

Available online at www.sciencedirect.com

Ethanol production by engineered thermophiles $\stackrel{\text{\tiny{\scale}}}{=}$ Daniel G Olson^{1,3}, Richard Sparling² and Lee R Lynd^{1,3}

We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanolproducing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved.

Addresses

¹ Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States

² Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 5V6

³ BioEnergy Science Center, Oak Ridge, TN 37830, United States

Corresponding author: Lynd, Lee R (Lee.R.Lynd@Dartmouth.edu)

Current Opinion in Biotechnology 2015, 33:130-141

This review comes from a themed issue on **Energy biotechnology** Edited by **E Terry Papoutsakis** and **Jack T Pronk**

http://dx.doi.org/10.1016/j.copbio.2015.02.006

0958-1669/© 2015 Elsevier Ltd. All rights reserved.

Introduction

There is broad consensus that biomass has an important role to play in a low-carbon energy future [1], and that transport fuels are among the highest priority uses for biomass [2]. Ethanol is the biofuel produced in the largest amounts today worldwide, with essentially all resulting from fermentation by the mesophilic yeast *Saccharomyces cerevisiae* or closely related species [3].

Ethanol production using thermophilic bacteria has been suggested based on several factors. The property of

thermophiles for which there is the strongest case for economic impact is the ability of some microbes from this group to rapidly ferment cellulosic biomass without added enzymes [4,5]. In addition, processing at elevated temperatures reduces the extent of heat exchange, both following pretreatment and prior to distillation, and may reduce the risk of contamination [4].

Notwithstanding the interest in thermophiles, most organisms in this class do not naturally carry out a homoethanol fermentation, and do not naturally exhibit high product tolerance. Strain development, often involving metabolic engineering, is required in order to address these deficiencies. This in turn requires advances in understanding the underlying metabolism of thermophilic microbes. As we make progress in strain development, we are learning that the metabolism of thermophilic anaerobes is more complex and more distinctive than previously imagined.

In this report we review recent understanding of the metabolism of thermophilic microbes, focusing primarily but not exclusively on anaerobes that ferment cellulose or hemicellulose. Thereafter, we document recent progress toward engineering these microbes to produce ethanol at high yield, and in some cases titer.

Metabolic pathways of ethanol production in thermophiles

The native capabilities of thermophilic organisms to produce ethanol have been reviewed recently ([6–9], Ana Faria Tomás, PhD thesis, Technical University of Denmark, 2013). In this work we will focus only on those thermophilic organisms that have been engineered for increased ethanol production. This includes several obligate anaerobic bacteria: *Thermoanaerobacterium saccharolyticum*, *Thermoanaerobacter ethanolicus*, *Thermoanaerobacter mathranii*, *Clostridium thermocellum* and *Caldicellulosiruptor bescii*, the facultative anaerobic bacterium Geobacillus thermoglucosidasius, the anaerobic archaeon *Pyrococcus furiosus* and the methylotrophic yeast *Ogataea polymorpha*. All of the organisms described above have had their genomes sequenced, allowing basic metabolic reconstructions to be performed computationally [10^{••}].

Compared to a decade ago, understanding of converting pyruvate and various electron carriers into fermentation products has deepened substantially. Moreover this

Current Opinion in Biotechnology 2015, 33:130-141

 $^{^{*}}$ Note on formatting — in order to clarify the differences between genes, proteins and enzymes, names of genes are presented in lower case italic, proteins are presented in title case roman and enzyme activities are presented in all caps.

conversion is now known to be more complicated than formerly thought, particularly with respect to redox reactions. As might be expected given these observations, results of efforts to enhance ethanol production in thermophilic microorganisms via targeted molecular modifications have often not yielded the results predicted or desired. There are two key problems:

- 1. Although we have a good general understanding of the individual steps in fermentation pathways that lead to ethanol production, we do not fully understand the complex interactions between these various pathways.
- 2. For a given reaction, we do not know which gene or genes are responsible due to inaccuracies in annotation and apparent functional redundancies within the genomes.

