Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum

Beth Papanek,a,b,c 1, Ranjita Biswas,a,b,1,2, Thomas Rydzak,a,b, Adam M Gussa,b,c,*

* Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
† BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
‡ Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee – Knoxville, Knoxville, TN 37996, United States

ARTICLE INFO

Article history:
Received 1 July 2015
Received in revised form
27 August 2015
Accepted 2 September 2015
Available online 12 September 2015

Keywords:
Clostridium thermocellum
Consolidated bioprocessing
Lignocellulose
Biofuels

ABSTRACT

Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δidth Δpf1 Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the biocconversion of lignocellulosic biomass.

© 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

1. Introduction

There is a strong push in the biofuel industry to move away from traditional starch-based feedstocks that are currently used to produce the majority of the United States’ ethanol to more sustainable lignocellulosic crops (Klein-Marcuschamer and Blanch, 2015). This transition could reduce the biofuel industry’s dependence on food crops as well as reduce the environmental strain of growing the necessary crops (Brehmer et al., 2008). One enormous challenge in using lignocellulosic feedstocks is the cost-effective deconstruction of recalcitrant plant cell walls to liberate the fermentable sugars (Himmel et al., 2007). Consolidated bioprocessing (CBP) is an approach to overcome this obstacle by using one or more organisms to degrade plant biomass in a single fermentation tank without the addition of commercial enzymes. CBP allows for the simultaneous hydrolysis of cellulose into soluble, metabolizable sugars, and fermentation of the resulting sugars to the product of interest (Lynd et al., 2005). Clostridium thermocellum, a...
thermophilic, anaerobic, cellulolytic bacterium, is one of the most promising microbial candidates for this process. The presence of a large membrane-associated enzyme complex called the cellulosome gives it the ability to hydrolyze lignocellulosic biomass directly to fermentable sugars (Lamed and Bayer, 1988). It is then able to convert the sugars to ethanol and other products such as lactate, acetate, formate, hydrogen, and excreted amino acids such as valine and alanine (Ellis et al., 2012). Further, there is a proven and usable set of tools for genetically engineering the organism (Argyros et al., 2011; Guss et al., 2012; Olson and Lynd, 2012; Tripathi et al., 2010), allowing for the rational manipulation of the C. thermocellum genome for improved phenotypes.

In addition to producing ethanol, Clostridium thermocellum naturally produces a range of organic acids and hydrogen. The generation of lactate, formate and acetate diverts carbon and electron flux away from ethanol and can quickly make fermentation conditions toxic, presumably due to pH, arresting growth and fermentation. To maximize ethanol yield from C. thermocellum, competing pathways must be eliminated. Previously, strains have been engineered to strategically eliminate one or two of these side products, including strains deficient in the production of (i) acetate via deletion of phosphotransacetylase (pta) (Tripathi et al., 2010), (ii) lactate via deletion of lactate dehydrogenase (ldh) and acetate via pta (Argyros et al., 2011), (iii) H2 via deletion of hydrogenase maturase hydG to inactivate all three [FeFe] hydrogenases and (iv) formate via deletion of pyruvate-formate lyase (pf) (Rydzak et al., 2015). Other mutant strains aimed at increasing ethanol production include deletion of lactate dehydrogenase in an ethanol tolerant strain of C. thermocellum (Biswas et al., 2015) and deletion of malate dehydrogenase in a strain of C. thermocellum that heterologously expressed a pyruvate kinase gene (Deng et al., 2013). However, these strains still produced organic acids and/or H2 that can acidify the medium and divert carbon and electron flux away from ethanol, reducing ethanol titers and yields. We hypothesized that by combining gene deletions associated with product formation (ΔhydG, Δpf, Δpta-ack, and Δldh) into a single strain, side product formation would be effectively eliminated, allowing greater carbon flux through the ethanol production pathway. Therefore, we stacked these mutations into a single strain and characterized the effect on both model substrates and pretreated plant biomass.

