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The development of low-cost, sustainable and low net 
carbon footprint renewable biofuels as a viable alterna-
tive to fossil fuels is a growing societal issue [1,2,101]. Fuels 
derived from lignocellulosic biomass, such as woody 
plants, forest residues and nonfood agroenergy crops 
are a viable alternative to fossil fuels and food-based 
biofuels [3–6]. Lignocellulosic biomass is a complex bio
resource consisting primarily of cellulose, hemicellulose 
and lignin [7]. Lignin–carbohydrate associations in bio-
mass hinder the availability of cellulose for enzymatic 
deconstruction and contribute, in part, to biomass 
recalcitrance. The biochemical conversion of ligno
cellulosic materials to ethanol normally includes three 

processes: pretreatment, hydrolysis of polysaccharides 
to fermentable sugars and the fermentation of sugars 
to ethanol [8,9]. One promising way to address biomass 
recalcitrance is a pretreatment that may involve bio-
logical [10,11], chemical and physical treatments, such as 
uncatalyzed steam explosion [12,13], hot-water [14], dilute 
acid [15], lime [16] and ammonium fiber explosion [17]. 

Switchgrass is a sustainable herbaceous plant that is a 
promising biofuel crop due to its high mass yield per acre, 
broad adaptability, low agrochemical input and positive 
environmental effects [18–22]. Extensive research is ongo-
ing to establish optimum pretreatment conditions for 
switchgrass. Suryawati et al. performed hydrothermolysis 
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with various temperature and resi-
dence times and established that 
the highest concentration of etha-
nol (i.e., 72%) was produced from 
switchgrass pretreated at 210°C 
for 15 min using simultaneous sac-
charification and fermentation [23]. 
Most recently, Ying et  al. studied 

dilute acid pretreatment on switchgrass germplasms and 
observed that hemicellulose solubilization depended on 
pretreatment intensity and no significant delignification 
occurred [24]. Asli et al. reported simultaneous sacchari-
fication and fermentation followed by aqueous ammonia 
pretreatment and observed a 40–50% delignification, a 
50% decrease in hemicellulose and an unchanged cel-
lulose content in the pretreated switchgrass [25]. Alkali 
pretreatment coupled with radiofrequency-based dielec-
tric heating techniques was reported to increase sugar 
yield from switchgrass in both pretreatment and enzy-
matic hydrolysis stages  [26]. Cheng et al. reported that 
26% xylan and 29% lignin were solubilized as a result 
of lime pretreatment of switchgrass; however, there was 
no significant glucan solubilization observed [27]. Wu and 
Lee investigated a two-stage dilute acid percolation on 
switchgrass with a low acid concentration (0.078 wt% 
sulfuric acid) under moderate temperature (145–170°C) 
and observed that hemicellulose was completely solubi-
lized and the lignin content in switchgrass increased after 
pretreatment [28]. In the present study, we investigated the 
effects of dilute acid pretreatment on ultrastructures of 
switchgrass cellulose using solid-state cross polarization/
magic angle spinning (CP/MAS) NMR spectroscopy.

Materials & methods
All chemicals used in this study were purchased either 
from VWR International or Aldrich and used as 
received. The lowland cultivar Alamo switchgrass used 
in this study was received from National Renewable 
Energy Laboratory (NREL) and harvested from 
Ardmore, Oklahama on November 2007. It was ground 
to pass a 20-mesh screen.

�� Acid pretreatment
Dilute sulfuric acid pretreatment was carried out at 
NREL following a published procedure [29,30]. In brief, 
pretreatment was performed in a pilot-scale reactor at 
190°C (0.05 g sulfuric acidper gram 
of dry switchgrass) with 25% total 
solid loading with a reactor residence 
of 1 min. The pretreated material was 
filtered and stored below 0°C before 
use. The frozen pretreated switchgrass 
was thawed to room temperature, fil-
tered through a Buchner funnel and 

washed with deionized water, until the effluent was pH 
neutral, and air-dried overnight. In order to remove the 
low-molecular weight extractives, the switchgrass sam-
ple was Soxhlet-extracted with benzene/ethanol (2:1 v/v) 
and ethanol for 24 h each [31]. The extracted residue was 
air-dried overnight prior to chemical characterization. 