Most organisms, like the ones discussed above, live in complex microbial communities where readily metabolized organic matter is a rather scarce commodity that requires solubilization of complex substrates [11]. This has led to the development of multiple fermentation branches leading to different end-products. The thermodynamic efficiency of a given pathway can vary depending on a variety of factors, including concentrations of cofactors such as NAD+, NADP+, NADH, NADPH, Acetyl-CoA, HS-CoA, AMP, ADP, ATP, and PP_i, as well as the concentration of carbon intermediates and endproducts. The thermodynamics of the reactions are further modulated by both the temperature and the pH of the medium [10^{••}]. Figure 1 illustrates the various pathways of pyruvate dissimilation in the organisms discussed. It is hypothesized that the different pathways are necessary in order to provide metabolic flexibility.

One way to think about individual pathways within a metabolic network is by considering key elementary modes. The theoretical maximum ethanol yield of all of the organisms described here is one ethanol per pyruvate, and is described by equation 1, where the NADH is assumed to come from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction of glycolysis.

$$Pyruvate + NADH \rightarrow ethanol + CO_2$$
(1)

For the network shown in Figure 1, there are four elementary modes that allow ethanol production at the theoretical maximum, and are described by the various combinations of the following enzymes: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), pyruvate ferredoxin oxidoreductase (PFOR), nicotinamide ferredoxin oxidoreductase (NFO), formate dehydrogenase (FDH), aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH).

Of these enzymes, PDC performs non-oxidative decarboxylation of pyruvate whereas other enzymes (PDH, PFL and PFOR) perform oxidative decarboxylation. Although an important distinction, in each case there are additional enzymes which can transfer the electrons back to ethanol and thus reaction (1) is valid for all four modes.

The combinations of enzyme activities corresponding to the four elementary modes of high-yield ethanol production are described by Eqs. (2)–(5).

$$PDC + ADH$$
 (2)

$$PDH + ALDH + ADH$$
 (3)

$$PFL + FDH + ALDH + ADH$$
(4)

$$PFOR + NFO + ALDH + ADH$$
(5)

Modes of ethanol production from pyruvate

Since each mode can be identified by the enzyme used for pyruvate dissimilation (i.e. PDC, PDH, PFL or PFOR), we will use this enzyme name to refer to the whole mode. The PDC mode is frequently found in mesophilic organisms [12,13], however it is much less common in thermophiles (depending somewhat on the definition of a thermophile) and in this study it is only found in *O. polymorpha*. Although there are a variety of PDC enzymes with high thermostability [13], attempts to introduce this pathway into thermophilic bacteria have met with limited success [14,15]. It has been observed that the PFOR enzymes of some thermophilic archaea exhibit PDC activity [16,17], however none of these organisms have been shown to produce more than trace amounts of ethanol [10^{••}].

The PFL mode is not found in any of the high-yielding organisms in this study. Although several organisms have a PFL enzyme, none of them have the formate dehydrogenase (FDH) enzyme needed to transfer electrons from formate to ethanol. This strategy has, however, been used for mesophilic ethanol production [18].

The PDH mode is found in *G. thermoglucosidasius*. Although PDH is found in *C. bescii* and *O. polymorpha* as well, both lack the ALDH enzyme necessary to allow ethanol production via this mode (Figure 1), and instead likely use it to generate acetyl-CoA for biosynthesis.

The PFOR mode is found in many obligate anaerobes including: *C. thermocellum*, *T. mathranii*, *T. ethanolicus* and *T. saccharolyticum*. Organisms using this mode generate reduced ferredoxin. In order to produce ethanol at high yield, electrons from the reduced ferredoxin need to be transferred to nicotinamide cofactors (NAD⁺ or NADP⁺). This can be accomplished by the NAD(P)⁺-ferredoxin oxidoreductase (NFO) enzyme. Here we use NFO (alternatively FNO and FNOR) as a general term covering

