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Consolidated bioprocessing, or CBP, the conversion of

lignocellulose into desired products in one step without added

enzymes, has been a subject of increased research effort in

recent years. In this review, the economic motivation for CBP is

addressed, advances and remaining obstacles for CBP

organism development are reviewed, and we comment briefly

on fundamental aspects. For CBP organism development

beginning with microbes that have native ability to utilize

insoluble components of cellulosic biomass, key recent

advances include the development of genetic systems for

several cellulolytic bacteria, engineering a thermophilic

bacterium to produce ethanol at commercially attractive yields

and titers, and engineering a cellulolytic microbe to produce

butanol. For CBP organism development, beginning with

microbes that do not have this ability and thus requiring

heterologous expression of a saccharolytic enzyme system,

high-yield conversion of model cellulosic substrates and

heterologous expression of CBH1 and CBH2 in yeast at levels

believed to be sufficient for an industrial process have recently

been demonstrated. For both strategies, increased emphasis

on realizing high performance under industrial conditions is

needed. Continued exploration of the underlying

fundamentals of microbial cellulose utilization is likely to be

useful in order to guide the choice and development of CBP

systems.
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Introduction
Cellulosic plant biomass has many desirable features as an

energy source [1,2], but is difficult to efficiently convert

into liquid fuels. Biological processing is a promising

technology option for achieving this conversion, but still

poses great challenges. These challenges arise primarily
Please cite this article in press as: Olson DG, et al. Recent progress in consolidated bioprocessin
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because plants have evolved to be recalcitrant to attack by

the elements, and in particular by microbes and their

enzymes.

The recalcitrance barrier can in principle be overcome by

thermochemical technologies involving reactive inter-

mediates other than sugars (e.g. synthesis gas, pyrolysis

oil), fermentative processes (e.g. acid hydrolysis, phos-

phoric acid swelling, ionic liquid pretreatment) that over-

come recalcitrance primarily via innovations in the realm

of process engineering, and fermentative processes that

overcome recalcitrance primarily via innovations in the

realm of biotechnology. In the latter category, processes

in which cellulosic biomass is fermented to desired pro-

ducts in one step without adding externally produced

enzymes are of obvious appeal. Indeed, such ‘consoli-

dated bioprocessing’ (CBP) is widely recognized as the

ultimate configuration for low cost hydrolysis and fermen-

tation of cellulosic biomass [3��].

A CBP-enabling microbe must be able to both solubilize a

practical biomass substrate and produce desired products

at high yield and titer under industrial conditions. Since

microbes with these properties have not been found in

nature, genetic engineering is required via one of the two

strategies. The native strategy: beginning with microbes

that have native ability to utilize insoluble components of

cellulosic biomass, and the recombinant strategy: begin-

ning with microbes that do not have this ability and thus

require heterologous expression of a saccharolytic

enzyme system. The CBP strategy is in principle

applicable to production of a broad range of products

from plant biomass, but has received the most attention

with respect to ethanol production and is being imple-

mented commercially for this product first.

We endeavor here to provide an overview of technological

and scientific advances relevant to CBP. Since our last

such review [3��], the wholesale price of gasoline has

more than doubled underscoring that both the need and

opportunity for low cost biomass processing have grown

considerably.

Economic motivation
CBP has potential to lower the cost of biomass processing

compared to process configurations featuring a dedicated

step for cellulase production due to elimination of oper-

ating and capital costs associated with dedicated enzyme

production and/or more effective biomass solubilization.

Estimates of the cost of added enzymes for lignocellulose

conversion vary widely and do not show a decreasing
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026
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Historical estimates of the contribution of cellulase enzyme cost to final

ethanol cost. Letters refer to individual references. Error bars represent

the extent of the high and low estimates when given. A [52], B [53], C

[54], D [55], E [56], F [57], G [58], H [59], I [60], J [61], K [61], L [62], M [62].
trend over time (Figure 1). Any cost savings estimate for

CBP depends, however, on the choice of both the

advanced technology configuration assumed as well as

the base-case to which it is compared. If the base case has

high loading of added enzymes, projected savings from

eliminated cellulase production by CBP are potentially

large. If a base case has low loading of added enzyme,

projected savings from a CBP process achieving high rates

and yields are primarily in the form of decreased capital

and operating costs related to fermentation and feed-

stock. This dynamic partially explains why enzyme cost

estimates differ so widely. Another implication is that the

cost savings of CBP can be much larger than the cost of

added enzyme if the basis of comparison is a process

designed to minimize enzyme addition. In any case, all

indications are that the cost of added enzyme continues to

be a major constraint to cost-effective processing of

cellulosic biomass (Figure 1). At the low end of recent

estimates, 50 cents per gallon ethanol, the cost of cellulase

is comparable to the purchase cost of feedstock. One is

hard pressed to come up with an example of a commodity

process where the catalyst cost is comparable to that of the

raw material.

