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Background: Lignin, nature’s dominant aromatic polymer, is found in 
most terrestrial plants in the approximate range of 15 to 40% dry weight 
and provides structural integrity. Traditionally, most large-scale industrial 
processes that use plant polysaccharides have burned lignin to generate 
the power needed to productively transform biomass. The advent of biore-
fi neries that convert cellulosic biomass into liquid transportation fuels will 
generate substantially more lignin than necessary to power the operation, 
and therefore efforts are underway to transform it to value-added products.

Advances: Bioengineering to modify lignin structure and/or incorpo-
rate atypical components has shown promise toward facilitating recovery 
and chemical transformation of lignin under biorefi nery conditions. The 
fl exibility in lignin monomer composition has proven useful for enhanc-
ing extraction effi ciency. Both the mining of genetic variants in native 
populations of bioenergy crops and direct genetic manipulation of bio-
synthesis pathways have produced lignin feedstocks with unique prop-
erties for coproduct development. Advances in analytical chemistry and 
computational modeling detail the structure of the modifi ed lignin and 
direct bioengineering strategies for targeted properties. Refi nement 

of biomass pretreatment technologies has further facilitated lignin 
recovery and enables catalytic modifi cations for desired chemical and 
physical properties.

Outlook: Potential high-value products from isolated lignin include low-
cost carbon fi ber, engineering plastics and thermoplastic elastomers, 
polymeric foams and membranes, and a variety of fuels and chemicals all 
currently sourced from petroleum. These lignin coproducts must be low 
cost and perform as well as petroleum-derived counterparts. Each product 
stream has its own distinct challenges. Development of renewable lignin-
based polymers requires improved processing technologies coupled to 
tailored bioenergy crops incorporating lignin with the desired chemical 
and physical properties. For fuels and chemicals, multiple strategies have 
emerged for lignin depolymerization and upgrading, including thermo-
chemical treatments and homogeneous and heterogeneous catalysis. The 
multifunctional nature of lignin has historically yielded multiple product 
streams, which require extensive separation and purifi cation procedures, 
but engineering plant feedstocks for greater structural homogeneity and 
tailored functionality reduces this challenge. 
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Advances in biotechnology and chemistry 

hold promise for greatly expanding the scope 

of products derived from lignin.

Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, 
enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for effi cient conversion of this renewable 
resource to carbon fi bers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy]
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Research and development activities directed toward commercial production of cellulosic ethanol have
created the opportunity to dramatically increase the transformation of lignin to value-added
products. Here, we highlight recent advances in this lignin valorization effort. Discovery of genetic
variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways
have produced lignin feedstocks with favorable properties for recovery and downstream conversion.
Advances in analytical chemistry and computational modeling detail the structure of the modified
lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass
pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic
engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered
plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.

Translational biorefinery research and de-
velopment has become a near-global ef-
fort in response to a variety of drivers,

including energy security, rural development, and
environmental concerns. The approved Sum-
mary for Policymakers in the Intergovernmental
Panel on Climate Change (IPCC)Working Group
I Fifth Assessment Report report states that
“Human influence on the climate system is clear.
This is evident from the increasing greenhouse
gas concentrations in the atmosphere, positive
radiative forcing, observed warming, and under-
standing of the climate system.” These findings
add urgency to the need to develop viable, sus-
tainable, biorefining technologies that maximize
yields of renewable fuels, chemicals materials,
and biopower (1). Recent results have demon-
strated that biomass conversion into biofuels
can deliver a sustainable and renewable energy
source for liquid transportation fuels (2–4). For

the United States alone, a recent study suggested
that more than 1.3 billion tons annually of bio-
mass could be sustainably produced from agricul-
tural and forestry sources (5). Indeed, coupling
advanced `biomass-conversion technologies with
land-use changes could meet the nation’s need
for liquid transportation fuels without affecting
food, feed, and fiber production (6). Although
widespread, cost-competitive biofuels production
at the industrial scale must overcome multiple
technical and economic challenges (7), several
commercial cellulosic ethanol plants have been
commissioned (8), and the first plant now gene-
rates 75 million l year–1 of cellulosic ethanol in
Italy (9).

Currently, most integrated biologically based
biorefinery concepts comprise four major core
sections: feedstock harvest and storage, pretreat-
ment, enzymatic hydrolysis, and sugar fermen-
tation to ethanol or other fuels (10). Lignin, the
second most abundant terrestrial polymer on
Earth after cellulose, is underutilized in these first-
generation cellulosic projects, with about 60%
more lignin generated than is needed to meet
internal energy use by its combustion (11, 12).
Therefore, new processes are needed that gener-
ate value-added products from lignin (13). Lignin
is the only large-volume renewable feedstock that
is composed of aromatics (14). The U.S. Energy
Security and Independence Act of 2007 mandates
the development of 79 billion liters of second-
generation biofuels annually by 2022. Assuming
a yield of 355 liters per dry ton of biomass, 223
million tons of biomass will be used annually,
producing about 62 million tons of lignin (15).
Without new product streams, the lignin produced
would far exceed the current world market for
lignin used in specialty products (16).

