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Characterization of Xylan Utilization and Discovery of a New
Endoxylanase in Thermoanaerobacterium saccharolyticum through
Targeted Gene Deletions
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Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, Riverside, California, USAc; Mascoma Corporation,

Lebanon, New Hampshire, USAd; and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USAe

The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose
and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydroly-
sis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert
C5 and C6 sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in
this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to
characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of �-xylosidase xylD slowed the growth
of T. saccharolyticum on birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion,
including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type.
This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation in T. saccharolyticum. Growth on xy-
lan was prevented only when a previously uncharacterized endoxylanase encoded by xynC was also deleted in conjunction with
xynA. Sequence analysis of xynC indicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside
hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding
of the enzymatic basis of xylan hydrolysis by T. saccharolyticum.

Xylan is the second-most-abundant polysaccharide in nature
after cellulose and the most-abundant component of hemi-

cellulose, though xylans constitute a larger fraction of the hemi-
cellulose in angiosperms than in gymnosperms (4, 6, 19, 27). Xy-
lan-solubilizing enzymes, xylanases, have been studied for their
potential use as low-cost and environmentally friendly bleaching
agents in the pulp and paper industry and as a component of
cost-effective lignocellulose conversion in the emerging biofuels
industry. Poor removal of hemicellulose can impede cellulose hy-
drolysis (9), and xylo-oligomers—formed either during pretreat-
ment or through hemicellulose hydrolysis— have been shown to
have a strong inhibitory effect on cellulose hydrolysis (18). Sup-
plementation of xylanase enzymes to the hydrolysis of pretreated
lignocellulose has been shown to increase glucose yields while also
increasing yields of fermentable hemicellulose-derived sugars (2,
11). Thermophilic xylanases are of particular industrial interest
because of their high specific activity and increased thermostabil-
ity (10, 29).

Xylans have a xylose backbone decorated with side groups,
including acetic acid, arabinose, glucuronic acid, ferulic acid, and
p-coumaric acid (19). These side group substituents have been
linked to functionality and can be tissue specific (5). In addition,
the side groups also alter the solubility and digestibility of xylan
and, in turn, impact the enzymes needed for depolymerization
(6). Consistent with the multiplicity of linkages involved, the col-
lective action of a variety of saccharolytic enzymes is required to
cleave hemicellulose into its constituent components. Endoxyla-
nases cleave the internal �-1,4-glycosidic bonds of xylan to form
xylo-oligomers, and �-xylosidase enzymes hydrolyze xylobiose
and short xylo-oligomers to xylose. Additional accessory enzymes,
such as xylan acetyl esterase and �-glucuronidase enzymes, re-

move the side chains, thus allowing the xylanases access to the
xylose backbone (4, 19).

Thermoanaerobacterium saccharolyticum strain JW/SL-YS485
is a thermophilic anaerobe that can grow on xylan as a sole carbon
source and can utilize sugars derived from both cellulose and
hemicellulose. Although multiple xylanases with overlapping but
distinguishable functionalities are commonly found in xylan-sol-
ubilizing microorganisms (27, 30), to date, only a single endoxy-
lanase (XynA) has been described in T. saccharolyticum (21). This
high-molecular-weight, family 10 endoxylanase has been purified
from both T. saccharolyticum and a heterologous host (14, 21).
Over 80% of the endoxylanase activity from cell cultures was lo-
calized to the S-layer, the outermost layer in bacterial cell walls (3).
The remainder of the xylanase activity, found in the soluble pro-
tein fraction, has been presumed to be a result of cell lysis (14, 21).

Complementing the endoxylanase XynA, three distinct �-xy-
losidases have been identified in T. saccharolyticum JW/SL YS485
(15). Two of these �-xylosidases, XylA and XylC, have been puri-

Received 12 July 2012 Accepted 19 September 2012

Published ahead of print 28 September 2012

Address correspondence to Lee R. Lynd, lee.r.lynd@dartmouth.edu.

* Present address: Kara K. Podkaminer, Biosciences Center, National Renewable

Energy Laboratory, Golden, Colorado, USA; Heather L. Trajano, Chemical and

Biological Engineering, University of British Columbia, Vancouver, British

Columbia, Canada.