�� Carbohydrate analysis
Carbohydrate analysis of extractive-free untreated and 
pretreated switchgrass was performed according to a 
procedure established in the literature [32,33]. In brief, the 
extracted switchgrass sample was treated with 72 wt% 
sulfuric acid for 1 h at 30°C and then diluted to 4 wt% 
sulfuric acid using deionized water, and subsequently 
autoclaved at 121°C for 1 h. The resulting solution was 
cooled to room temperature and the precipitate was fil-
tered. The filtrate was used for the detection of sugar 
composition by high-performance anion-exchange 
chromatography with pulsed amperometric detection. 
The sugar composition was measured using a Dionex 
DX-500 Ion Chromatograph system with a GP-40 gra-
dient pump, PC10 pneumatic controller, AS40 autosam-
pler, ED40 electrochemical detector. A Dionex PA-10 
column was used. 2.00-mM NaOH was used as the elu-
ent and 0.2-M NaOH as the postcolumn rinsing efflu-
ent. Fucose was used as an internal standard. The flow 
rate was 1.0 ml/min. The results are shown in Table 1.

�� Holocellulose pulping & cellulose isolation
Holocellulose was isolated from extractive-free biomass 
using a modified procedure from the literature [34,35]. 
To a Kapak sealing pouch was added extractive-free 
switchgrass (8 g), deionized water (260 ml), sodium 
chlorite (2.40 g) and glacial acetic acid (2 ml). The 
sealed pouch was placed in a shaking water bath, set at 
75°C for 2 h. After 2 h, another batch of sodium chlorite 
and glacial acetic acid were added and the mixture was 
heated in the water bath for a further 2 h. This proc-
ess was repeated until the holocellulose turned white. 
The treated switchgrass was cooled, filtered through a 
Buchner funnel, washed several times with deionized 
water and air-dried in a fume-hood. Yields of holo
cellulose from untreated and pretreated switchgrass 
were approximately 78 and 67%, respectively. Cellulose 
was isolated from holocellulose sample by an acid treat-
ment following a procedure from the literature [36,37]. In 

Table 1. Carbohydrate content in switchgrass before and after 
pretreatment (based on dried biomass).

Arabinan 
(%)

Galactan 
(%)

Glucan 
(%)

Mannan 
(%)

Xylan 
(%)

Untreated switchgrass 3.1 1.1 45.6 0.5 26.1

Pretreated switchgrass 0.4 0.5 54.8 0.2 7.2

Key terms

Pretreatment: Physical, chemical or 
biological treatment that increases the 
accessibility of cellulose to enzymes and 
solubilizes hemicellulose sugars

Switchgrass cellulose: Most abundant 
polysaccharide in switchgrass
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brief, holocellulose (0.6 mg) was treated with aqueous 
2.5‑M HCl (60 ml) at 98–100°C for 4 h, cooled to 
0°C, filtered in a Buchner funnel, washed several times 
with deionized water and air-dried in a fume-hood. The 
isolated cellulose was then conditioned with water vapor 
before solid-state NMR measurements were taken.

�� Solid-state NMR analysis 
NMR samples were prepared with ground cellulose 
packed into a 4-mm cylindrical Zirconia MAS rotor. 
Solid-state NMR measurements were carried out on a 
Bruker Avance-400 spectrometer operating at frequen-
cies of 100.59 MHz for 13C in a Bruker double-resonance 
MAS probe head at spinning speeds of 10 kHz. CP/
MAS 13C NMR experiments were carried out with a 
90° proton pulse, 1.5-ms contact pulse, 4-s recycle delay 
and 8192 scans. All spectra were recorded on moist sam-
ples (40–60% water content). The line-fitting analysis 
of spectra was performed using NUTS™ NMR data-
processing software (Acorn NMR Inc.). The cellulose 
crystallinity index (CrI) was determined from the areas 
of the crystalline and amorphous C-4 signals using the 
following formula [38]:
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Results & discussion
The results of chemical analysis indicated that glu-
can and xylan were the predominant carbohydrates in 
switchgrass. Table 1 illustrates the carbohydrate content 
of pretreated and untreated switchgrass. The glucan pro-
portion in the carbohydrate was observed to increase 
and other carbohydrates showed a decrease in content. 
It was noticed that, as a result of pretreatment, there was 
approximately a 72% decrease in relative xylan content 
and approximately a 20% increase in relative glucan con-
tent. The data suggest that the hemicellulose in switch-
grass samples was preferentially degraded with respect 
to the cellulose when subjected to acid pretreatment. 

