformation
5	efficiency 1 mL of culture was transferred into a new tube containing 250 ng pMU131,
6	incubated for one hour before addition of DNAse, and incubated for an additional hour to
7	allow expression of the kanamycin resistance marker. Cells were then serially diluted on
8	selective and non-selective media to determine transformation efficiency.
9	Transformation efficiency data points are plotted at the time of DNAse addition.
10	
11	Figure 3
12	PCR reactions with primers X00861 and X00862 of kan ^R colonies designed to amplify a
13	603 bp region in the kanamycin resistance marker. First and last lanes on each row were
14	loaded with NEB 1 kb DNA ladder. Internal gel lanes are grouped by four per strain, the
15	first three per group are colonies transformed with pMU131, the fourth is a reaction with
16	cells from the same strain that was not transformed. Strain order is as follows (first row,
17	left to right) Thermoanaerobacter brockii ATCC 35047, Thermoanaerobacter
18	ethanolicus JW200 DSM 2246, Thermoanaerobacter pseudoethanolicus 39E ATCC
19	33223, Thermoanaerobacterium aotearoense DSM 10170, Thermoanaerobacterium
20	saccharolyticum B6A, Thermoanaerobacterium saccharolyticum B6A-RI ATCC 49915,
21	Thermoanaerobacterium saccharolyticum JW/SL-YS485 DSM 8691, (second row, left to
22	right) Thermoanaerobacterium thermosaccharolyticum ATCC 7956,
23	Thermoanaerobacterium thermosaccharolyticum HG-8 ATCC 31960,

1 Thermoanaerobacterium thermosaccharolyticum sp. M0523, Thermoanaerobacterium

2 thermosaccharolyticum sp. M0524, Thermoanaerobacterium thermosaccharolyticum sp.

3 M0795, Thermoanaerobacterium xylanolyticum DSM 7097.

4

5

<u>AEM Accepts published online ahead of print</u>

6 Figure 4

7 PCR reactions used to confirm erythromycin marker integration in the T. saccharolyticum 8 genome. Lane 1: NEB 10 kb ladder. Lane 2: wild-type with T4P external primers 9 X08727, X08728, predicted size 12981 bp. Lane 3: M1464 with T4P external primers, 10 predicted size 4669 bp. Lane 4: wild-type with *cinA recA* downstream external primer 11 X08736 and erythromycin internal primer X00957, no predicted band. Lane 5: M1465 12 with primers X08736 and X00957, predicted size 2191 bp. Lane 6: wild-type with cinA 13 recA upstream external primer X08735 and erythromycin internal primer X00958, no 14 predicted band. Lane 7: M1465 with primers X08735 and X00958, predicted size 2692 15 bp. Internal and external primers were used to verify M1465 as the erythromycin gene 16 replaced a similarly sized fragment of the cinA recA locus. Lane 8: wild-type with 17 comEC external primers X08160 and X08161, predicted size 5217 bp. Lane 9: M1466 18 with comEC external primers, predicted size 4519 bp. Lane 10: wild-type with comEA 19 external primers X08154 and X08155, predicted size 3165 bp. Lane 9: M1467 with 20 comEA external primers, predicted size 4187 bp. Lane 12: NEB 10 kb ladder.