Supplemental material for this article may be found at http://aem.asm.org/.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.02130-12

December 2012 Volume 78 Number 23 Applied and Environmental Microbiology p. 8441–8447 aem.asm.org 8441

 on February 4, 2013 by O
ak R

idge N
at'l Lab

http://aem
.asm

.org/
D

ow
nloaded from

 



fied as active enzymes from crude cell extract, and the sequence of
XylC has been determined (24). The third �-xylosidase, XylB, has
been characterized only as a recombinant enzyme (15). The gene
product of xylB results in a protein smaller than both XylA and
XylC with unique kinetic properties (24). XylB is a family 39 gly-
coside hydrolase enzyme and an ortholog of the xynB gene from T.
saccharolyticum B6A-RI (13). The recently identified XylC repre-
sents a novel glycoside hydrolase family, displaying unusual kinet-
ics and an amino acid sequence lacking similarity to any of the
previously described glycoside hydrolase families with xylosidase
activities (families 3, 39, 43, 52, and 54; www.cazy.org/Glycoside
-Hydrolases.html) (24). While both xylB and xylC have been iden-
tified in the genome, the third �-xylosidase, XylA, has been puri-
fied to apparent homogeneity only from T. saccharolyticum. The
gene for this �-xylosidase has not yet been identified (24). In ad-
dition to the primary xylanase and �-xylosidase enzymes, several
accessory enzymes, including two xylan acetyl esterases (23) and
an �-glucuronidase (15, 22), have been characterized.

In this study, we constructed a series of deletion strains in order
to better understand the suite of enzymes that contribute to xylan
solubilization by T. saccharolyticum. In addition, we characterized
the effect of these enzymes on the xylo-oligomer pool during xylan
hydrolysis as the starting point for future studies on the effects of
xylo-oligomers on cellulase activity.

MATERIALS AND METHODS
Strains, media, and culturing conditions. MTC medium, used for fer-
mentation experiments involving T. saccharolyticum, was prepared as de-
scribed in reference 31 with modifications (17) and with 5 g/liter birch-
wood xylan (batch number 010M0169; Sigma) as the carbon source for
fermentation. MTC medium with 5 g/liter cellobiose was used for inocu-
lum cultures grown from freezer stocks. TSC1 medium, used for molec-
ular work involving T. saccharolyticum with kanamycin selection, con-
tained 1.85 g (NH4)2SO4, 0.05 g FeSO4, 1 g KH2PO4, 1.0 g MgSO4, 0.1 g
CaCl2 · 2H2O, 2 g trisodium citrate · 2H2O, 8.5 g yeast extract, and 0.5 g
L-cysteine · HCl per liter and was adjusted to pH 6.7 prior to inoculation
(25). Defined M122 medium, used for uracil autotrophy selection, con-
tained 1.3 g (NH4)2SO4, 1.43 g KH2PO4, 1.8 g K2HPO4 · 3H2O, 2.6 g
MgCl2 · 6H2O, 0.13 g CaCl2 · 2H2O, 6.0 g glycerol-2-phosphate disodium,
5.0 g cellobiose, 1.1 mg FeSO4 · 7H2O, and 0.5 g L-cysteine · HCl per liter
and was adjusted to pH 5.0 prior to inoculation. After autoclaving, 2�
RPMI 1640 vitamins (Sigma R7256) and 1� minimal essential medium
(MEM) amino acids (Sigma M5550) were added (25).

Saccharomyces cerevisiae InvSc1 was grown on YPD medium for nor-
mal growth and SD-Ura medium (Sunrise Science Products, San Diego,
CA) when selecting for URA3� plasmids. Escherichia coli was maintained
in LB medium and supplemented with kanamycin (50 �g/ml) when se-
lecting for the presence of plasmids. The parent strain T. saccharolyticum
M0355 (25) and its subsequent deletion strains were grown inside an
anaerobic chamber (Coy Laboratory Products, Grass Lake, MI) at 55°C on
TSC1 medium solidified with 1.2% agar, supplemented with kanamycin
(200 �g/ml) when selecting for gene replacement. When selecting for
removal of the marker system, strains were grown on defined M122 me-
dium supplemented with 0.2 mM sodium chloroacetate. Markerless
strains were restreaked to obtain single colonies. After verification of de-
letion by PCR and sequencing, strains were maintained at �80°C in 5%
dimethyl sulfoxide (DMSO).