Although fundamental research has histori-
cally focused on converting lignin to chemicals,

materials, and fuels, very little of this effort has
been translated into commercial practice. So what
has changed to address this paradigm? In brief,
research and commercialization efforts surround-
ing cellulosic ethanol have tilted the tables through
several important developments: (i) bioengineer-
ing of lignin to modify and/or incorporate atypical
components that reduce recalcitrance of the cell
walls to bioprocessing and facilitate ease of re-
covery and conversion; (ii) advances in analyt-
ical chemistry and computational modeling that
couple developments in genetic engineering of
lignin to targeted physical and chemical proper-
ties; and (iii) biomass pretreatment technologies
that facilitate lignin recovery and catalytic
modifications that yield tailored chemical and/
or physical properties.

Lignin Biosynthesis
Lignin is derived from the radical polymerization
of substituted phenyl propylene units. Figure 1
highlights the relative amounts of lignin and plant
polysaccharides in several key agroenergy plants
and woody resources.

Lignin modification in plants has been ex-
tensively investigated to reduce lignin levels or to
alter its structure to facilitate pulping, improve
forage digestibility, or overcome recalcitrance for
bioenergy feedstocks (17, 18). The biosynthetic
pathway to the three classical monolignol build-
ing blocks of lignin was thought to be understood
more than 10 years ago (19), although a recent
revision suggests that we may still have more
to learn (20, 21). Eleven recognized enzymes are
involved in the conversion of L-phenylalanine
to the primary monolignols, p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol that gen-
erate the hydroxyphenyl (H), guaiacyl (G), and
syringyl (S) lignin subunits, respectively (Fig. 2),
and most of these enzymes have been targeted
for down-regulation to generate plants with re-
duced lignin levels (22–24). Lignin levels can
also be effectively reduced by targeting pathways
to precursors for monolignol biosynthesis, such
as C1metabolism to supply methyl groups (25),
manipulation of transcription factors (26), or
introduction of engineered enzymes that gener-
ate monolignol analogs incapable of polymeri-
zation (27). In many cases, the digestibility or
saccharification potential of biomass has been
considerably enhanced (28), sometimes at the
expense of plant growth (29–31). In some studies,
reduction of lignin by ~50% or less from the wild-
type levels has made pretreatment unnecessary
for efficient saccharification (32).

Gymnosperm lignins lack S units and, as a
result, are generally more branched than the clas-
sical G/S-rich lignin of angiosperms, which are
rich in b-O-aryl ether linkages and cross-linked
to cell wall polysaccharides via coupling of
feruloylated xylans to lignin or by nucleophilic
addition of cell wall sugars to lignin quinone-
methide intermediates yielding ether-linked lig-
nin carbohydrate linkages (33). Ferulates and
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coumarates are particularly abundant in the cell
walls of grasses (34). These lignin properties con-
tribute to recalcitrance by hindering the accessi-
bility of cellulose microfibrils to microorganisms
and enzymes but also affect coproduct value. In-
terruption of the monolignol pathway can alter
the H/G/S ratios (35) and reduce the degree of
polymerization to benefit lignin removal during
pretreatment (36). Furthermore, studies on both
natural and engineered lignins have demonstrated
that lignin biosynthesis, and therefore structure,
is more adaptable than originally believed, with
variations tolerated in both the aromatic ring and
side chain. For example, by up-regulating ferulate-
5-hydroxylase (F5H) (Fig. 2), the entry point to S
lignin biosynthesis, while simultaneously down-
regulating the enzyme that O-methylates the
product of F5H, Arabidopsis can be generated
with the bulk of the lignin as 5-hydroxyguaiacyl

(5HG) units (Fig. 2, structure B) (37), and this
approach would appear to be widely applicable.
Such lignins have recently been shown to occur
naturally in the seed coats of a limited number
of species of cacti (38), and trace levels of 5HG
units likely occur in lignins of perennial angio-
sperms. By restoring growth to plants harboring
a loss-of-function mutation in the 4-coumaroyl
shikimate 3′-hydroxylase gene (Fig. 2) as a result
of disrupting components of the Mediator
complex, it was possible to recover Arabi-
dopsis plants in which the lignin was essen-
tially comprised of only H units (21).

