Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a

Elise A. Rooney, a Kenneth T. Rowe, a Anna Guseva, b,c Marcel Huntemann, d James K. Han, a Amy Chen, a Nikos C. Kyripides, a Konstantinos Mavromatis, a Victor M. Markowitz, a Krishna Palaniappan, a Natalia Ivanova, a Amrita Pati, a Konstantinos Liolios, a Henrik P. Nordberg, a Michael N. Cantor, a Susan X. Hua, a Nicole Shapiro, a Tanja Woyke, a Lee R. Lynd, a,b,c Javier A. Izquierdo a

Department of Biology, Hofstra University, Hempstead, New York, USA; Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; DOE Joint Genome Institute, Walnut Creek, California, USA

Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain.

Received 10 June 2015 Accepted 16 June 2015 Published 23 July 2015

ACKNOWLEDGMENTS
The BioEnergy Science Center (BESC) is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.

REFERENCES