Fermentations on xylan were performed in anaerobic serum bottles.
Xylan in water was sterilized by autoclaving at 121°C. MTC components
were added as described above, using 5 g/liter MES (morpholinoethane-
sulfonic acid) as a buffer. A 4% (vol/vol) inoculum, grown overnight from
freezer stocks in MTC medium with 5 g/liter cellobiose, was used to seed

the fermentation. Bottles were incubated at 50°C, and samples were with-
drawn every 24 h for analysis.

Vector construction. Plasmid pYC2/CT (Invitrogen, Carlsbad, CA)
was digested with BamHI (New England BioLabs, Ipswich, MA). The
resulting linearized vector was purified by gel extraction (Zymo Research,
Orange, CA). The upstream, downstream, and internal fragments for each
target were amplified by PCR from T. saccharolyticum cells using the
primers listed in Table 1. Primers were designed from the T. saccharolyti-
cum genome sequence from Mascoma Corporation (GenBank accession
number CP003184). The pta, ack, and kanamycin (Kan) resistance genes
were amplified as a single selection cassette from plasmid pMU433, a
derivative of pMU424 that was provided by Mascoma Corporation (25).
The cut pYC2/CT backbone, the upstream, downstream, and internal
fragments, and the pta/ack/Kan selection cassette were combined using
yeast-mediated gap repair cloning (20). A representative plasmid is shown
in Fig. S1 in the supplemental material. Yeast plasmids were extracted
using a Zymoprep yeast plasmid miniprep II kit (Zymo Research, Orange,
CA) and transformed into E. coli Top10 (Invitrogen, Carlsbad, CA) via
electroporation. E. coli plasmids were purified using a Qiagen miniprep
kit (Qiagen Inc., Germantown, MD). All regions PCR amplified during
cloning were confirmed by DNA sequencing.

Transformation. Xylanase mutant strains were constructed in T. sac-
charolyticum strain M0355, which lacks lactate dehydrogenase (ldh),
phosphotransacetylase (pta), and acetate kinase (ack) and does not pro-
duce significant amounts of lactate or acetate (25). DNA for transforma-
tion was PCR amplified from E. coli plasmids and purified prior to trans-
formation using the Zymo Clean and Concentrator kit (Zymo Research,
Irvine, CA). DNA was introduced using natural competence as described
previously with the initial selection (25). A diagram of the selections and
predicted crossover events is shown in Fig. S2 in the supplemental mate-
rial. Strains constructed in the T. saccharolyticum M0355 background are
listed in Table 2, and the predicted functions of the open reading frames
contained within are described in Table S1 in the supplemental material.

Analytical methods. To determine the fermentation product concen-
trations, high-performance liquid chromatography (HPLC) analysis was
performed using a Waters HPLC at 60°C using an Aminex HPX-87H
column (Bio-Rad Laboratories, Hercules, CA) with a refractive index (RI)
detector and 2.5 mM sulfuric acid as the mobile phase. Xylo-oligomers
were analyzed by separation on an ICS 300 Dionex system with a PA-100
column (Dionex Corp., Sunnyvale, CA). The method described by Qing
et al. was followed (18) except that the gradient was established with 100
mM NaOH and 500 mM NaAc. Xylose and xylo-oligomer standards (de-
grees of polymerization [DP] 2 to 6; Megazyme Inc., Wicklow, Ireland)
were used to manually calculate the oligomer concentration based on the
correlation between oligomer length and peak area. The concentration of
oligomers larger than DP10 (approximately DP10 to DP15) was estimated
based on the total combined area relative to the DP10 area. Residual
carbohydrate was measured by scaling down (500-�l sample, 18 �l acid)
the method described by Sluiter et al. (26); oligomers in the samples were
hydrolyzed to monomers using 4% sulfuric acid at 121°C for 1 h.

RESULTS

In order to systematically characterize the suite of enzymes used
by T. saccharolyticum during hemicellulose utilization, a series of
deletion strains were constructed to remove genes known or ex-
pected to be involved in xylan degradation.