The seed coats of a larger number of unrelated
and relatively exotic plant species, both mono-
cots and dicots, contain a lignin comprising only
catechyl alcohol units that are completely non-
methylated and form a linear homopolymer
(Fig. 2, structure C) (39, 40). In species examined

so far in which this C lignin coexists with G/S
lignin, it is not attached to the classical lignin
polymer (41). Down-regulation of cinnamyl al-
cohol dehydrogenase results in an increased
aldehyde signature in lignin (42, 43), and mu-
tants of barrel medic (Medicago truncatula), in
which the cinnamyl alcohol dehydrogenase 1
(CAD1) gene has been disrupted, contain lignin
that is almost exclusively composed of hydroxy-
cinnamaldehydes rather than hydroxycinnamyl
alcohol units (Fig. 2, structure D) (44), suggesting
that monolignol side chains can exhibit variation
without seriously compromising the lignification
process. Unnatural monomers can also be intro-
duced that will result in formation of more cleav-
able interunit bonds (Fig. 2, structure E) (45).
Genetic engineering to incorporate unnatural lig-
nin monomers with shortened side chains (40)
reduces the degree of polymerization and facili-
tates biomass processing. An alternative approach
was recently reported by Wilkerson et al. (46)
whereby coniferyl ferulate feruloyl–coenzyme A
(CoA) monolignol transferase was expressed in
poplar. This transformation facilitated the incor-
poration of monolignol ferulate conjugates into
lignin, which yields lignin with elevated ester
linkages that are predisposed to mild alkaline
depolymerization.

This flexibility in lignin monomer compo-
sition is potentially useful for reducing recalci-
trance, enhancing extraction, and developing
lignin as a high-value coproduct. For example,
unlike the G lignin found in gymnosperms with
complex interunit linkages, predominantly S
lignin molecules engineered by overexpression
of F5H (Fig. 2, structure A) have fewer inter-
unit linkage types, facilitating separation of lignin
from biomass and significantly reducing recalci-
trance (47).

To date, linear C lignin has only been reported
in seed coats. Simultaneousmutations in the two
monolignol O-methyltransferases that should
theoretically accumulate the precursor for for-
mation of catechyl alcohol units do not lead to
substantial accumulation of C lignin in stems of
transgenic plants; rather, the plants are dwarfed,
fail to develop properly, and contain mainly H
lignin (48). The presence of naturally high levels
of C lignin in Jatropha curcas seed coats (39), a
high volume by-product of biodiesel production
from the seed oil of this species, suggests a near-
term resource for exploitation of this polymer.

Further development of modified lignins as
feedstocks for industrial products will require a
high level of production of such lignins as co-
products in lignocellulosic bioenergy crops. Con-
siderable variation in lignin content exists in
natural populations (49), but most attempts to
increase lignin levels in plants by simply over-
expressing one or more enzymes in the mono-
lignol pathway have been unsuccessful. In fact,
in an association study of 1100 sequenced black
cottonwood (Populus trichocarpa) genotypes,
representing the main geographic distribution of
the species, none of the extreme variants in lignin

Fig. 1. Typical biomass constituents for select plant resources. Information for miscanthus is
from (120); switchgrass, (121); corn stover, (122); poplar, (123); eucalyptus, (124); pine, (125). [Photo
credits: R. Kaltschmidt, Lawrence Berkeley National Laboratory, DOE (eucalyptus); Oak Ridge National
Laboratory, DOE (all other photos)]
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Fig. 2. Pathways for the biosynthesis of monolignols, recently dis-
covered nonclassical lignins, and modified lignin structures that can
be obtained through genetic engineering. The enzymatic steps (green
arrows) are catalyzed by PAL, L-phenylalanine ammonia-lyase; C4H, cinnamate
4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CCR, cinnamoyl-CoA reductase;
CAD, cinnamyl alcohol dehydrogenase; HCT, hydroxycinnamoyl CoA:shikimate/
quinate hydroxycinnamoyl transferase; C3′H, 4-coumaroyl shikimate 3-
hydroxylase; CCoAOMT, caffeoyl-CoA 3-O-methyltransferase; COMT, caffeic
acid/5-hydroxyconiferaldehyde 3-O-methyltransferase; CSE, caffeoyl shikimate
esterase; F5H, ferulate/coniferaldehyde 5-hydroxylase. After transport of