2. Materials and methods

2.1. Growth media

Escherichia coli strains were grown on LB medium supplemented with 12 μg ml⁻¹ chloramphenicol as needed. For C. thermocellum, strains were grown either in modified DSM122 rich medium (Tripathi et al., 2010) or defined Medium for Thermophilic Clostridia (MTC) (Linville et al., 2013), with cellobiose, crystalline cellulose (Avicel), or pretreated biomass as the carbon source. To make MTC, Solution A was made in 162 ml serum bottles with cellobiose, Avicel PH105 or dilute-acid pretreated biomass as the carbon source. Dilute acid pretreatment was done previous to experimentation as explained in Schell et al. (2003). Biomass was either poplar or switchgrass previously analyzed with quantitative saccharification from the batch described in Wilson et al. (2013). The poplar sample was measured to have 646 mg glucose equivalents/g biomass ± 13.6 (other sugar composition included: 19.4 mg xylose equivalents/g biomass ± 1.6 and 1.6 mg arabinose equivalents/g biomass ± 0.2). The switchgrass sample was measured to have 522.5 mg glucose equivalents/g biomass ± 9.3 (other sugar composition included: 72.5 mg xylose equivalents/g biomass ± 0.4 and 7.1 mg arabinose equivalents/g biomass ± 1.0). After autoclave sterilization, serum bottles were degassed with filtered N2 prior to addition of other components. Solutions B, C, E, and F for MTC were filter sterilized through a 0.22 μm filter and solutions D and M were autoclave sterilized. Sterile solutions were mixed in a sterile beaker and 5 ml of the mixed cocktail solution was added to each bottle containing Avicel as the carbon source. For bottles containing cellobiose or biomass as the carbon source, solution M was added to the cocktail mixture and 10 ml of mixed solution was added to each fermentation bottle. For both conditions, the final volume in the serum bottles was 50 ml. The bottles were then degassed with sterile-filtered N2. When appropriate, C. thermocellum rich medium was supplemented with 12 μg ml⁻¹ thiamphenicol (Tm; Sigma-Aldrich, Saint Louis, MO, USA), 50 μg ml⁻¹ 5-fluoro-2-deoxyuridine (FUDr; Sigma-Aldrich), or 500 μg ml⁻¹ 8-azahypoxanthine (BAZH; Tokyo Chemical Industry, Co., Tokyo, Japan) during strain construction. Plates were solidified with 1.5% agar when appropriate.

2.2. Plasmid and strain construction

Plasmid pAMG498 (annotated, Genbank style sequence file, Supplemental File 1) for deletion of C. thermocellum pta and ack was constructed using yeast gap repair cloning in Saccharomyces cerevisiae InvSc1. Standard methods were used to construct C. thermocellum deletions (Olson and Lynd, 2012). Briefly, plasmid DNA was isolated from a dcm- E. coli strain (Guss et al., 2012) and electroporated into C. thermocellum strains derived from strain DSM1313 with hpt deleted. Electroporated cells were plated on rich medium agar supplemented with Tm. Colonies were picked into liquid rich medium supplemented with Tm, followed by plating dilutions in rich medium supplemented with Tm and FUDr. Colonies were re-streaked on rich medium agar plates supplemented with Tm and FUDr to ensure purity, picked into liquid rich medium supplemented with Tm, re-grown in the absence of Tm, and then plated in rich medium supplemented with BAZH. Colonies were single colony purified, picked into liquid rich medium, and deletions were confirmed by PCR. Lactate dehydrogenase (Clo1313_1160; ldh) was deleted in C. thermocellum Δhpt ΔhydG (Biswas et al., 2015) using plasmid pMU1777 (Argyros et al., 2011). Pyruvate-formate lyase (Clo1313_1717; pf) and Pfl-activating enzyme (Clo1313_1716; pfa) were deleted in C. thermocellum Δhpt ΔhydG Δldh using plasmid pAMG281 (Rydzak et al., 2015). Phosphotransacetylase (Clo1313_1185; pta) and acetate kinase (Clo1313_1186; ack) were deleted in C. thermocellum Δhpt ΔhydG Δldh Δpfa using plasmid pAMG498, resulting in C. thermocellum strain AG553 (C. thermocellum Δhpt ΔhydG Δldh Δpfa-ack).
2.4. Analytical methods

Growth curve data were collected at OD_{600} in a BioTek Eon Microplate reader (BioTek Instruments Inc., Winooski, VT) inside a Coy anaerobic chamber at 55 °C.