Deletion of gene clusters encoding xylose utilization, �-
xylosidases, and endoxylanases. Several genes known or ex-
pected to be involved in xylan hydrolysis are colocated on the T.
saccharolyticum chromosome (Fig. 1A). A separate region of the
genome that encodes proteins involved in xylose utilization was
identified (Fig. 1B). Using the marker removal system described
by Shaw et al. (25), strains were constructed with deletions of the
entire xylose utilization (called �X), �-xylosidase (called �B), and
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endoxylanase (called �E) regions, both individually and in com-
bination (�BEX). Subsequently, individual genes were deleted in
order to assess their effect on the growth of T. saccharolyticum on
xylan. A list of the constructed strains is presented in Table 2. The
putative function of the targeted regions is described in Table S1 in
the supplemental material.

These strains were characterized by growth on 5 g/liter birch-
wood xylan using the production of ethanol, the main fermenta-
tion product, as a metric for growth. Interestingly, the �E strain

retained the ability to grow on xylan (Fig. 2), suggesting the pres-
ence of an additional endoxylanase. Likewise, strain �B, deleted
for the �-xylosidase region, retained the ability to grow on xylan,
though it produced less ethanol at 72 h than the parent strain and
the �E strain. Only strains deleted for the xylose utilization region
(strains �X and �BEX) showed substantially impaired xylan fer-
mentation. Further analysis of fermentation samples from strain
�BEX revealed the accumulation of xylo-oligomers (Fig. 3). After
24 h, the fermentation samples from the �BEX strain contained

TABLE 1 Primers for upstream, downstream, and internal regions used to construct deletion strainsa

Target Forward primer (3=¡5=) Reverse primer (5=¡3=)
or0897

Upstream AGGAGAATTTGCAAGAATGA AGG CAATTTACCTCCTCTCCGCT G
Downstream GAAGGCATTTAATGGTTTTC AGC CCAACACCATTCTCTTACAT TACCC
Internal GATGTTAAACTTTAAGAGAA TTTTTACGTTAATTTG CTCACCAAACTGTTACATTA GCATAACC

or1451
Upstream CGATGGAGAATTTAAATTTG CAGCC TTTAAAACACCTCTTCTTAA ATAAATTTCATTCAACC
Downstream ACTTTGGGGGTCTTAACATG ATTAAAG CCATGAAATTGCGATCGC
Internal GGAGCTTTTAAAGAGAGACG ATGG ACACCTGTTGCCACATTGC

or1452
Upstream GTCTTCTGGGAAATGAGGTT CC AAAGTCTATTTCATCCACAA TACACTTGTC
Downstream TATGCATTTGGAGGGATTGA TATG TAATGTCGTAGGCATACAAG ACCC
Internal CAGGCAGACTTGGCCTTG CATATGCTCATCTCTATAAA GCATTTCC

or1456
Upstream CAAGCCTATCATACCATTTA GCTGTC ACAAGATATTAAAAAATTCA GAAAATATCAGAAATATTT
Downstream TGAATTAATATAATTAAAAA CTTTCTGTAATGAAGTACG AAGAAACAACTGAGTTAAAT ATACCGGC
Internal AAAACTTTCTGAATTGACAG GTGTG GAATAATCTTTACCTTCAAT TCCCCAG

or1457
Upstream TAATAAAGCACATCCATTTG CAATAAG AAATAATATTTTAAGCGTAA TGAAGTACGGAAC
Downstream TCTAATTTACAAGATTTCAG GGGGTTATAAAGTGGC TGTCTAATAAGTATTTTTAA ATTTCCCCCC
Internal CATGGCTGTTACAGATGCTA GAGTAG TTAAAATGCACTTTCACCAC TAAGTG

or1458
Upstream GATGCTAGAGTAGAAGTTTT ATCAGAAGGG TTTATAACCCCCTGAAATCT TGTAAATTAG
Downstream TACATCTTTGGTTTTTTATA AATGCTGAAAG CCATTCGCCTTTATTTACAT TTGC
Internal GTGGCTAAAAATAATAGAAT AAGGTTGAGC CTAACCCTTAACACTGCCAA TGG

or1459
Upstream AGCACAGAAGATATTGTATT TGACACG TTCTTACTTCCTCCCTCAGT AAATTTAATTTATTG
Downstream AAAAAACAAATAATCTTTAA GTAAAAAGGCAG AAAAAGGCTTCAGAATGGCT TG
Internal GAACATTATATAGTTAAGAG GGATGGTACAGG CACAACTTTCTGTTGTCCTT CACC