Figure 4

Table 1. Plasmids and strains used in this study

Plasmid/Strain	Description	Source/Reference
pMU131	T. saccharolyticum – E. coli shuttle plasmid, kanR, ampR	PCT/US2008/010545
pMQ87	cloning plasmid for yeast homologous recombination, genR, <i>ura</i> 3	Presque Isle culture collection
pSGD8	L-ldh knockout plasmid with kanR, ampR	(24)
pMU1966	T. saccharolyticum T4P knockout vector eryR, genR, ura3	this study
pMU1967	T. saccharolyticum comEA knockout vector eryR, genR, ura3	this study
pMU1968	T. saccharolyticum comEC knockout vector eryR, genR, ura3	this study
pMU1969	T. saccharolyticum recA knockout vector eryR, genR, ura3	this study
top10	E. coli cloning strain	Invitrogen
DSM 8691	Thermoanaerobacterium saccharolyticum JW/SL-YS485	DSMZ
ALK2	<i>T. saccharolyticum</i> YS485 Δ L- <i>ldh</i> , Δ <i>pta</i> , Δ <i>ack</i> , kanR, ermR	(27)
M1464	T. saccharolyticum YS485 ∆tfp, eryR	this study
M1465	T. saccharolyticum YS485 ∆recA, eryR	this study
M1466	T. saccharolyticum YS485 ∆comEC or2274, eryR	this study
M1467	T. saccharolyticum YS485 ∆comEA or2299, eryR	this study
ATCC 27405	Clostridium thermocellum	Lynd lab
DSM 8903	Caldicellulosiruptor saccharolyticus	DSMZ
ATCC 35047	Thermoanaerobacter brockii	ATCC
DSM 2246	Thermoanaerobacter ethanolicus JW200	DSMZ
DSM 11426	Thermoanaerobacter mathranii	DSMZ
ATCC 33223	Thermoanaerobacter pseudoethanolicus 39E	ATCC
DSM 10170	Thermoanaerobacterium aotearoense	DSMZ
B6A	Thermoanaerobacterium saccharolyticum B6A	Paul Weimer
ATCC 49915	Thermoanaerobacterium saccharolyticum B6A-RI	ATCC
ATCC 7956	Thermoanaerobacterium thermosaccharolyticum	ATCC
ATCC 31960	Thermoanaerobacterium thermosaccharolyticum HG-8	ATCC
M0523	Thermoanaerobacterium thermosaccharolyticum sp.	Mascoma
M0524	Thermoanaerobacterium thermosaccharolyticum sp.	Mascoma
M0795	Thermoanaerobacterium thermosaccharolyticum sp.	Mascoma
DSM 7097	Thermoanaerobacterium xylanolyticum	DSMZ
DSM 13642	Thermoanaerobacterium zeae	DSMZ

Table 2. Primers used in this study

Primer #	5'-3' Sequence
X00004	GGGTTTATCGACCTTGGTTCGTGACATTGTGGGC
X00021	TGCTGCTTCTGTTCTTGACC
X00050	AGAGTTTGATCCTGGCTCAG
X00051	ACGGCTACCTTGTTACGACTT
X00861	ACCACCTATGATGTGGAACGGGAA
X00862	TTTCTCCCAATCAGGCTTGATCCC
X00957	GGGCATTTAACGACGAAACTGGCT
X00958	ACATCTGTGGTATGGCGGGTAAGT
X01177	GCTCATGAACCCAAAGTTGCAAAGC
X01178	CCCTCCTGCATTGCCTACAAAGTA
X08154	TGCTGTCAAGAGCTGTGTCCTCAT
X08155	AACTTCACTTCGCCAGCAGTTGTC
X08160	TTGATGGCACTTTGCTCCCTGTTG
X08161	CAGCCACACTAAATCCTGGGACAA
X08268	CAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGGAGTCTTTCGCAATAAGAGGCAAC
X08151	GGTTTATCGACCTGCAACCCAGTCAATAATGAAGCTACTATCAA
X08269	TTGATAGTAGCTTCATTATTGACTGGGTTGCAGGTCGATAAACC
X08270	AGAGCCGCTGGATTTATCGTTGGATTAGTAACGTGTAACTTTCC
X08152	GGAAAGTTACACGTTACTAATCCAACGATAAATCCAGCGGCTCT
X08271	GTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGCCGATACCGAATCAACCTGGA
X08272	CAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGCAATTCTTGGCTCACATGGGCCTT
X08157	GGTTTATCGACCTGCATTTCTCCCACCGTCAATCCCAAGA
X08273	TCTTGGGATTGACGGTGGGAGAAATGCAGGTCGATAAACC
X08274	ACTACTTCTCCATCTGGCTGTCCATTAGTAACGTGTAACTTTCC
X08158	GGAAAGTTACACGTTACTAATGGACAGCCAGATGGAGAAGTAGT
X08275	GTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCCCGAAACTGTCGTGCAATCATGGA
X08721	TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGATGAAACTGCTGTTGTTGGCGACC
X08722	GGTTTATCGACCTGCATAAACCCGACAATGATGCCGGTTG
X08723	CAACCGGCATCATTGTCGGGTTTATGCAGGTCGATAAACC
X08724	CAGGACTCTGCGATTGATTATCGGTTAGTAACGTGTAACTTTCC
X08725	GGAAAGTTACACGTTACTAACCGATAATCAATCGCAGAGTCCTG
X08726	CGGATAACAATTTCACACAGGAAACAGCTATGACCTTCCAGCTCCAATTGCACCAGATG
X08727	ATATGGCCTCTTAAATGGCGGTGC
X08728	TGCCAGAGCCACCAGCAATTTCAA
X08729	TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGCGCGGCCAGCAATCTTGGTAAATA
X08730	GGTTTATCGACCTGCAAAAATCCATTCCCAACAAGCGGAGC
X08731	GCTCCGCTTGTTGGGAATGGATTTTGCAGGTCGATAAACC
X08732	TGCCCAAGCCTTATGTCGCCATATTTAGTAACGTGTAACTTTCC
X08733	GGAAAGTTACACGTTACTAAATATGGCGACATAAGGCTTGGGCA
X08734	GTGAGCGGATAACAATTTCACACAGGAAACAGCTACGGGCATAATTTGTGAGCCATCCA
X08735	TTTCCGGGAGAGAGAGGATGAA
X08736	TACTGCAGTTTACTGGGTCTTGTGGG