More effective biomass solubilization by CBP may arise

because cellulase loadings are higher in CBP than is

practical in other configurations, use of complexed cellu-

lase systems, high temperature, enzyme-microbe synergy

[4], or a combination of these. Economic benefits of

more effective cellulose solubilization may be realized

as a result of higher rate, higher yield, less expensive
Please cite this article in press as: Olson DG, et al. Recent progress in consolidated bioprocessin
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pretreatment, greater savings due to eliminated enzyme

production, or a combination of these — again depending

on the base case to which CBP is compared.

The native strategy
The main challenges for the native strategy include the

availability of tools to do genetic modification, and the

application of these tools so that a desired fuel is produced

with high yield, titer and robustness under industrial

conditions. Candidates for the native strategy can be

organized into three groups: fungi, free-enzyme bacteria

and cellulosome-forming bacteria.

Progress in the development of genetic tools for fungal

systems has recently been reviewed and will not be

discussed in detail [5]. Although to date, most engineer-

ing efforts have focused on increasing cellulase pro-

duction, there is also interest in engineering biofuel

production in fungal systems such as Fusarium oxysporum
[6] and Trichoderma reesei [7�].

There has also been substantial progress in the devel-

opment of genetic tools for free-enzyme bacterial sys-

tems, including Clostridium phytofermentans [8],

Clostridium japonicus [9], and Thermoanaerobacter and Ther-
manaerobacterium sp. [10–12]. Thermoanaerobacterium sac-
charolyticum, a thermophilic anaerobe that utilizes a broad

range of substrates including xylan and all naturally

occurring sugars present in biomass (although not crystal-

line cellulose), provides a prominent example of engin-

eering an organism with recently developed genetic tools

to produce a biofuel at high yield. Shaw et al. [13�]
eliminated acetic and lactic acid production resulting in

a strain that produces ethanol at a yield of 0.46 g ethanol/g

xylose or other sugars. Such yield was observed under a

variety of conditions (e.g. different substrate concen-

trations, batch and continuous culture), although it was

not demonstrated in industrial growth media. In another

notable genetic engineering feat reported by Cripps et al.
[14�], Geobacillus thermoglucosidasius, a thermophile

capable of oligosaccharide fermentation, was engineered

by deletion of ldh and pfl and upregulation of pdh to

produce industrially relevant yields of 0.42–0.47 g etha-

nol/g hexose sugar, although the reported yield was

slightly less for pure pentose sugars.

Study of Caldicellulosiruptor sp. as potential CBP organ-

isms has recently been initiated, motivated in part by

their having the highest temperature optima among

described cellulolytic microbes, and the finding that

cultures are able to achieve substantial solubilization of

lignocellulose without pretreatment [15�]. The architec-

ture of the cellulase system of members of this genus

features multiple catalytic enzyme modules in single

enzymes [16], and appears to be different from both

the noncomplexed paradigm exemplified by the cellu-

lases of T. reesei and other aerobic fungi, and cellulosome
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026
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paradigm exemplified by C. thermocellum and other anae-

robes. Active investigation is underway to develop

genetic tools for manipulation of this organism with

promising results presented at scientific meetings and

submitted.

Among cellulosome-forming bacteria, C. thermocellum
and C. cellulolyticum are the most well-developed as

potential CBP hosts. There has been substantial recent

progress with respect to development of tools for genetic

manipulation [17] and subsequent metabolic engineer-

ing [18��,19], including production of butanol in the case

of C. cellulolyticum [19]. Reported values of key perform-

ance parameters are shown in Tables 1 and 2, which

includes both native cellulose-utilizing microbes and

native hemicellulose-utilizing microbes. An early com-

prehensive analysis of the economic benefits of CBP

described an advanced scenario with a very low pro-

jected cellulosic ethanol selling price based on a titer of

50 g/L, 92% hydrolysis yield after pretreatment, 90%

metabolic yield after fermentation, and a rate of 1.39 g/

L/h [20]. The Argyros et al. result with a co-culture of C.
thermocellum and T. saccharolyticum [18��] is remarkably

close to meeting these milestones, although it has yet to

be shown with a real-world substrate under industrial

conditions.