monolignols to the apoplast, polymerization (blue arrows) is catalyzed by
laccases (essential for initiation of polymerization in vivo) and peroxidases.
The different lignin structures (showing only portions of the complete poly-
mers) are A, all syringyl (S) lignin from poplar (Populus) overexpressing F5H;
B, all 5-hydroxyguaiacyl lignin from poplar overexpressing F5H and down-
regulated in COMT; C, all catechyl lignin (C lignin) from the seed coats of
species within families including the Cactaceae, Cleomaceae, and Orchi-
daceae; D, lignin constructed from hydroxycinnamaldehydes, as found in
theM. truncatula cad-1mutant; E, a hypothetical ester-linked linear lignin.
Me, methyl group.
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content, S/G ratio, or degree of polymerization
contained naturally occurring mutations in the
11 enzymes of the lignin biosynthetic pathway
(50). Genes controlling lignin content, molecular
weight, and composition include copper trans-
porters, vesicular trafficking genes, shikimate
pathway genes, and transcription factors. Sim-
ilarly, several independent mutations exist in
the model species Arabidopsis thaliana, most-
ly in genes encoding transcription factors that
lead to ectopic lignin deposition (51, 52). Mining
natural lignin variants within existing bioenergy
crops may reveal further variants in lignin com-
position that will favorably impact lignin as a
primary biofeedstock, allowing for generation
of extreme variants with unique chemical com-
position and physical properties that can be in-
dustrially exploited. Given the plasticity of the
lignin biosynthetic pathway, unique lignins can
be expected to be common rather than excep-
tional. Alternatively, ectopic lignin production,
particularly in pith tissue that neither provides
mechanical support nor enables vascular func-
tion, might facilitate the plant’s accumulation
of forms of lignin optimized as coproducts. How-
ever, that approach will not functionally replace
classical lignins, thus allowing the tolerance of
lignin for compositional diversity to be more
fully exploited. Strategies have been reported for
activating lignification in pith tissues in dicoty-
ledonous plants through repression of transcrip-
tion factors (53).

Two factors are critical for realizing the value
of lignin in the biorefinery: ease of extraction of a
lignin stream, which is generally facilitated by
manipulations that reduce cross-linking to other
cell wall polymers, and a structure that facilitates
downstream processing, as to be discussed.

Lignin Characterization
The ability to genetically engineer new lignin
structures and control lignin deposition in plants
has developed in parallel with powerful new
methods for imaging lignin and analyzing its
chemical structure. For example, coherent anti-
Stokes Raman scattering (CARS) provides a
label-free method for chemical imaging of lig-
nin with greatly enhanced sensitivity over state-
of-the-art confocal Raman scattering microscopy
at a spatial resolution of about 200 nm (54). Al-
though not as sensitive as CARS, time-of-flight
secondary ion mass spectrometry (ToF-SIMS)
spectral imaging can provide lignin chemical
distribution maps for intact and processed bio-
mass samples (55). Select ion monitoring in
ToF-SIMS experiments makes it readily possi-
ble to visualize the distribution of S and G units
in plant cross sections (56) within a single cell
wall of P. trichocarpa. Alternatively, lignifica-
tion in A. thaliana and Pinus radiata has been
studied by using fluorescence-tagged monolig-
nol analogs that penetrate plant tissue and in-
corporate into cell wall lignin to reveal insights
into lignin deposition (57). Immunological tech-
niques for lignin analysis have also been devel-

oped such that monoclonal antibodies can be
used to detect phenylcoumaran and resinol-like
structures (58) in biomass. Although still early in
development, mode-synthesizing atomic force mi-
croscopy (AFM) promises to combine the ana-
lytical resolution of AFM with spectroscopy (59).

Structural analysis of lignin has become al-
most a subdiscipline of its own, with several
textbooks written on the topic (60). One of the
most promising high-throughput methods for
lignin analysis is pyrolysis molecular beam mass
spectrometry, which requires minimal sample
amounts and routinely provides analysis of hex-
ose and pentose sugars, lignin content, and S:G
ratios (53). Structural analysis of interunit link-
ages of lignin is often accomplished by using
advanced one- and two-dimensional (2D) nu-
clear magnetic resonance (NMR) (61). Likewise,
detection of lignin-carbohydrate complexes in-
creasingly relies on NMR methodologies (62).
Whole-cell NMR techniques using the resolving
power of 2D NMR to make structural assign-
ments and relative signal intensity measurements
have replaced the more laborious methodology
that required preisolation of the lignin (63). Se-
lective chemical fragmentation of lignin by thio-
acidolysis or derivatizion followed by reductive
cleavage and gas chromatography–mass spec-
trometry (GC-MS) analysis has been equally
informative at identifying the main interunit
linkages of lignin (64). This methodology is es-
pecially attractive for sample-size-limited lignin-
related material. Regardless of the methodologies
used, critically important detailed sequencing
of extended interunit linkage frequencies (65, 66)
and lignin carbohydrate complexes (67, 68) re-
mains challenging.

Neutron scattering represents an emerging
complementary approach to characterize lignin’s
structural properties. In particular, small-angle
neutron scattering (SANS) provides structural
information over the nm- to mm-length scale
range, which can be interpreted by computational
methods to provide an atomic-level predictive
understanding of physical properties. For exam-
ple, large computational atomistic simulations
of models of the plant cell wall, informed by
SANS, have revealed some of the fundamental
physical processes involved in the phase sepa-
ration of lignin from other plant matrix poly-
mers and subsequent lignin aggregation during
various types of acidic thermal treatments of
biomass (69). Molecular dynamics simulations
indicated that low-temperature lignin collapse
is thermodynamically driven by an increase in
translational entropy and solvation effects (70).
The temperature dependence of the structure
and dynamics of individual softwood lignin poly-
mers was examined by using extensivemolecular
dynamics simulations. Lignin was found to tran-
sition from glassy, compact to mobile, extended
states at temperatures above 150°C. This result is
consistent with in situ SANS experiments show-
ing lignin phase separation and aggregation to
occur during the heating phase of pretreatment

(69, 71). Computational modeling offers com-
plementary insights to advanced experimental
approaches. These computational models repre-
sent a predictive tool that can help guide changes
to biomass and pretreatment processes to im-
prove the properties of extracted lignin and ac-
celerate its separation.

