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The availability of a large number of sequenced bacterial genomes facilitates in-depth studies about why genes (operons) in a 
bacterial genome are globally organized the way they are. We have previously discovered that (the relative) transcrip-
tion-activation frequencies among different biological pathways encoded in a genome have a dominating role in the global ar-
rangement of operons. One complicating factor in such a study is that some operons may be involved in multiple pathways 
with different activation frequencies. A quantitative model has been developed that captures this information, which tends to 
be minimized by the current global arrangement of operons in a bacterial (and archaeal) genome compared to possible alterna-
tive arrangements. A study is carried out here using this model on a collection of 52 closely related E. coli genomes, which re-
vealed interesting new insights about how bacterial genomes evolve to optimally adapt to their environments through adjusting 
the (relative) genomic locations of the encoding operons of biological pathways once their utilization and hence transcription 
activation frequencies change, to maintain the above energy-efficiency property. More specifically we observed that it is the 
frequencies of the transcription activation of pathways relative to those of the other encoded pathways in an organism as well 
as the variation in the activation frequencies of a specific pathway across the related genomes that play a key role in the ob-
served commonalities and differences in the genomic organizations of genes (and operons) encoding specific pathways across 
different genomes.  
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E. coli is by far the best-studied group of organisms on earth. 
Substantial amount of information has been derived about 
this class of model bacteria in the past century [1], which 
has served as the foundation for biological studies of many 

other bacterial organisms. For example, fundamental con-
cepts in bacteriology such as operons [2], regulons [3] and 
two-component systems [4], all discovered in E. coli, have 
been mapped to other bacteria. With the rapid advancement 
of the (next-generation) sequencing techniques, bacterial 
genomes are being sequenced and functionally annotated at 
an accelerated rate, which has enabled studies aimed to ad- 
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dress deeper and broader biological questions, including 
how various functional systems such as metabolic and reg-
ulatory pathways are encoded in an E. coli genome [57]. 
As of now, 52 complete genomes of the E. coli species have 
been sequenced and made publicly available. Comparative 
analyses of these closely related genomes have led to a 
number of interesting observations. For example, different 
strains of E. coli share a high proportion of the protein-   
encoding genes [8].  

These sequenced genomes within the E. coli species have 
also offered a unique opportunity for in-depth studies of the 
organizational principles of functional elements encoded in 
a genome, for example, the rules that may govern how op-
erons are globally arranged in a genome. We have previ-
ously discovered one general organizational principle of 
bacterial genomes: that is, more frequently activated bio-
logical pathways tend to have their component operons lo-
calized into a smaller number of DNA-folding domains, 
termed supercoil domains or supercoils [9,10]. More spe-
cifically, the total number of supercoil unfoldings in the 
folded chromosome of a bacterial cell, needed to transcrip-
tionally activate all the obligatory pathways during the life 
cycle of a cell, tends to be minimized [11]. Our interpreta-
tion of this observation is that a bacterial genome tends to 
evolve so that its operons are globally arranged in such a 
way that the total energy for unfolding (and then refolding) 
the relevant DNA segments needed to make the relevant 
genes transcriptionally accessible in response to various 
stimuli during the life cycle of a bacterial cell is minimized. 
We have defined a simple model for estimating this total 
energy along with a prediction of the set of supercoils, i.e., a 
partition of the whole genome into 10100 kb genomic re-
gions, that achieves the minimal energy [11], which is 
termed as the energy score of a genome throughout this pa-
per. This model explains very well the current global ar-
rangement of operons in a variety of bacterial and archaeal 
genomes, which fall into a wide range of taxonomical 
groups, as we have previously demonstrated [11,12]. In this 
paper, we present a study on elucidation of the possible 
reasons for the observed diversity in the genomic organiza-
tions of operons across the 52 E. coli genomes, using this 
model.  

We have applied the model to the 52 E. coli genomes. It 
is worth noting that our model requires the information of 
the transcriptional activation frequency of each pathway, 
which can be estimated based on a large number of ge-
nome-scale transcriptomic data collected on multiple condi-
tions as we have done in our previous studies [11]. However, 
such data are not available for the organisms under consid-
eration except for one, E. coli K_12_MG1655. To alleviate 
this issue, we have systematically tested a simplified ver-
sion of the model, specifically by assuming all pathways 
have the same transcriptional activation frequencies, and 

found that this version achieves comparable results in esti-
mating the set of supercoils that achieve the minimal energy 
score [12], hence substantially expanding the scope of ge-
nomes that we can study using this model.  