Solid-state CP/MAS 13C NMR was used to study 
the switchgrass cellulose ultrastructure. Figure 1 rep-
resented the CP/MAS 13C NMR spectra of cellulose 
isolated from untreated and pretreated switchgrass. 
The peaks at d 61.9 and d 64.8 ppm are assigned to 
the C-6 glucopyranosyl repeating units in cellulose 
(d 61.9 ppm for amorphous cellulose and d 64.8 ppm 
for crystalline cellulose). The cluster of resonances 
around the peaks at d  72.2  and d 75.8  ppm are 
assigned to C-2, C-3 and C-5. The peaks at d 84.4 and 
d 89.0 ppm are attributed to C-4 and the absorption 
peak at d 105.0 ppm is assigned to C-1 of glucose in 
cellulose  [36–40]. The pretreated switchgrass showed 

a decrease in signal intensities at both the C-6 and 
C-4 peaks of amorphous cellulose (Figure 1), indicating 
that the switchgrass cellulose underwent a preferred 
degradation of amorphous regions during dilute acid 
pretreatment. Cellulose CrI was determined from the 
crystalline and amorphous signal areas of the C-4 
region. The cellulose crystallinity index of untreated 

Figure 1. Cross polarization/magic angle spinning 13C NMR spectra 
of cellulose isolated from untreated and pretreated switchgrass. 
(A) Pretreated; (B) untreated.

Table 2. Crystallinity index of lignocellulosic 
biomass before and after pretreatment.

Untreated Pretreated

Switchgrass 0.44 0.52
Loblolly pine* 0.63 0.70
Buddleja davidii‡ 0.55 0.53
Rice straw§ 0.60 0.64
Rice straw¶ 0.55 0.60
*Two-stage dilute acid pretreatment (crystallinity index measured using 
cross polarization/magic angle spinning NMR) [32].
‡Ethanol organosolv pretreatment at 180°C for 60 min, 1.25% sulfuric 
acid and ethanol 50% (crystallinity index measured using 
CP/MAS NMR) [41].
§Solid-state NaOH pretreatment (crystallinity index measured using 
X-ray) [42].
¶Fungal pretreatment by Phanerochaete chrysosporium (crystallinity 
index measured using x-ray) [10].
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switchgrass cellulose was determined to be 0.44. After 
dilute acid pretreatment, the CrI of switchgrass cel-
lulose was increased to 0.52, which is an increase of 
18% (Table 2). Loblolly pine was observed to show an 
increase of CrI by approximately 11% after two-stage 
dilute acid pretreatment (Table 2) [32]. Hallac et al. iso-
lated cellulose from Buddleja daviddii after ethanol 
organosolv pretreatment and measured the CrI index 
using CP/MAS 13C NMR [41]. There was no notice-
able change observed for the CrI of Buddleja daviddii 
cellulose after ethanol organosolv pretreatment. Rice 
straw pretreated respectively with solid-state sodium 
hydroxide and the fungus Phanerochaete chrysosporium 
demonstrated a small increase in CrI (Table 2) [10,42]. 
The effects of pretreatment on lignocellulosic biomass 
cellulose CrI appear to be dependent on the biomass 
species and pretreatment methods.