Fermentation products lactate, formate, acetate, and ethanol were measured using a Breeze HPLC system (Waters, Milford, MA) with an Aminex-HPX-87H column (Bio-Rad, Hercules, CA) and 5 mM sulfuric acid as the mobile phase as previously described (Rydzak et al., 2015). H2 production was measured using an Agilent Technologies 6850 Series II Gas Chromatographer (Agilent Technologies, Santa Clara, CA) with a Carbonex 1010 PLOT (30.0 m x 530 μm I.D.; model Supelco 25467) column as previously described (Yee et al., 2014). Isobutanol formation was also measured using this method, but none was detected.

H2 production was measured using an Agilent Technologies 6850 Series II Gas Chromatographer (Agilent Technologies, Santa Clara, CA) with a Carbonex 1010 PLOT (30.0 m x 530 μm I.D.; model Supelco 25467) column as previously described (Rydzak et al., 2015). All data points used in generating the Figures are included in a Supplemental spreadsheet.

3. Results

3.1. Construction of C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack (strain AG553) mutant

To eliminate H2 and organic acid fermentation products, C. thermocellum strain Δhpt ΔhydG was sequentially modified to delete lactate dehydrogenase (ldh), pyruvate-formate lyase (pfl), and phosphotransacetylase and acetate kinase (pta-ack) resulting in strain AG553, which is predicted to be deficient in the production of lactate, formate, and acetate. This strain also harbors a spontaneous point mutation in the bifunctional aldehyde/alcohol dehydrogenase adhE from strain C. thermocellum Δhpt ΔhydG (Biswas et al., 2015). The resulting D494G amino acid change expanded cofactor specificity of the alcohol dehydrogenase activity from using only NADH in wild type to use both NADH and NADPH in this strain. Efforts to delete the Ech hydrogenase to eliminate the remaining H2 production (Biswas et al., 2015) were unsuccessful. Growth was initially tested in minimal medium with cellobiose as the carbon source (Fig. 1). While wild type C. thermocellum grew at a rate of 0.14 ± 0.03 h−1, strain AG553 experienced a substantially longer lag phase and had an initial growth rate of 0.03 ± 0.01 h−1. After reaching approximately an OD of 0.15, the growth rate increased to 0.13 ± 0.02 h−1. The observed lag phase was significantly longer for strain AG553. Wild type took 17.5 h to double its initial OD while AG553 took 39 h to double its initial OD.

3.2. C. thermocellum strain AG553 produces more ethanol on model substrates

Fermentation product formation by C. thermocellum AG553 mutant was initially tested on model substrates. When grown in defined medium with 5 g/L of the soluble disaccharide cellobiose as the carbon source, the mutant strain produced greater than two fold more ethanol than the wild type strain with no appreciable amounts of other fermentation products (Fig. 2A). The wild type strain, on the other hand, produced over 15 mL acetate with small amounts of lactate and formate as well. Final ethanol titer reached 32.8 mM for AG553 and 17.7 mM for wild type (56.1% and 30.3% theoretical yield, respectively). Wild type produced 4.2 mM total amino acids, while strain AG553 produced 2.2 mM (Fig. 2A). In both cases, valine was the most abundant amino acid produced.