Using this simplified model, we have predicted the 
supercoils for each of the 52 genomes and then compared 
the supercoils across different E. coli genomes, to address 
what may have caused the observed diversity in the ge-
nomic organizations of operons across the 52 genomes. The 
main finding indicates that the diversity in terms of the 
numbers of supercoils encoding the same pathways across 
different gnomes is largely due to the variation in the rela-
tive (transcription) activation frequencies of the pathways.  

Throughout this paper, we use genes and operons (in-
cluding single-gene operons) interchangeably. 

1  Materials and methods  

1.1  Data  

The sequenced genomes of 52 E. coli strains are download-
ed from the NCBI download site as of 11/01/2013 and the 
details about these genomes can be found in Table 1. Five 
hundred and fifty-five microarray gene-expression datasets 
of four E. coli strains are retrieved from the GEO database 
[46] and the M3D database [47] for estimating the frequen-
cies of transcription activation of individual pathways. Spe-
cifically, 40 datasets are found and retrieved for K_12_ 
W3110 [48], 26 sets for O157_H7_Sakai [49], 23 sets for 
E24377A [50] and 466 sets for K_12_MG1655 [47]. Bio-
logical pathway information used in this study was collected 
from the KEGG database [7]. The operon data for the 52 
genomes are obtained from the DOOR2 database [5], which 
are needed for the supercoil prediction and orthologous 
gene mapping across the genomes. In addition, the growth 
rate data of 10 E. coli strains, measured under the same 
growth condition with citric acid and acetate among other 
nutrients, are retrieved from [51]. 

1.2  Analyses of transcriptomic data 

The microarray gene-expression data used in this study are 
normalized using the AFFY package in Bioconductor [52]. 
In addition, the 466 sets of microarray data of 
K_12_MG1655 are grouped into seven collections corre-
sponding to seven generally studied physiological condi-
tions, namely anaerobic, heat shock, exponential growth, 
nitrogen limitation, oxidative, stationary growth, and SOS 
response. A set of marker genes for each condition have 
been collected from the literature, which collectively define 
the condition. A microarray dataset among the 466 datasets 
is assigned to a condition-specific subset if the marker 
genes of the dataset show the same expression pattern as the 
defining expression pattern of the condition. The detailed 
information can be found in [11]. 
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Table 1  Fifty-two E. coli strains with their IDs, energy scores, numbers of supercoils and relative reference to their sequences 

E. coli strain Chromosome Energy scores #Supercoils Reference 

K_12_substr__MG1655_uid57779 NC_000913 4115.19 79 [13] 

O157_H7_Sakai_uid57781 NC_002695 4233.48 85 [14] 

CFT073_uid57915 NC_004431 4214.08 83 [15] 

K_12_substr__W3110_uid161931 NC_007779 4135.24 77 [16] 

coli_UTI89_uid58541 NC_007946 4197.22 82 [17] 

536_uid58531 NC_008253 4238.2 72 n/a 

APEC_O1_uid58623 NC_008563 4115.99 79 [18] 

HS_uid58393 NC_009800 4091.26 78 n/a 

E24377A_uid58395 NC_009801 4179.27 83 [19] 

K_12_substr__DH10B_uid58979 NC_010473 4035.45 77 [20] 

SMS_3_5_uid58919 NC_010498 4273.11 82 [21] 

O157_H7_EC4115_uid59091 NC_011353 4208.03 89 [22] 

SE11_uid59425 NC_011415 4153.56 77 [23] 

O127_H6_E2348_69_uid59343 NC_011601 4146.9 74 [24] 

IAI1_uid59377 NC_011741 4145.65 71 [25] 

S88_uid62979 NC_011742 4153.41 77 [25] 

ED1a_uid59379 NC_011745 4158.46 88 [25] 

55989_uid59383 NC_011748 4127.08 79 [25] 

IAI39_uid59381 NC_011750 4225.11 81 [25] 

UMN026_uid62981 NC_011751 4236.82 85 [25] 

LF82_uid161965 NC_011993 4124.2 74 n/a 

BW2952_uid59391 NC_012759 4073.42 77 [26] 

BL21_Gold_DE3_pLysS_AG__uid59245 NC_012947 4064.92 74 n/a 

B_REL606_uid58803 NC_012967 4108.71 75 [27] 

BL21_DE3__uid161947 NC_012971 4059.22 72 [27] 

O157_H7_TW14359_uid59235 NC_013008 4210.32 86 [28] 

O103_H2_12009_uid41013 NC_013353 4204.99 88 [29] 

O26_H11_11368_uid41021 NC_013361 4277.7 92 [29] 

O111_H__11128_uid41023 NC_013364 4247.44 85 [29] 