Endoxylanase region
Upstream CATGATTCCGGCAGGC CGCAACATATCTACCCATAT ATACCATC
Downstream GCCTGTAAATTCGAATTCAC CTG GCCAATGGTGAATTGAAAGA AAATG
Internal CAATGCTTTTTTGTTCCATG AATC CTTGTATTGGATTTTGTGGT GTCACTAC

�-Xylosidase region
Upstream AAAGTCTGTGGCGATGGAGA GCATTTGTTTGAGCTTCCA
Downstream GGAGATGCTTTAAGCATCTC CT TGGGTGAAGAATCTCGCTTG
Internal GGGACTTTTCGACATGCCAT TAC CCAACGCACATTAAGACATC G

Xylose catabolism region
Upstream CACCGTTTTCTACGTAGCTT CTGGCT GGCATGTAAGTCCTTCCTCG C
Downstream AGCTTCCTCCTTCTATTCGT TTGTCTG GGTCCTGCTGGAATGTCTGT TG
Internal ATCCAACTTCCCAATTTCTT CAAAGG CCAGAGGACACAGGAAGAAT GC

pta/ack/kan cassette CGTGCCCATTGTGAAGTGG GCGCCTACGAGGAATTTGTA TCG
a Overlapping sequences used in vector construction, matching an adjacent region, are not shown.
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high concentrations of oligomers with a DP value of �10 and also
contained substantial quantities of xylotriose. The concentration
of oligomers over DP10 increased at incubation times up to 48 h
before decreasing in the last 24 h. In contrast, after 24 h, the con-
centrations of short-chain oligomers (xylose to xylotriose) and
oligomers over DP10 observed in fermentation samples from the
parent strain M0355 were low. Only low levels of xylose were
detected in the last 48 h of the fermentation with strain M0355.

Deletion of individual genes involved in xylan utilization.
Growth on xylan and the accumulation of xylo-oligomers in the

TABLE 2 Deletion strains constructed in the T. saccharolyticum M0355
background

Strain name Deleted region(s) Description

�B �or1451–�or1453 Deleted for the �-xylosidase region
�E �or1456–�or1459 Deleted for the endoxylanase region
�X �or0271–�or0277 Deleted for the xylose catabolism region
�BEX �or1451–�or1453,

�or1456–�or1459,
�or0271–�or0277

Deleted for the combined �-xylosidase,
endoxylanase, and xylose utilization
regions

�xylD �or1451 Deleted for the putative �-xylosidase
xylD

�xylB �or1452 Deleted for the �-xylosidase xylB
�xynA �or1459 Deleted for the endoxylanase xynA
�xynC �or0897 Deleted for the putative endoxylanase

xynC
�xynA �xynC �or1458 �or1459 Deleted for the endoxylanases xynA and

xynC

FIG 1 Regions of the T. saccharolyticum genome targeted for deletion. (A) �-xylosidase and endoxylanase regions. Regions encoding multiple genes thought to
contribute to xylan hydrolysis. (B) Xylose utilization region. (C) Family 11 endoxylanase, or0897. Underlined regions indicate large region deletions. Solid gray
genes indicate genes deleted individually.

FIG 2 Ethanol production at 72 h from strains with large regions deleted, �B,
�E, �X, and �BEX. Production of ethanol from the fermentation of 5 g/liter
birchwood xylan. Ethanol, the main fermentation product of the parent strain
M0355, was used as a metric for growth because insoluble xylan prevents
optical density from being used to monitor growth. Values are the averages of
duplicate runs, with error bars indicating the standard errors of the mean.
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�BEX strain indicated residual endoxylanase activity despite the
removal of the endoxylanase region, which included the only pre-
viously characterized endoxylanase-encoding gene, xynA.

Further examination of the genome revealed an additional puta-
tive endoxylanase (Fig. 1C). This putative endoxylanase, encoded by
or0897 and here referred to as XynC, shares homology with con-
served domains in family 11 glycoside hydrolase enzymes, with sim-
ilarity to several Bacillus and Clostridium endoxylanases using
BLASTP (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE	Proteins;
accession numbers of top hits include NP_389765.1 and
YP_001559210.1). Further analysis of the sequence reveals that XynC
is likely a secreted protein, with a signal peptide probability of 0.998
using SignalP (http://www.cbs.dtu.dk/services/SignalP/). However,
xynC encodes a much smaller protein than XynA and does not have
any predicted S-layer homology (SLH) regions or carbohydrate bind-
ing module (CBM) regions. As such, xynC likely encodes an unteth-
ered endoxylanase.