3.3. C. thermocellum strain AG553 produces more ethanol on pretreated biomass

Washed, dilute-acid pretreated poplar and switchgrass were used to test the ability of strain AG553 to convert complex plant biomass to ethanol. The amount of available sugars present in this batch of biomass had been previously analyzed, with the pretreated poplar having 664.8 mg glucan/g of dry biomass and the pretreated switchgrass having 522.5 mg glucan/g of dry biomass (Wilson et al., 2013). Therefore, at 5 g/L loading, 3.2 g/L and 2.6 g/L of glucan were available from the poplar and switchgrass, respectively. Control fermentations containing an equal amount of crystalline cellulose (1032 mg glucan/g Avicel) were performed to allow direct comparison for cellulose bioconversion from the pretreated biomass. Therefore, 3.1 g/L and 2.5 g/L Avicel were used as controls for the poplar and switchgrass fermentations, respectively. Culture samples were then taken every 24 h for HPLC analysis until product formation on biomass no longer increased. For the poplar experiment, fermentation was complete after 288 h for wild type on poplar, 72 h for wild type on Avicel, 288 h for AG553 on poplar, and 96 h for AG553 on Avicel. For the switchgrass experiment, fermentation was complete after 288 h for wild type on switchgrass, 24 h for wild type on Avicel, 288 h for AG553 on switchgrass, and 96 h for AG553 on Avicel. Strain AG553 produced 24.9 mM ethanol on Avicel and 23.8 mM ethanol on the pretreated poplar (Fig. 3A), representing 65.5% and 62.6%, respectively, of the theoretical yield of glucon to ethanol. In comparison, wild type C. thermocellum produced only 13.0 mM ethanol on Avicel (34.2% theoretical yield) and 13.4 mM on poplar (35.3% theoretical yield). Similarly, strain AG553 produced 21.3 mM and 16.6 mM ethanol respectively.
on Avicel and switchgrass, respectively. These values represent 72.0% and 52.4% conversion of available glucan to ethanol. In comparison, wild type \textit{C. thermocellum} produced 11.7 mM and 9.1 mM ethanol on Avicel and switchgrass, respectively (Fig. 3B). This represents 39.2% yield of ethanol from the glucan from Avicel and 26% from switchgrass. Organic acid (lactate, formate, and acetate) production was essentially eliminated in strain AG553 from both poplar and switchgrass. Carbon recovery on poplar was 79.6% for wild type and 71.1% for AG553, while on switchgrass, the carbon recovery was 65.0% and 61.4% for wild type and AG553, respectively.

3.4. Increased ethanol titer in \textit{C. thermocellum} AG553 using higher cellulose loadings

In addition to high yield, high titer ethanol production will also be important for industrial cellulose biofuel production. We hypothesized that the lack of organic acid production would allow for higher ethanol titers to be achieved. We therefore examined the ability of strain AG553 to convert higher loadings of cellulose to ethanol using Avicel loadings of 1, 5, 10, 20, 30 and 50 g/L in serum bottles with defined medium. Samples were taken every 24 h until product concentration stopped increasing, which was determined to be 48 h for wild type \textit{C. thermocellum} at all loadings and 144 h for strain AG553 at all loadings except for 1 g/L which was 72 h. Wild type \textit{C. thermocellum} produced approximately equimolar amounts of acetate and ethanol at all loadings (Fig. 4A), and fermentation profiles were similar at all loadings between 5 and 50 g/L, likely due to organic acid accumulation and the resulting pH dropping below 6 (Suppl. Table 1). With strain AG553, on the other hand, high yields were attained at low cellulose loadings, with 77.9% and 58.0% of theoretical yield at 1 g/L and 5 g/L, respectively. As substrate loading increased, the overall yield decreased based on the total substrate provided (46.6%, 34.0%, 19.7%, and 11% theoretical yield for 10, 20, 30, and 50 g/L, respectively). The titer, on the other hand, reached a maximum of 73.7 mM at a loading of 20 g/L (Fig. 4B), which was not statistically different from the titer at 10, 30, or 50 g/L ($P = 0.07, 0.10, \text{and } 0.08$, respectively). All of these values were far below the 108 mM ethanol level at which wild type \textit{C. thermocellum} begins to demonstrate slower growth (Herrero and Gomez, 1980). Interestingly, lactate was produced by strain AG553 at the higher cellulose loadings despite the fact that lactate dehydrogenase has been deleted. Fermentation of sugars to ethanol releases CO$_2$; therefore, we hypothesized that acidification of the medium from CO$_2$ accumulation in the serum bottles could also explain the growth and fermentation limitations of strain AG553 at higher cellulose loadings. Therefore, the pH of the fermentation bottles was...
measured at the end of the experiment, and despite producing far less organic acids, the final pH was substantially lower (Supplemental Table 1) than the optimal pH of 6.8–7.1 for C. thermocellum (Garcia-Martinez et al., 1980; Mori, 1990).