Lignin Recovery
Currently, most lignocellulosic biorefineries using
enzymes to deconstruct plant polysaccharides
will yield lignin-rich streams by either (i) ex-
tracting the plant carbohydrates to leave most
of the lignin in the solid residue (72) or (ii) ap-
plying pretreatments to fractionate biomass to
extract lignin (73) before carbohydrate conver-
sion (Fig. 3).

Some pretreatments use dilute sulfuric or
other acids, or simply hot water (hydrothermal),
to break down hemicellulose to sugars and to
increase cellulose accessibility for enzymatic
hydrolysis, after which most of the lignin is left
in the solid residue (74). Others use high pH
conditions by adding calcium, sodium, or po-
tassium hydroxide to remove a large portion of
the lignin and some of the hemicellulose. Am-
monia (high pH) disrupts but does not necessarily
remove lignin, while still making biomass more
accessible to enzymes.

Pretreatment by dilute acid or hot water is
known to alter the physical and chemical structure
of lignin and deposit altered hemicellulose and
lignin products on pretreated solids. Lignin iso-
lated after enzymatic deconstruction currently
also contains some recalcitrant polysaccharides,
proteins, and mineral salts, a mixture generally
viewed as limiting suitability for direct material
applications. Recently, this perspective has been
challenged by the use of N,N-dimethyl form-
amide to extract lignin from the solid residue of
enzymatically hydrolyzed poplar (75). These sep-
aration challenges will certainly be simplified in
the future as biorefinery engineering advances
take hold. For example, although industrial lig-
nocellulosic pretreatment is mostly envisioned
to use plug-flow type reactors, improved benefits
from flowthrough pretreatments could facilitate
lignin recovery free of proteins (76, 77). Histori-
cally, this process has been challenged by exces-
sive energy and water consumption, but some of
these concerns have been addressed by using a
countercurrent flowthrough design to recover less-
degraded xylans and 40 to 80% of the lignin, de-
pending on feedstock and reactor conditions (78).

Pretreatments that specifically target lignin
extraction frequently have their technical origins
in the chemical pulp industry. For example, al-
kaline pretreatments can fragment and solubilize
lignin, thus providing a biomass product with
highly reactive polysaccharides for biofuels pro-
duction, with lignin recovery from these alkaline
streams in various stages of commercial devel-
opment. Alternatively, organosolv approaches
treat biomass with a mixture of water and organic
solvents, such as ethanol or methanol, along with
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addition of a catalyst at 140° to 200°C. Organo-
solv pretreatment typically results in more than
50% lignin removal through cleavage of
lignin-carbohydrate bonds and b-O-4 interunit
linkages and subsequent solubilization in the
organic solvent (79). After pretreatment, lignin
is precipitated and recovered from the concen-
trated liquor (80). Organosolv-derived lignin is
sulfur-free, rich in functionality including phe-
nolics, exhibits a narrow polydispersity, and has
limited carbohydrate contamination (81). Ionic
liquids provide an alternative path for lignin re-
moval to classical organosolv pretreatment for
enhancements of subsequent enzymatic hydrol-
ysis. For example, 1-ethyl-3-methylimidazolium
acetate was used to extract lignin from promising
biorefining feedstocks, such as poplar and birch,
at elevated temperatures; the lignin was then re-
covered with the addition of an antisolvent (82).
Although some changes in lignin structure were
noted, most structural features were retained (83).
More aggressive changes in the structure of lig-
nin can be accomplished by using acidic ionic
liquids, such as 1-H-3-methylimidazolium chlo-
ride, which will hydrolyze ether linkages (84).
Future developments will focus on selective lig-
nin extraction and functionalization and minimi-
zation of process costs for recovery and recycling.

Postfermentation recovery of lignin is ex-
pected to be used for low-value markets, such
as process heat and electricity, because of the
presence of deconstruction enzymes and fermen-
tation components that would require additional
purification for higher value uses. Lignin utili-
zation in value-added markets that take advan-
tage of its unique material properties can more
likely afford the extra costs for prerecovery by
such pretreatments as flowthrough, organosolv
and ionic liquids, provided that these processes
are not overly capital intensive. As discussed
previously, the extraction of lignin from trans-
genic plants with reduced structural diversity or
labile interunit linkages (i.e., esters) can further

simplify the overall extraction process in the
future.