SE15_uid161939 NC_013654 4163.36 67 [30] 

O55_H7_CB9615_uid46655 NC_013941 4215.95 86 [31] 

KO11FL_uid52593 NC_016902 4118.33 77 [32] 

DH1_uid161951 NC_017625 4065.91 76 n/a 

IHE3034_uid162007 NC_017628 4148.23 84 [33] 

ABU_83972_uid161975 NC_017631 4182.54 76 [34] 

UM146_uid162043 NC_017632 4125.2 78 [35] 

ETEC_H10407_uid161993 NC_017633 4136.91 82 [36] 

O83_H1_NRG_857C_uid161987 NC_017634 4104.77 72 [37] 

W_uid162011 NC_017635 4067.85 76 n/a 

DH1_uid162051 NC_017638 4061.41 77 [38] 

UMNK88_uid161991 NC_017641 4192.17 88 [39] 

NA114_uid162139 NC_017644 4111.79 82 [40] 

O7_K1_CE10_uid162115 NC_017646 4235.53 87 [41] 

clone_D_i2__uid162047 NC_017651 4161.67 76 [42] 

clone_D_i14__uid162049 NC_017652 4161.67 76 [42] 

O55_H7_RM12579_uid162153 NC_017656 4126.13 83 [43] 

KO11FL_uid162099 NC_017660 4130.9 81 [32] 

P12b_uid162061 NC_017663 4048.21 79 [44] 

W_uid162101 NC_017664 4101.29 79 n/a 

Xuzhou21_uid163995 NC_017906 4114.72 82 [44] 

O104_H4_2011C_3493_uid176127 NC_018658 4130.08 77 [45] 

O104_H4_2009EL_2071_uid176128 NC_018661 4149.56 79 [45] 
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1.3  Measuring the conservedness of supercoils across 
52 genomes 

Orthologous gene groups are identified across the 52 
genomes using our in-house tool GOST [53], followed by a 
Markovian clustering algorithm MCL (with the parameter I 
set at 2) [54] to determine if a gene is present in more than 
one genome. It is worth noting that GOST is a combinat- 
orial optimization tool with integration of sequence- 
similarity and contextual (working partners in operons) 
information, which can overcome intrinsic problems in 
orthology mapping across bacterial genomes, faced by 
sequence similarity-based methods, when orthology 
mapping involves gene fusions and horizontal gene 
transfers. At the end, 14203 orthologous gene groups were 
identified, which are used to calculate of the similarity score 
for a pair of supercoils in two genomes. Specifically, the 
similarity between two supercoils is defined as the percent-
age of the number of the shared orthologous gene groups 
out of the total number of unique genes in the two super-
coils.  

We have constructed a network consisting of all pairs of 
supercoils with similarity score above 0.6 across all 52 ge-
nomes. In this supercoil similarity network, an orthologous 
supercoil group (OSG) is defined as a maximal set of simi-
lar supercoils. The level of conservedness of an OSG is de-
fined as the size of the OSG divided by 52.  

2  Results and discussion 

We have previously discovered that the global arrangement 
of operons in a bacterial (and also archaeal) genome follows 
some simple rules [55]. Specifically we have observed that 
any bacterial genome can be partitioned into a set of super-
coils [9,10], each ranging between 10 and 100 kb, so that 
the total number of supercoils encoding genes in each bio-
logical pathway weighted by its activation frequency across 
all pathways is minimized, compared to the alternative ar-
rangements of the operons [11]. The following C+ function 
captures the essence of this observation (with slight varia-
tion). That is, operons are arranged into a collection of 
supercoils so that the following function is minimized: 
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where N is the number of pathways encoded in the current 
genome, Ri represents the number of supercoils containing 
operons encoding the ith pathway, fi is the activation fre-
quency of the ith pathway, Qij and wij represent the number 
of all operons encoding the ith pathway and that in the jth 
supercoil, respectively, and  is a scaling factor currently 
set at 1. We have previously shown that the partition of a 
genome into supercoils that minimizes the above function 
can be efficiently calculated [12].  

We have calculated the energy score C+ for each of the 
52 genomes along with the associated partition of the ge-
nome to a collection of supercoils using this model, with fi 
being set to 1 for all pathways. In this calculation, 104 
KEGG biological pathways (Supplementary File 1 for the 
names of the pathways), representing all largely complete E. 
coli pathways in the database, are considered in our energy 
score calculation and supercoil-domain partition. The num-
ber of operons encoding these pathways across the 52 ge-
nomes ranges from 793 to 868, with 822 as the mean. Table 
1 shows the energy score, along with the number of the 
supercoils in each genome. The boundaries of these super-
coils in each genome can be accessed in Supplementary File 
2.  