The concept of a ‘titer gap’ — a difference between the

maximum concentration of a compound that is tolerated

when it is added to a culture and the maximum con-

centration of that compound that is produced — is

relevant when considering organism development for

CBP via the native strategy. The titer gap may be

defined with respect to either growth or metabolism,

and is often not the same for these two points of

reference. A substantial titer gap is a salient feature

of most microbes of interest for the native strategy In

the case of C. thermocellum, for example, several studies

have established that strains able to grow in the pre-

sence of added ethanol at concentrations exceeding

50 g/L can readily be obtained by serial transfer

[21,22], and uncoupled metabolism at yet higher con-

centrations seems reasonable to expect. However, the

maximum concentration of ethanol produced by this

organism in pure culture remains at about 25 g/L

[21,23]. Production of ethanol at concentrations at or

exceeding the tolerance exhibited in exogenous

addition experiments has been observed in the case

of engineered strains of T. saccharolyticum, for which

titers �65 g/L have been obtained (Hogsett, DA,

abstract 2.3.2.3, Biochemical Conversion Platform Peer

Review, Denver, CO, February 2011).

Experience with industrial microorganism development

provides increasing support for the proposition that

with sufficient effort, stoichiometric yields of engineered

products can be achieved, and the titer gap closed.
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026
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Prominent examples include ethanol production in yeast

and E. coli, and, more recently, engineering of E. coli to

produce propane diol at 81% of theoretical yield and a

titer of 135 g/L [24]. It can be expected that this is also

true for less well-established organisms of interest for the

native CBP development strategy, with T. saccharolyticum
providing the most fully developed example to date

(Hogsett, DA, abstract 2.3.2.3, Biochemical Conversion

Platform Peer Review, Denver, CO, February 2011).

Progress with hosts for the native CBP strategy will be

slower because tools are less developed, although this

will probably become less true over time. The case for

eventual success via the native strategy is somewhat less

clear with respect to industrial robustness, including

compatibility with practical pretreatments, fermentation

at high substrate (and hence solids) concentration in

industrial growth media, and strain management and

stability. We suggest that these and other dimensions

of industrial robustness are a key area for investigation

aimed at advancing the native strategy.

The recombinant strategy
The primary challenge for the ‘recombinant strategy’ is

heterologous expression of sufficient quantities of several

types of cellulase and/or hemicellulase enzymes to permit

rapid growth and conversion of pretreated lignocelluloses.

Total enzyme activity produced by the host can be

increased by improving both total expression and specific

activity of the enzyme system. Moreover, specific activity

of the system is a function of both the composition of the

system and the specific activity of the components. Given

the expense of aerating large culture volumes, as well as

loss of product yield and feedstock energy as a result of

aerobic respiration, non-oxidative metabolism is highly

desirable and is likely required for many applications.

The recombinant strategy has been pursued in a number

of host organisms including S. cerevisiae, E. coli, and

Bacillus subtilis, with work in S. cerevisiae the most

advanced to date.

Significant advances have recently been made with regard

to expression level of cellulases in S. cerevisiae. As shown

in Figure 2, the report of Ilmen et al. represents a large

increase in the maximum titer achieved for two critical

cellulases Cel6A (CBH1) and Cel7a (CBH2). The cellu-

lase expression levels achieved in this study correspond to

4–5% of total cell protein, which meets the calculated

levels for growth on cellulose at rates required for an

industrial process [3��]. However, data for heterologous

cellulase production in yeasts in Figure 2 and in the

literature in general have been reported for aerobic cul-

tures with cell densities in the range of approximately 5 g/

L (shake flask) to 50 g/L (fed batch, bioreactor), whereas

CBP will involve anaerobic cultures with cell densities at

the low end of this range. Assessing the impact of the

advances reported by Ilmen et al., and future advances,

will require data obtained under anaerobic conditions
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026
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Comparison of expression levels for Cel7A and Cel6A in S. cerevisiae in

terms of both the titer achieved and the percentage of total cell protein

(TCP). A [63], B [64], C [65], D [66], E [67], F [68], G [69], H [63], I [70],

J [71], K [69]. Note: percentage of TCP for Cel7A in Ilmen et al. was

calculated by assuming a cell yield of 0.45 g cells/g glucose, and a

protein content of dry cell weight of 42% [72].
under industrial conditions. While such data have not

been reported to date in the literature, the authors of this

study have observed anaerobic production of CBHs at

roughly equivalent levels on a percentage to total cell

protein (TCP) basis to the maximum shown in Figure 2

(unpublished data).