Lignin Valorization: Materials
One of the greatest challenges in biorefining is
to engineer lignin structures to not only reduce
biomass recalcitrance but also enable lignin val-
orization (i.e., conversion to higher value com-
pounds). Although low-market volume chemical
additives can be derived from lignin, the amount
of lignin from an industrial cellulosic ethanol
plant will range from ~100,000 to 200,000 tons
year–1; this scale disparity will shape lignin
valorization research and development (85).

A promising lignin product platform is the
global development of energy-efficient light-
weight vehicles. A body-in-white design-based
model has demonstrated that over 40 to 50% of
the structural steel mass in a vehicle could be
replaced with carbon fiber composite materials
(86). However, to realize this goal, low-cost man-
ufacturing of carbon fibers (~300 × 106 kg year–1)
is needed at the commercial scale, but commer-
cial carbon-fiber precursors derived from poly-
acrylonitrile (PAN) are too costly for most such
applications. Lignin from cellulosic biorefining
operations could become an ideal precursor for
carbon fiber synthesis, as highlighted in Fig. 4,
but our understanding of the fundamental chem-
istry involved in this process is limited, hindering
advances in this process to some extent.

To obtain lignin-derived carbon fiber, iso-
lated lignin is first processed into fibers by ex-
truding filaments from a melt or solvent swollen
gel. Then the spun fibers are thermally stabilized
in air where the lignin fiber is oxidized. At this
stage, the filaments become pyrolyzable without
melting or fusion. During pyrolysis under nitro-
gen or inert atmosphere, the fibers become car-
bonized through the elimination of hydrocarbon
volatiles, their oxidized derivatives, carbon mon-
oxide, carbon dioxide, and moisture. Figure 4
shows a scanning electron micrograph of car-

bonized filaments with a rough cross section.
The final morphology of the carbon materials
depends not only on carbon precursor chemis-
try but also on processing methodology. So far,
lignin-based carbon fibers largely derived from
Kraft pulping liquors have not exhibited good
mechanical properties, mainly because of fiber
porosity and lack of oriented graphitic struc-
ture. Softwood and hardwood lignins, obtained
from the pulping process, can be melt-processed
to fibers after eliminating the high-molecular-
weight fractions by solvent extraction or molec-
ular fractionation using membranes (87, 88).
Softwood lignin precursor fibers manifest more
rapid oxidative cross-linking than hardwood lig-
nin fibers, a desirable characteristic for high-yield
cost-competitive carbonized derivatives. The use
of lignin from switchgrass and other agricultural
resources has not been explored as extensively,
although recent reviews and patent claims have
highlighted its potential, and future studies will un-
doubtedly further define this opportunity (89, 90).

Lignin-based carbon fibers currently have poor
mechanical properties compared with petroleum-
derived counterparts. PAN-based fibers exhibit
graphitic stacking that is so far difficult to achieve
in lignin-derived carbon. The disordered carbon
synthesized from natural lignins is thought to be
related to its original morphology. The partially
globular structure of lignin in nature forms glassy
carbon during thermal pyrolysis (91). The for-
mation of rigid oxidized segments during lignin
thermal treatment is supported by a gradual in-
crease in the glass transition temperature of the
precursor with increasing thermal treatment (92).
Although oxidation and cross-linking helps to
increase char content in a pyrolyzed polymer
(93), extensive cross-linking could be detrimental
to structural carbon order (94). Therefore, new
chemical modifications of lignin and/or innova-
tive biosynthesis strategies are needed to produce
linear-fiber-forming lignin, with controlled mono-
mer ratios and chemical architectures that facilitate

Fig. 3. Simplified process flow di-
agram illustrating paths to recover
lignin. This can happen either after
removal of most of the carbohydrates
by hydrolysis and fermentation opera-
tions (top sequence) or by pretreatment
(126, 127) before downstream carbo-
hydrate conversion (bottom sequence).
[Courtesy of Oak Ridge National Labo-
ratory, DOE]
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rapid chemical transformation to infusible mass
and formation of planar graphitic structure during
pyrolysis.

Minimization of reactive C-O bonds in in-
terunit lignin linkages, such as b-O-aryl ether, is
anticipated to yield a more favorable lignin for
structural carbon-fiber production (95). This type
of lignin manipulation has already been accom-
plished in transgenic alfalfa lines down-regulated
in the expression of enzymes involved in lignin
biosynthesis, which exhibited higher amounts of
H-lignin and consequently yielding less C-O-C
reactive interunit linkages andmore C-C linkages
that are chemically less reactive (96). Such lignin
modifications could be beneficial for high carbon
yield and formation of long-range order in high-
temperature carbonized filaments.