To examine the role of this putative endoxylanase xynC and the
previously characterized xynA, these genes were deleted individu-
ally and in combination. These strains, �xynA, �xynC, �xynA
�xynC, and the parent strain M0355, were characterized by mon-
itoring the production of ethanol to assess their roles while grow-
ing on xylan (Fig. 4A). Neither single endoxylanase gene deletion
prevented growth on xylan. However, in the xynC xynA double
mutant, growth on xylan was eliminated. Identification of XynC
as a T. saccharolyticum xylanase was further confirmed by mea-
surement of residual xylan and xylo-oligomers in all four strains
(Fig. 4B). The individual deletion of either xynA or xynC showed
utilization of xylan over the fermentation equivalent to that of the
parent strain M0355. In contrast, the �xynA �xynC strain did not
consume xylan, as the total xylan concentration remained con-
stant over the 72-h time course. In addition, no detectable xylo-
oligomers were observed for this double mutant strain at 24, 48, or
72 h (data not shown).

FIG 3 Xylo-oligomer distribution of T. saccharolyticum strains M0355 and �BEX. Xylo-oligomer concentration from the fermentation supernatant of 5 g/liter
birchwood xylan of strains M0355 (A) and �BEX (B) at 0 (gray), 24 (diagonal), 48 (black), and 72 (hatched) hours. X1 to X10 indicate the oligomer degree of
polymerization.

FIG 4 Ethanol production and residual xylan for �xynA and �xynC strains. Fermentation profiles for strains M0355 (black circle), �xynC (open diamond),
�xynA (gray cross), and �xynA �xynC (black square). Ethanol concentrations (A) and residual xylan and xylo-oligomers (B) from 5-g/liter xylan fermentations.
Error bars indicate standard errors of replicate runs.
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The �-xylosidase region encodes two putative �-xylosidases,
xylB and or1451. Because the gene encoding XylA has not yet been
identified and previous work by Lee and Zeikus (12) named the
xylose isomerase xylA, or1451 will here be referred to as xylD. To
examine the relative roles of the �-xylosidases within this region,
each was deleted individually. The xylB deletion did not have a
phenotype distinct from that of the parent strain M0355 (Fig. 5).
However, the deletion of xylD led to a slowed production of eth-
anol from xylan (Fig. 5A). Residual carbohydrate analysis con-
firmed the slowed utilization of xylan (Fig. 5B). In contrast, dele-
tion of the previously characterized �-xylosidase (xylB) did not
affect the ability to hydrolyze and grow on xylan relative to that of
the parent strain.

The xylo-oligomer pools were also measured in fermentation
samples from strain �xylD. In contrast to the parent strain M0355
(Fig. 3A), strain �xylD accumulated short xylo-oligomers over
time, from xylose to xylotetraose for the first 48 h, after which the
oligomers were converted to xylobiose and/or consumed, thus
slowing growth in this strain (Fig. 5C).

DISCUSSION

No mutant with a single targeted deletion of either a �-xylosidase
or an endoxylanase gene lost the ability to grow on xylan, consis-
tent with the notion that several enzymes depolymerize xylan. The
only single gene deletion strain with a distinct phenotype during
growth on xylan was the �-xylosidase xylD deletion mutant
(�xylD), while the deletion of xylB had little effect on growth on
xylan. Since XylB was not found as an active protein from cell
extracts in previous studies (15, 24), XylD is likely the major �-xy-
losidase utilized by T. saccharolyticum during growth on birch-
wood xylan. This observation is also supported by the accumula-
tion of short-chain xylo-oligomers in the absence of xylD,
suggesting that in this strain, the cleavage of xylobiose to xylose is
the rate-limiting step for growth on xylan. Yet since strain �xylD
retained the ability to grow on xylan, additional �-xylosidase ac-
tivity must be present in the wild type. The recent discovery of the
novel T. saccharolyticum �-xylosidase XylC (24) may help explain
this additional �-xylosidase activity in �xylD. More work is
needed to clarify the relative roles of XylC and XylD.