It is worth emphasizing that the C+ function is designed 
to reflect the total energy required for unfolding (and re-
folding) all the relevant supercoils for the transcriptional 
activation of all the pathways encoded in each genome. We 
have compared the calculated energy scores with the growth 
rates of 10 E. coli strains, which have published growth-rate 
data collected under the same condition in the literature [51]. 
Interestingly, the growth rates of these 10 strains have a 
strong negative correlation with their respective energy 
scores with Pearson Correlation Coefficient (PCC)=0.8 as 
shown in Figure 1, as we expected. While this example does 
not necessarily imply that our model can be used to predict 
the relative growth rates, it does suggest that the model 
captured something informative relevant to the energy effi-
ciency of a bacterial cell. 

2.1  Pathway C+ values versus activation frequencies 

We have further evaluated our model against the transcrip-
tional activation frequencies of the four E. coli strains with 
some transcriptomic data available: K_12_W3110, 
O157_H7_Sakai, E24377A, and K_12_MG1655. For each 
organism, the transcription-activation frequency of a path-
way is estimated based on the number of datasets having the 
pathway over-expressed divided by the total number of da-
tasets under consideration for the organism, as done in [55] 
(see METHODS). 104 KEGG pathways are included in this 
analysis. Figure 2 shows the relationships between the C+ 
values of individual pathways and their estimated activation 
frequencies across the whole genomes, where the 104 
pathways are ranked in the increasing order of their C+ val-
ues and evenly divided into seven groups, denoted as 17 
(with 15 pathways in each of the first six groups and 14 
pathways in group 7). 

In addition, we have also compared the C+ values of 
K_12_MG1655 across seven different sets of conditions, 
which should trigger the activation of very different sets of 
pathways (i.e., the activation frequencies of the pathways 
should be largely different across these seven sets of condi- 
tions). We grouped the 466 sets of transcriptomic data into 
seven subsets, each representing one set of conditions re- 
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Figure 1  The correlation between the growth rates and the corresponding energy scores of 10 E. coli strains. The x-axis and y-axis represent energy scores 
and growth rates, respectively. Note: the energy scores in the x-axis is normalized by dividing the number of supercoils of each genome.  

 

Figure 2  Relationship between the C+ values (x-axis) and the transcription-activation frequencies (y-axis) of 104 pathways for four E. coli genomes. The 
organisms are represented by their chromosomal IDs.  

lated to one of the following general growth conditions: 
anaerobic, heat shock, exponential growth, nitrogen limita-
tion, oxidative, stationary growth, and SOS response. The 
detailed grouping scheme can be found in Supplementary 
File 3, which was published previously [11]. It is worth 
noting that the activation frequencies calculated here are 
over each subset rather than the whole set as done above. 
Figure 3 shows a strong negative correlation between the C+ 
values and the estimated activation frequencies for all con-
ditions except for the SOS response, where the negative 
correlation is not as strong as those under the other six 
growth conditions. We speculate that a possible reason for 
this is that the organization of the pathways responding to 

SOS is not fully optimized possibly due to that the SOS 
condition covers a wide range of different stresses, each of 
which may trigger different sets of responding pathways, 
and such conditions may not have occurred as often as the 
other conditions so the genomes have not been well trained 
under such conditions and hence the genomic organization 
of the relevant pathways is not optimized.  

2.2  Organizational differences of pathways in genomes 
versus their activation frequencies  

We noted that 2113 genes are shared (through orthology) by 
all the 52 genomes (Supplementary File 4 for details), 
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which encode 94 of the 104 pathways under consideration. 
Interestingly some of these 94 pathways have their encoding 
genes clustered into a similar set of supercoils across dif-
ferent genomes while others have their genes scattered 
across a wide range of different collections of supercoils. 
Figure 4 shows two examples with very distinct distribu-
tions of the number of supercoils encoding a pathway.  

The question that we are interested in addressing is what 
may have caused the diversity in the genomic arrangements 
of individual pathways, or specifically in terms of the num-
ber of supercoils that encode each pathway across different 
genomes. To answer this question, we have calculated the 
standard deviation (SD) of the number of supercoils that 

encode each of the 94 pathways shared across all the 52 
genomes. Figure 5A shows the distribution of the SD values 
across the 94 pathway, revealing the diversity in the ge-
nomic organization of pathways in different organisms.  