DNA type	Transformed cells per µg DNA	Transformed cells per μg Kan gene DNA
pMU131	2.5E+05	1.2E+06
ALK2 gDNA	2.0E+02	4.6E+05 [*]
pSGD8	5.1E+04	2.2E+05
pSGD8 AclI/EcoRI [†]	5.7E+03	2.4E+04

 Table 3. Transformation efficiency of T. saccharolyticum JW/SL-YS485 with different DNA types

Transformation efficiency as a function of total DNA, and of DNA encoding the kanamycin resistance marker.

* Estimate based on a genome size of 3.0 Mb.

[†] Plasmid digested to produce a linear DNA fragment containing the kanamycin reisitance gene and flanking regions with homology to the L-*ldh* locus.

Table 4. Transformation	I frequencies of	Thermoanaerobacter	and
Thermoanaerobacterium	bacteria		

Strain	transformants per CFU	kan (µg/mL)
Thermoanaerobacterium saccharolyticum JW/SL-YS485 DSM 8691	1.4E-04	200
Thermoanaerobacter ethanolicus JW200 DSM 2246	1.0E-03	1000
Thermoanaerobacterium thermosaccharolyticum sp. M0523	2.8E-04	200
Thermoanaerobacterium thermosaccharolyticum sp. M0524	4.2E-05	200
Thermoanaerobacterium aotearoense DSM 10170	1.5E-04	1000
Thermoanaerobacterium thermosaccharolyticum HG-8 ATCC 31960	1.2E-04	200
Thermoanaerobacterium saccharolyticum B6A	2.1E-04	200
Thermoanaerobacterium saccharolyticum B6A-RI ATCC 49915	1.7E-04	200
Thermoanaerobacterium thermosaccharolyticum sp. M0795	7.1E-05	200
Thermoanaerobacterium xylanolyticum DSM 7097	1.6E-05	200
Thermoanaerobacterium thermosaccharolyticum ATCC 7956	1.2E-05	200
Thermoanaerobacter pseudoethanolicus 39E ATCC 33223	6.3E-05	400
Thermoanaerobacter brockii ATCC 35047	1.9E-06	1000

Bacteria were transformed with the replicating plasmid pMU131 as described in Materials and Methods.

Strain	Genotype	transformants per CFU
JW/SL-YS485	wildtype	1.4E-04
M1464	ΔT4P (or1944-1956)	ND
M1465	$\Delta cinA \Delta recA$ (or1843-44)	5.7E-07
M1466	$\Delta com EC$ (or 2274)	ND
M1467	$\Delta com EA$ (or 2299)	ND

Table 5. Transformation frequencies of *T. saccharolyticum* JW/SL-YS485 and mutants

ND = Not Detected, below detection limit of 5.4E-09