Though microorganisms typically have more than one en-

doxylanase, XynA is, to date, the only endoxylanase previously
reported in T. saccharolyticum. XynA is a family 10 glycoside hy-
drolase with three SLH repeat regions and two conserved CBM
regions (14). Despite being the only characterized endoxylanase in
T. saccharolyticum, the deletion of xynA did not prevent growth on
xylan. Subsequently, the removal of a newly identified endoxyla-
nase encoded by xynC (or0897) also showed no distinct pheno-
type. When the two genes were simultaneously deleted (�xynA
�xynC), no growth was observed on xylan, as shown by both the
lack of ethanol production and the high concentrations of residual
xylan and xylo-oligomers (Fig. 4). Thus, we have demonstrated
that T. saccharolyticum has a second endoxylanase enzyme which
in the absence of XynA can facilitate solubilization of xylan. Anal-
ysis of the xylo-oligomers also supports the role of or0897 as an
endoxylanase. As a secreted enzyme with no SLH-encoding re-
gions, this newly identified endoxylanase, XynC, likely accounts
for the endoxylanase activity previously detected in the soluble
supernatant fraction of T. saccharolyticum cell extracts (21). Thus,
XynA and XynC may have separate but partially overlapping sub-
strate specificities and may have differing physiological roles. Fu-
ture biochemical comparisons may help elucidate the differences
between these xylanases.

Many organisms use both free and cell-associated enzymes to
solubilize plant cell wall-derived substrates (7). The attachment of
XynA to the S-layer ensures close proximity of the cell to the prod-
ucts of hydrolysis, a factor which may be advantageous in nature
where microorganisms compete for these sugars (1, 28). For ex-
ample, higher rates of cellulose solubilization by Clostridium ther-
mocellum were observed with cells utilizing cell-bound cellulases
than with cells utilizing free cellulases in controlled simultaneous
saccharification and fermentation (SSF) studies (16). Cell-associ-
ated enzymes may be particularly important in an extreme envi-
ronment, such as the hot spring from which T. saccharolyticum
was isolated, where free enzymes would quickly diffuse away from
the organism (21). However, the large size and tethered state of
XynA may also prevent access to hemicellulose while being pres-
ent in interior portions of biomass particles, which may be better
accessed by the smaller XylC endoxylanase. Furthermore, in the
absence of high substrate levels, free enzymes may be released into
the environment to generate soluble xylo-oligomers, to form a

FIG 5 Growth of �-xylosidase deletion strains on xylan. (A and B) Production of ethanol (A) and disappearance of xylan (B) by M0355 (black circle), �xylB
(open triangle), and �xylD (gray cross) strains grown on xylan. (C) Xylo-oligomer profile of strain �xylD at 0 (gray), 24 (diagonal), 48 (black), and 72 (hatched)
hours.

Podkaminer et al.

8446 aem.asm.org Applied and Environmental Microbiology

 on February 4, 2013 by O
ak R

idge N
at'l Lab

http://aem
.asm

.org/
D

ow
nloaded from

 



chemical gradient that can be used for a chemotactic response
toward additional insoluble substrate. Thus, having multiple xy-
lanase enzymes may allow a better response to different hemicel-
lulose substrates and to changing conditions than having only one
xylanase activity.

In addition to further describing the xylanase system in T. sac-
charolyticum, several of the strains constructed in this study exhib-
ited altered xylo-oligomer pools. Hydrolysis of cellulose in the
presence of xylo-oligomers has indicated the inhibitory nature of
these oligomers (18); however, this has not been demonstrated in
a microbial system. Thus, these strains can be utilized in the future
to better understand the effects of xylo-oligomers on cellulose
hydrolysis. While the native strain M0355 can degrade xylan,
strains �BEX and �xylD both accumulate xylo-oligomers. Using
these strains, it may be possible to directly test the effect of xylo-
oligomer accumulation on cellulose hydrolysis without interfer-
ence from cellobiose or glucose accumulation, known inhibitors
of cellulose hydrolysis (8). Thus, these strains can also be utilized
to better understand the effects of xylo-oligomers on cellulose
hydrolysis.
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