We hypothesize that the diversity level in the number of 
supercoils encoding the same pathway across different ge-
nomes may be related to the variation in the activation fre-
quencies of the pathway in different genomes. Since we do 
not have large numbers of transcriptomic data for the vast 
majority of the 52 organisms to estimate the activation fre-
quency of each pathway, we have used the C+ values and 
their relative ranking among all pathways’ C+ values to ap-
proximate the relative activation frequencies. While this  

 

 

Figure 3  Correlations between the C+ values (x-axis) and the estimated activation frequencies (y-axis) of E. coli K_12_MG1655 (NC_000913) under each 
of the seven sets of conditions. The seven panels are for seven conditions with the names given on top of each panel.  

 

Figure 4  The distribution of the number of supercoils encoding a pathway across 52 genomes. For each panel, the x-axis represents the number of super-
coils and the y-axis is the number of genomes using a specific number of supercoils to encode a pathway. A, The arachidonic acid metabolism pathway. B, 
The two-component system pathway. 
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may be a crude estimation, C+ values of individual path-
ways in general do reflect the activation frequencies as 
shown in Figures 2 and 3, hence offering a justification for 
doing so. Specifically, the C+ values of all the 94 pathways 
are sorted in the increasing order for each organism; and 
then the SD of the C+ value ranking distribution for each 
pathway is calculated across the 52 genomes. We noted that 
there is a strong correlation between the SD of the numbers 
of encoding supercoils for each pathway (shown in Figure 
5A) and the SD of the ranking distribution of the pathway’s 
C+ values calculated here (with Spearman correlation score 
0.66). Figure 5B shows a box plot of the two values across 
all 94 pathways, hence providing an affirmative answer to 
our hypothesis.  

2.3  Supercoil conservation versus functional diversity 
of genes encoded in the supercoil  

We have also examined the genomic arrangement issue of 

the encoding genes of pathways from a supercoil-centric 
perspective. Specifically, we noted that some supercoils are 
used by all 52 genomes, i.e., supercoils containing the same 
sets of genes (through orthology) across all 52 genomes, 
referred to as conserved supercoils, while other supercoils 
are used only by a few genomes. We have developed a 
method for calculating the orthologous supercoil group 
(OSG), which is defined as the maximal group of highly 
similar supercoils across the 52 genomes. The size of each 
OSG is defined as the number of similar supercoils in the 
group, referred to as the level of conservedness of the 
supercoil. A total of 314 OSGs are determined using a sim-
ple procedure given in METHODS. Figure 6A shows the 
distribution of the conservedness of the 314 OSGs.  

An analysis was carried out to examine the relationship 
between the conservedness of each OSG and the variation 
of the activation frequencies of pathways with encoding 
genes in the OSG across the 314 OSGs. Figure 6B shows a 
box plot of the two values across 314 OSGs, revealing a 

 

 

Figure 5  A relevant factor for the diversity in the genomic arrangements of individual pathways. A, The distribution of the standard deviation of the num-
ber of supercoils encoding each of the 94 pathways across the 52 genomes. B, Correlation between the SD of each pathway calculated in (A) and the SD of 
the rankings of the C+ values of the pathway across the 52 genomes, where the 94 pathways are divided into seven groups in a similar way to that in Figure 
2.  

 

 

Figure 6  A relevant factor for the diversity in the conservedness of OSG. A, Distribution of the conservedness of 314 OSGs across the 52 genomes. B, 
Correlation between the conservedness in (A) and the maximum SD of corresponding C+ values rankings which is calculated similarly to that in Figure 5B. 
The 314 OSGs are divided into four groups in a similar way to that in Figure 2. 
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new relationship concerning the conserved level of each 
supercoil. 

3  Conclusion  

The availability of the 52 closely related E. coli genomes 
enabled us to study the problem of the global arrangements 
of operons across different and related genomes from the 
perspective of bacterial genome evolution driven by energy 
efficiency. The data presented here provide further evidence 
to an observation that we have previously made: the global 
arrangement of operons in a bacterial genome is largely 
determined by the transcription-activation frequencies of 
individual pathways encoded by these operons in a way that 
the total DNA-unfolding (and refolding) energy needed to 
make the relevant pathways transcriptionally accessible 
tends to be minimized [11]. The analysis here on 52 closely 
related genomes allowed us to examine this observed or-
ganizational principle at a finer resolution by studying how 
genomes evolve to optimally adapt to their environments by 
adjusting their genomic organization to ensure that more 
frequently used pathways will involve a fewer number of 
relevant supercoils. Detailed information is revealed re-
garding how genes encoding a pathway change their ge-
nomic locations, specifically clustering into certain super-
coils, to maintain the above energy-efficiency property, 
once the activation frequency of a pathway changes in re-
sponse to the changing environment.   
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