One approach to increasing the specific activity of recom-

binantly expressed enzyme systems is to mimic systems

already available in nature, and in some cases already

industrially applied. Table 3 depicts the ongoing work to

create a complete enzymatic system for S. cerevisiae,
relying on data generated by studies that have examined

enzymatic systems for the breakdown of lignocellulose

via proteomic analysis. Enzyme diversity from Tricho-
derma reesei, an organism whose enzymes will be used

to hydrolyze lignocellulose at an industrial scale, and from

the rapid cellulose utilizer C. thermocellum was compared

to the enzyme diversity functionally expressed in S.
cereivisae. Compared to the Herpoel-Gimbert study [25]

100% of the functional enzyme classes identified in T.
reesei have been expressed in S. cerevisiae, whereas 80% of

those identified in Nagendran et al. have been expressed

in S. cerevisiae [26]. Of particular note is recent work that

has shown expression of many enzyme categories in S.
cerevisiae, utilizing >300 genes in the process (Brevnova

et al. patent applied for). In contrast, but not surprisingly,

expression of complexed enzyme system components is
Please cite this article in press as: Olson DG, et al. Recent progress in consolidated bioprocessin
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not as advanced as for non-complexed components. Using

the enzymatic components of the C. thermocellum system

as an example, only about 20% of the diversity has been

functionally expressed.

Another approach to increasing specific activity is to

mimic the cellulosome system of complexed enzymes

bound to the cell surface. This approach has shown

promising results with activity enhancement of 4.5-fold

for complexed systems compared with the same enzymes

in a non-complexed system [27]. Surface display and

endoglucanase activity have been demonstrated in yeast

in several instances [28–30]. Recombinant cellulosomes

capable of solubilizing 30% of 10 g/L PASC in 73 hours

were developed by expressing a scaffoldin and 3 enzy-

matic subunits in a single yeast strain [31]. By expressing

cellulosome components separately, a different group was

able to achieve 60% solubilization of 10 g/L PASC in

50 hours [32]. However in both of these cases, the cellu-

losome-displaying yeast were unable to grow on PASC,

and hydrolysis required a high cell density (OD600 � 50)

using cells pre-cultured in rich media.

Once an enzyme system is created, the components of

that system must be combined in an organism to allow

cellulose and/or hemicellulose hydrolysis. The first report

of anaerobic conversion of phosphoric acid swollen cel-

lulose (PASC) into ethanol using S. cerevisiae at low cell

densities, to our knowledge, was published in 2007, where

the authors demonstrated �27% conversion of PASC in

192 hours [33]. As per recent reports, more rapid conver-

sion of PASC into ethanol was achieved by optimizing the

level and ratios of cellulase enzymes in S. cerevisiae using

delta-integration of cellulase genes followed by screening

for PASC solubilization [34]. The yield of 75% of theor-

etical ethanol suggests that further increases in enzyme

production are necessary and/or additional enzymes to

achieve complete conversion. Expression of a single

engineered endoglucanase, Bscel5 at very high levels

(�5.9% of total cell protein) in Bacillus subtilis has been

shown to allow conversion of 7 g/L reactive amorphous

cellulose (RAC) into 4 g/L lactate in 144 hours [35]. A

recent patent application describes the construction of S.
cerevisiae strains expressing cellulases that can produce

small amounts of ethanol directly from Avicel (a crystal-

line cellulose) by virtue of these expressed enzymes,

which to our knowledge is the first report of its kind

[36]. Using strains described in this patent application the

authors have observed 80% conversion of PASC into

ethanol by recombinant S. cerevisiae in 96 hours, and

90% conversion of bacterial microcrystalline cellulose

into ethanol in 144 hours, using low inoculums (5% v/

v) (Unpublished results). While these studies demon-

strate the principle that cellulose chains can be hydro-

lyzed by recombinant enzyme systems, they have all been

carried out on extremely reactive substrates, and all but

one on amorphous cellulose. Substrates available in
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026