4. Discussion

As no known organism is capable of both efficient lignocellulose deconstruction and industrially relevant yield, rate and titer of biofuel production, metabolic engineering is necessary to enable CBP. Previous studies have focused on one or two genetic modifications to increase flux to ethanol, and the capacity for organic acid production had always remained. By deleting the ldh, hydG, pfl, and pta-ack genes together, we were able to effectively eliminate lactate, acetate, and formate production and reduce H2 production on model substrates as well as pretreated poplar and switchgrass. This resulted in a two to three-fold increase in ethanol yields when compared with the wild type strain to a maximum of ca. 70% of theoretical yield and decreased medium acidification. Previously, the highest reported yield was just under 64% theoretical (Biswas et al., 2015) making strain AG553 capable of the highest ethanol yield reported in C. thermocellum (Garcia-Martinez et al., 1980; Mori, 1990).

Fig. 4. C. thermocellum mutant product formation on different loadings of Avicel PH105 in defined MTC medium. (A) Wild Type C. thermocellum (B) C. thermocellum strain AG553. Red, ethanol; black, acetate; gray, lactate; green, formate; orange, excreted amino acids. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

reduce one acetyl-CoA to ethanol via AdhE, which can only use NAD(P)H as an electron donor. In this scenario, only 50% of theoretical yield could be achieved. In this study, strain AG533 reached yields greater than 50% of theoretical, implying that C. thermocellum transfers electrons from Fd_red to NAD(P)H that can be used for reduction of acetyl-CoA to ethanol. While electron flux pathways in C. thermocellum are not fully elucidated, electron transfer from Fd_red to NAD(P)H can be catalyzed by Rnf (Clo1313_0061-0066; Fd_red + NAD^+ + H_2 = Fdox + NADH + H^+_2) or NfnAB (Clo1313_1848-1849: Fdox + NADH + 2 NADP^+ + H_2 = Fdox + NAD^+ + 2 NADPH). This additional NADH can be generated by the conversion of reduced ferredoxin (Fd_red) by Rnf.

C. thermocellum strain AG553 produced approximately fourfold less H2 due to the deletion of the gene encoding the FeFe hydrogenase maturase hydC. Previous work combining the hydC and the genes encoding the NiFe hydrogenase ech resulted in complete elimination of H2 as a fermentation product (Biswas et al., 2015). Ideally, strain AG553 would be further modified to remove ech, such that no H2 is produced. However, we were not successful in creating this mutation, suggesting the possibility that it is essential under the conditions tested. This might not be surprising, as production of cell biomass results in the production of excess reducing equivalents, and production of a more reduced compound is needed in order to prevent a redox imbalance (Führer and Sauer, 2009). In yeast, for example, this is remedied via glycerol production (Ansell et al., 1997); in C. thermocellum, H2 production likely fulfills this role, especially in strain AG553, which lacks Pfl. Alternate redox-balancing strategies will likely be needed in the future to allow ech to be deleted.

For industrial ethanol production, it will be important to use inexpensive, renewable feedstocks. Model substrates such as cellulose and crystalline Avicel are beneficial for the rapid testing of phenotypes in a research setting, but it is important to transition to complex plant biomass feedstocks such as poplar and switchgrass. In this work, strain AG533 had similar ethanol yields on biomass and model substrates such as Avicel, suggesting that the strain is not inhibited by the complexity of real-world biomass feedstocks. This makes the strain an excellent candidate for both continued research on lignocellulosic biofuel production as well as improving the lignocellulosic biofuel production process. Thus, C. thermocellum strain AG553 can serve as a platform strain for further organism and process optimization in the future.

5. Conclusion

By combining deletions (ΔhydG, Δpfl, Δpta-ack, and Δldh) in C. thermocellum, we have achieved the highest ethanol yields
reported to date on both model substrates and pretreated biomass with *C. thermocellum* strain AC553. The elimination of pathways for organic acid production increased the final ethanol titer achieved at higher cellulose loadings, but further work will be needed to improve ethanol yield and titer when challenged with higher amounts of substrate. Overall, *C. thermocellum* strain AC553 represents a new platform strain for future genetic engineering and process optimization for consolidated bioprocessing of lignocellulose to fuels and chemicals.

Acknowledgments

We would like to thank Miguel Rodriguez and Kelsey Yee for providing the pretreated biomass and for helpful discussions. This work was supported by the BioEnergy Science Center, U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ymben.2015.09.002.

References