Another high-volume lignin application is
plant-derived plastics and composites. The syn-
thesis of engineering plastics and thermoplastic
elastomers, polymeric foams, and membranes
from lignin with comparable properties to those
from petroleum products has been reported for
some time (97). The most frequent lignin source
for these past studies has been from chemical
pulping operations that are directed primarily
at lignin removal from cellulosic fibers through
a series of alkaline depolymerization or lignin
sulfonation reactions. Although the lignin struc-
ture from such operations may be far removed
from that needed for most high-value material
applications, these sources have found commer-
cial markets, such as an additive for cement,
dust suppression, and drilling fluids for oil re-
covery (98). A few notable exceptions have been
published: for example, the intrinsic structure
of select lignosulfonates has facilitated their use
for expanders for lead acid batteries (99) and
other select applications (100). However, pro-
cess impurities, variable molecular weights, and
poor processability hinder the value of most
current industrial pulping lignins for composite
products. Despite these concerns, oxypropylation
of lignin has been shown to yield a promising

polyol for polyurethane synthesis, yielding ex-
cellent physical strength properties (101). In
contrast, the application of lignin in thermo-
plastics has been challenging; for example,
blending ~5 to 20% of hydroxyl propyl lignin
with poly(methyl methacrylate) provided up to
a 200-MPa increase in Young’s modulus over
the pure polymer but exhibited detrimental em-
brittlement (102). Hilburg et al. presented an
alternative approach using a controlled polym-
erization of nanolignin particles with styrene or
methyl methacrylate, which provided a 10-fold
increase in toughness over a lignin/polymer blend
equivalent (103). The latter results illustrate the
potential for utilizing lignin in composites pro-
vided the structures are engineered on the mo-
lecular scale.

Future development of green lignin-based
polymers pivots on new processing technologies
coupled to tailor-made bioenergy crops contain-
ing lignin with desired chemical and physical
properties for a host of lignin-based material
applications. For example, mild isolation of C
lignin (Fig. 2, structure C) could readily pro-
vide a lignin feedstock that addresses many of
the current processing issues. Alternatively, lig-
nin composed partially or exclusively of hydroxy-
cinnamaldehydes, such as the lignin from the
Medicago cad1mutant (Fig. 2, structure D), pro-
vides a new functional group as a natural avenue
to explore formation of formaldehyde-free resins
or plastics by using the intrinsic reactivity of
the aldehyde for cross-linking.

Lignin Valorization: Fuels and Chemicals
Despite the anticipated improvements in engi-
neered lignin structures and tailored pretreat-
ment chemistries, some lignin fractions from a
biorefinery are not expected to be suitable for
material applications but can still be valuable
for conversion into fuels and chemicals. Lignin
depolymerization is challenging given the broad
distribution of bond strengths in the various C-O
and C-C linkages in lignin and the tendency for

low-molecular-weight species to undergo re-
condensation, often to more recalcitrant species
(Fig. 5). Resulting streams are subsequently dif-
ficult to upgrade, given the heterogeneity of
low-molecular-weight species, which often pos-
sess diverse functional groups.

These challenges will be substantially dimin-
ished as plant feedstocks are engineered to
have predominant G, H, C, or S lignin. The
latter would certainly favor thermal or chemi-
cal depolymerization, because methoxy groups
at the 3 and 5 positions of the aromatic ring
(structure A in Fig. 2) diminish relatively un-
reactive carbon-carbon (C-C) interunit linkages,
yielding a lignin more reactive to thermal and
catalytic fragmentation. To date, multiple strat-
egies have emerged for lignin depolymerization
and upgrading, including thermochemical treat-
ments, homogeneous and heterogeneous catal-
ysis, and biological depolymerization.

Transition metal catalysts have long been
used for lignin hydrogenolysis and hydrodeoxy-
genation upgrading at high hydrogen pressures,
either as single- or two-step processes (104).
These approaches have received substantial aca-
demic and industrial attention for production of
gasoline-range aromatics, as well as benzene,
toluene, and xylene. A recent review provides a
comprehensive list of the reductive depolymer-
ization and upgrading strategies used to date
(105). Most have required high temperature and
pressure (>200°C and >5 MPa) in combination
with catalysts developed for petroleum pro-
cessing, such as Ni-Mo or Co-Mo/Al2O3, with
the primary function being removal of sulfur
and nitrogen heteroatoms. Despite substantial
research, lignin depolymerization via hydro-
genolysis remains a major technical challenge,
primarily because the diverse reactivities of
lignin-derived low-molecular-weight species
limit yields of single products and their presence
in biomass-derived streams poisons metal cata-
lysts. Additionally, hydrodeoxygenation catalysis
for the production of fuels and chemicals from
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Fig. 4. Highlights of thermal chemistry involved in converting lignin to carbon fiber. See (88, 128) for more information. [Courtesy of Oak Ridge
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lignin-derived intermediates often leads to cata-
lyst deactivation through high coke formation,
hydrothermal instability, and catalyst sintering
(106). These challenges warrant development of
more robust catalysts designed for diverse sub-
strates and tolerant of harsh environments. For
example, promising new catalysts to overcome
these limitations, including designs with alterna-
tive supports and bimetallic functionalities, have
been investigated with model compounds (107).