Current Opinion in Biotechnology 2011, 23:1–10

http://dx.doi.org/10.1016/j.copbio.2011.11.026


COBIOT-987; NO. OF PAGES 10

Please cite this article in press as: Olson DG, et al. Recent progress in consolidated bioprocessing, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026

Table 3

Expression of cellulase components in S. cerevisiae

Type of Activity

Cellobiohydrolase/
Exoglucanase

GH7 1 Reference
GH6 1 Ilmen et al. (2011)1
GH5 2 Accessories application
GH9 3 van Rooyen R, Hahn-Hägerdal B,  La Grange DC, van Zyl WH. (2005) J Biotechnol

GH48 4 La Grange DC, PretoriusI S, Van Zyl WH (1996) Appl Environ Microbiol 62:1036
GH7 5 Margolles-Clark E, Tenkanen M, Nakari -Setala T, Penttilä M (1996) Appl Environ2
GH5 6 Romanos MA, Makoff AJ, Fairweather NF, Beesley KM, Slater DE, Rayment FB, Payne2

GH12 7 Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996) Eur J Biochem 240:1042
GH61 8 Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward2
GH45 9 De Wet BJM, Van Zyl WH, Prior BA (2006) Enzyme Microb Technol 38:6492
GH6 10 Lilly M, Fierobe HP, van Zyl WH, Volschenk H. (2009) FEMS Yeast Res  9:12362
GH? 11 Nagai M, Ozawa A, Katsuragi T, Kawasaki H, Sakai T. (2000) Biosci Biotechnol Biochem2
GH9 12 Becerra M,  Diaz Prado S, Cerdan E, Gonzalez Siso M (2001) Biotech Lett 23:332
GH8 2

xyloglucanase GH74 2
β-glucosidase GH3 3

GH11 4
GH10 2
GH3 5
GH43 2
GH26
GH5 6
GH2

GH26 2
CE5
CE1 2

GH54 2
GH43

ferulicacid/cinnamoyl
esterase

CE1
2

SWOSwollenin

xylanase

β-xylosidase

Endoglucanase

β-mannosidase

arabinofuranosidase

acetylxylanesterase

β-mannanase

8
glucuronoyl esterase CIP2 2

GH62Arabinosidase
GH28Polygalacturonase 11

α-mannosidase GH47 *****
β 1,3-glucanase GH55
α-galactosidase 7
β-galactosidase GH35 12
α-glucuronidase GH67 9
Acetyl esterase CE16

CipAScaffoldin 10****
Anchor protein SdbA
Anchor protein Orf2p
Anchor protein OlpB

GH16Lichenase
Putative Esterase CE12
Putative Esterase CE3

Putative Glycosidase GH43
Putative   Pectinase PL11
Putative Pectinase PL1 2
Putative Pectinase PL1, PL9

Serpin Proteinase Inhibitor

Multifunctional
(Endoglucanse, ?) GH9, GH44

Multifunctional
(Endoglucanse, Esterase) GH5, CE2

Multifunctional
(Endoglucanse, ?)

GH5, GH26

Multifunctional
(Endoglucanse,

arabinofuranosidase)
GH5, GH43

Multifunctional (Xylanase,
Esterase)

GH10, CE1

Multifunctional (Xylanase,
Esterase)

GH11, CE4

*Enzymes of unreported function are not included
**Numbers given are example references
*** C. thermocellum contains multiple versions of several
****Chimeric scafolding expressed, much smaller than
*****Native S. cerevisiae?-mannosidase is localized to ER
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industrial processes are unlikely to be as amorphous in

character or as reactive as these model substrates, how-

ever, and development of CBP organisms using PASC

may mask the need for enzymes targeting crystalline

cellulose.

In addition to the advances in cellulose utilization, there

has been some work directed toward obtaining polymeric

hemicellulose utilization. An obvious prerequisite to

hemicellulose utilization is the ability to use the mono-

mer sugars, including xylose, galactose, arabinose, man-

nose, and others resulting from hydrolysis. It is also often

necessary to be able to consume these sugars in the

presence of glucose, or cello-oligomers. While several

candidate organisms such as E. coli and B. subtilis already

possess this ability, it must be engineered into S. cerevi-
siae. Pentose fermentation by S. cerevisiae is relatively

advanced, and has been reviewed elsewhere [37]. How-

ever, one new direction for the field is the creation of

strains that co-ferment cellobiose and xylose [38]. In

these strains a cellodextrin transporter is coupled with

xylose fermentation capability, relieving inhibition of

xylose utilization by glucose. Because cellobiose is a

potent inhibitor of cellulases, industrial processes where

separate hydrolysis and fermentation are used are unli-

kely to have high concentrations of cellobiose and xylose,

but this technology may be applicable to CBP processes if

cellobiose or other cello-oligomers can be created and

rapidly co-fermented with xylose.