Cellulose supramolecular structure was character-
ized and compared by nonlinear least-square line-fit-
ting analysis of the C-4 region of CP/MAS 13C NMR 
spectra of cellulose [37,38,40]. Lorentzian lines were 
used for crystalline regions and Gaussian lines for 

the amorphous regions according to literature meth-
ods [38,40]. These analyses were employed to estimate 
the relative abundance of cellulose Ia, and Ib, paracrys-
talline cellulose and cellulose at solvent-accessible and 
solvent-inaccessible fibril surfaces [43,44]. Figure 2 rep-
resents the spectral fitting for the C-4 region of the 
CP/MAS 13C NMR spectrum of cellulose isolated 
from untreated switchgrass and the line-fitting analy-
sis results are illustrated in Table 3. Inaccessible fibril 
surface cellulose was the largest fraction observed. 
The relative intensity of crystalline cellulose (i.e., Ia,

 

Ib 
and Ia+b) and paracrystalline celluloses increased in 

the cellulose extracted from acid-pretreated sample, 
accompanied with a concurrent decrease in the relative 
intensity of accessible and inaccessible fibril surface 
cellulose. There was approximately a 12% decrease in 
the relative proportion of inaccessible fibril surface cel-
lulose after diluted acid pretreatment. This was likely 
due, in part, to a susceptible degradation of cellulose 
in the amorphous region for switchgrass samples in the 
present study. Josefsson et al. reported that aspen wood 
after steam explosion at high temperature resulted 
in a severe cellulose degradation, accompanied by a 
decrease in fibril dislocations and an increase in crys-
talline and/or paracrystalline cellulose [45].

Conclusion
Cellulose was isolated from untreated and dilute acid 
pretreated switchgrass and analyzed by solid-state 
CP/MAS 13C NMR spectra. After pretreatment, most 
of the hemicellulose in switchgrass was removed and the 
cellulose CrI increased by approximately 18%. Based on 
the line-fitting analysis of the C-4 region of cellulose 
solid-state 13C NMR spectra, the relative proportion of 
crystalline and paracrystalline cellulose increased after 
dilute acid pretreatment, while the relative abundance 
of fibril surface cellulose decreased.

Future perspective
The results of this study contribute to a fundamental 
understanding of cellulose ultrastructure and how 
pretreatment can impact this important parameter. 
Cellulose crystallinity is well recognized to be a 
significant contributing factor to the ease of enzy-
matic deconstruction of cellulose and is often over-
looked in pretreatment technologies. This study has 
shown that chemical pretreatment impacts cellulose 
ultrastructure and additional research is needed to 
optimize reaction conditions to maximize cellulose 
reactivity with cellulase. From the viewpoint of 
biofuel production, our study provides an insight 
into future research, which needs to improve pre-
treatment technologies that can effectively reduce 
biomass recalcitrance. 

Figure 2. Spectral fitting for the C-4 region of cross polarization/
magic angle spinning 13C  NMR spectrum of cellulose isolated from 
untreated switchgrass.

Table 3. Assignment and results from line-fitting analysis of the C-4 
region of cross polarization/magic angle spinning 13C NMR spectra of 
switchgrass cellulose.

Assignment Chemical 
shift (ppm)

Relative proportion (%) Line type

Untreated Pretreated

Cellulose Ia 89.9 2.3 3.6 Lorentz
Cellulose Ia+b 89.1 8.0 10.1 Lorentz
Paracrystalline cellulose 89.0 27.3 32.7 Gauss
Cellulose Ib 88.3 4.8 5.7 Lorentz
Accessible fibril surface 84.7/83.8 6.2 2.8 Gauss
Inaccessible fibril surface 84.4 51.3 45.2 Gauss
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Executive summary

�� The effect of dilute acid pretreatment was investigated by solid-state crosspolarization/magic-angle spinning 13C NMR spectra.
�� As a result of pretreatment, the cellulose crystallinity index increased by around 18%.
�� Hemicellulose-related sugars showed a significant decrease in relative content after pretreatment.
�� The relative proportion of cellulose Ia and  Ib and paracrystalline celluloses were increased and, concurrently, the relative abundance of fibril 

surface cellulose decreased.
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