Oxidative processes for lignin depolymeriza-
tion have also involved catalytic side-chain oxi-
dation and fragmentation reactions (108). Many
of the targeted products from lignin oxidation,
wherein the aromatic character is preserved,
are aromatic acids and aldehydes with smaller
market volumes. However, oxidation can also
enable production of ring-opened organic acids
that an effective separation method could re-
cover as potentially valuable products. Depolym-
erization of lignin in nature occurs primarily via
oxidative enzymes, such as laccases and perox-
idases, which are secreted by white-rot fungi
and some bacteria (109, 110). Application of these
natural strategies has been examined, such as a
mild pretreatment of whole biomass or as a means
to produce low-molecular-weight aromatic com-
pounds (111). The utilization of these approaches
for lignin depolymerization and subsequent
upgrading will be predicated on minimizing the
degradation of sugars and reductions in the
need for potentially costly enzyme cofactors.

Purely thermal routes have also been explored
for lignin depolymerization. Pyrolytic approaches
yield low-molecular-weight species in the vapor
phase, which undergo condensation reactions
upon phase change to higher-molecular-weight
oligomers (112). Coupling lignin pyrolysis with
hydrodeoxygenation catalysis (113) for upgrading
vapor-phase monomeric species potentially offers

a route to fuels and chemicals, but the primary
technical barrier is the inability to continuously
feed lignin to large-scale reactors (114), an issue
that may be solved with commercial-scale ligno-
cellulosic biorefineries.

For chemicals production, an underlying un-
certainty is the ability to meet stringent product
purity specifications. Thus, rather than target-
ing a single commodity chemical from lignin, a
more direct solutionmay be to produce a blended
petrochemical feedstock, such as reformate, that
can be integrated and upgraded within an ex-
isting petrochemical complex. The primary trade-
offs for this route are efficient oxygen removal,
fuel quality (because of saturation of the high-
octane aromatic blend stocks), and high hydrogen
consumption (115). One of the largest challenges
associated with lignin valorization is whether
there are economic pathways for conversion of
lignin to value-added fuels and chemicals. A re-
cent design study that focused on the biological
conversion of cellulosic sugars to fuels showed
that potential routes for the conversion of lignin
to chemicals may lead to improvements in over-
all economics and sustainability for an integrated
biorefinery (116). For example, the conversion
of lignin to 1,4-butanediol and adipic acid im-
proved the overall process economics and po-
tentially reduced the greenhouse gas emissions
by an order of magnitude relative to production
of electricity from lignin. The well-established
commercial production of vanillin from lignin
provides a strong precedent for future innova-
tive advances in this field (117).

The Present and Future
Lignin is a major component of terrestrial ligno-
cellulosic biomass. The effective utilization of
lignin is critical for the accelerated development
and deployment of the advanced cellulosic bio-

refinery. However, we acknowledge that, despite
some markets and uses of lignin which stretch
back decades, it has been long said in the pulp
industry that “one can make anything from lig-
nin except money.” This review set out to de-
scribe a set of developments over the past few
years that we suggest, when taken together,
represent a tipping point in the prospects for
lignin as a viable, commercially relevant sus-
tainable feedstock for a new range of materials
and uses.

First, the advent of new cellulosic bio-
refineries will introduce an excess supply of dif-
ferent, nonsulfonated, native and transgenically
modified lignins into the process streams. Future
research will continue to establish to what extent
the lignin structure in plants can be altered to
yield a product that can be readily recovered via
pretreatment and has the appropriate tailored
structures to be valorized for materials, chem-
icals, and fuels. Third, although lignin sequencing
remains a vision, approaches based largely on
NMR, high-performance liquid chromatography–
mass spectrometry (LC-MS) or GC-MS, and spe-
cific binding antibodies have greatly improved
our knowledge of the structures of lignin and its
products. These results need to be further in-
tegrated into improved force fields and high-
performance computational modeling to provide
a predictive tool of lignin’s chemical and phys-
ical properties and reactivities in multiple en-
vironments. Such insights may help redesign
lignin within its cross-linked complex biolog-
ical matrix to meet subsequent process and end
product goals. Overall, the need to understand
and manipulate lignin from its assembly with-
in plant cell walls to its extraction and pro-
cessing into value-added products aligns with
our potential to obtain a deeper understanding
of complex biological structures. This is espe-
cially true because the valorization of lignin
cannot come at the expense of the effective utili-
zation of other biopolymers, such as cellulose
and hemicellulose.
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