As discussed above (Table 3), many if not all of the

necessary enzyme classes for hemicellulose hydrolysis

have been expressed in S. cerevisiae. A recent publication

demonstrates that a combination of xylanase, b-xylosi-

dase, and b-glucosidase in a xylose utilizing background

yielded 76% conversion of oligomers from pretreated rice

straw [39], although these results were obtained using

very high cell densities (100 g/L wet cell weight). In

addition to this study, several xylan fermenting E. coli
strains have been developed. A binary culture of E. coli
strains expressing xylanase enzymes was shown to allow

63% of the birchwood xylan initially present to be con-

verted into ethanol without the addition of exogenous

enzymes [40]. Another example of hemicellulase engin-

eering in E. coli demonstrated the production of fatty acid

ethyl esters from birchwood xylan by expressing the

endoxylanase Xyn10B and the xylanases Xsa. In this

case, the expression of just two enzymes was sufficient

to support growth on xylan [41�].

Microbial cellulose utilization fundamentals
There are substantial and perhaps underestimated

additional phenomena that arise when considering

solubilization of cellulose and other insoluble biomass

components by cultures of saccharolytic microbes as com-

pared to solubilization by cell-free enzymatic systems.

Examples of these phenomena include bioenergetics
Please cite this article in press as: Olson DG, et al. Recent progress in consolidated bioprocessin
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[42], implications of attachment of cells to the surface of

insoluble substrates and expression of saccharolytic

enzymes on the cell surface with respect to kinetics and

substrate capture [43], and metabolic control related to the

choice between investing cellular resources in cellulase or

growth. There are also some foundational questions of

great relevance to CBP for which there are not yet defini-

tive answers, notably including:

� Under what conditions (e.g. temperature, pH, substrate

particle size, presence of multiple microorganisms with

complementary capabilities) does microbial cellulose

utilization proceed fastest?

� How do saccharolytic microbes compare to cell-free

cellulase systems as agents of biomass solubilization

with respect to key variables such as rate, yield, and the

extent of pretreatment required?

While outstanding issues remain, understanding

microbial cellulose utilization has received an increased

level of effort in the last five years with many exciting

findings in the publication pipeline. Highlights of pub-

lished work during this period include systematic study of

the implications of enzymes displayed on the cell surface

[31,32,43], indications of cellulose binding-triggered gene

expression [44,45,46,47�,48,49,50], quantitative demon-

stration of enzyme-microbe synergy [4], the first studies

involving targeted knockout of cellulase components in

an obligate anaerobe [8,51�], and demonstration of high

conversion of unpretreated lignocellulose by microbial

cultures [15�]. A particularly important focus research

during the coming years will be to extend fundamen-

tals-inclusive studies to include lignocellulosic substrates

and operation under conditions approaching those that

would occur in an industrial process.

Conclusions
During the last five years, key advances have been made

in organism development for CBP, while at the same time

remaining barriers have been brought into focus. For the

native strategy, key advances include development of

genetic systems for several cellulolytic anaerobic bacteria,

engineering a cellulolytic host to produce butanol, and

engineering of a thermophilic bacterium to produce

ethanol at commercially attractive yields and titers. For

the recombinant strategy, key advances include high-

yield conversion of model cellulosic substrates and heter-

ologous expression of CBH1 and CBH2 in yeast at levels

believed to be sufficient for an industrial process. For

both strategies, increased emphasis on realizing high

performance under industrial conditions is needed.

Demonstrating high fermentation yields and titer from

practical, pretreated lignocellulosic feedstocks is a

particular priority for the native strategy. Co-expression

of multiple proteins allowing utilization of such pre-

treated feedstocks with high hydrolysis yields and reason-

able rates is a particular priority for the recombinant
g, Curr Opin Biotechnol (2011), doi:10.1016/j.copbio.2011.11.026
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strategy. Continued exploration of the underlying funda-

mentals of microbial cellulose utilization is likely to be

useful in order to guide the choice and development of

CBP systems.
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