A, B, C, and G: from Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R: Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 2012, 12:295. D and E are from Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R: Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-cultures to Improve Lignocellulosic Biofuel Production. PLOS ONE 2013, 8: e593625758. F: while based on Shaw et al. (2008), was complemented by manual search and BLAST to confirm that the NFOR is related to nfnAB, that the hyd is related to the bifurcating hydrogenases. A further Fe-Fe hydrogenase was observed in the genome. The absence of other genes was confirmed both from the annotation as well as BLAST anchored in C. thermocellum and T. thermohydrosulfuricum WC1, including lack of membrane bound RNF-type NFO. nfnAB: Presence/absence was based on Wang S, Huang H, Moll J, Thauer RK: NADP⁺ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron bifurcating enzyme complex in Clostridium kluyveri. J Bacteril 2010, 192: 5115-23. For C. thermocellum it was through the analysis by Rydzak T, Grigoryan M, Cunningham ZJ, Krokhin OV, Ezzati P, Cicek N, Levin DB, Wilkins JA, Sparling R: Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Appl Microbiol Biotechnol 2014, 98: 6497-6510. With respect to B and F it was through BLAST and side-byside location of both genes needed for nfnAB. The annotated genes in F corresponding to nfnAB were TheetDRAFT_0838 and 0839. Lower case (a) for PDC: based on Ma K, Hutchins A, Sung SJS, Adams MWW: Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci U S A 1997, 94: 9608-13. O. polymorpha: based on Ravin NV, Eldarov Ma, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova Oa, Mardanov AV, et al.: Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013, 14:837. Amino acid synthesis indicates organisms where this phenotype has been observed. Question marks indicate that amino acid production has not been reported in these organisms.

any reaction that transfers electrons from ferredoxin to a nicotinamide cofactor. Because of the difference in expected electronegativity between ferredoxin and NAD⁺, or NADP⁺, cells can take advantage of the $\Delta G^{\circ \prime}$ associated with this reaction to drive a thermodynamically unfavorable reaction. There are several classes of coupled NFO enzymes: RNF (rhodobacter nitrogenfixation) couples the NFO reaction (NAD⁺ specific) to transport of a Na⁺ or H⁺ ion across the membrane [19],

MBX (membrane-bound oxidoreductase) also couples the NFO reaction (NADP⁺ specific) to transport of H⁺ across the membrane (note that this has not been confirmed experimentally, but is suggested by protein sequence analysis) [20], NFN (NADH-dependent reduced ferredoxin:NADP⁺ oxidoreductase) couples the NFO activity with transhydrogenation (i.e. interconversion of NADH and NADPH) [21[•]]. Typically NFO activity is measured by enzyme assay with viologen dye. Unfortunately this is a somewhat crude measurement, since viologen dyes are known to react with a variety of compounds in addition to ferredoxin. Determining the exact nature of the coupling often requires intricate biochemical experiments. Therefore the presence of NFO activity is often determined by sequence similarity. *C. thermocellum* contains an *rnf* gene cluster, *P. furiosus* contains an *mbx* gene cluster [20]. *C. thermocellum*, *T. mathranii*, *T. ethanolicus* and *T. saccharolyticum each* contain an *nfnAB* gene cluster [22,23].

The bifunctional AdhE protein

In organisms using the PFL, PDH or PFOR modes for ethanol production, the ALDH and ADH reactions are commonly mediated by a single protein, AdhE. In fact, the presence of the *adhE* gene is correlated with ethanol production in many organisms [10**]. Furthermore, deletion of *adhE* has been shown to eliminate anaerobic ethanol production in all organisms where this deletion has been created: T. mathranii [24], Thermoanaerobacterium thermosaccharolyticum [25], C. thermocellum [26], T. saccharolyticum [26] and G. thermoglucosidasius (personal communication with Michael Danson). Indeed, the weak link appears to be the production of acetaldehyde. Numerous fermentative thermophiles have alcohol dehydrogenases, as is the case in Thermococcus guaymasensis, C. bescii and most other extreme thermophiles, yet they do not have *adhE* and do not produce ethanol. Thus it appears that the lack of conversion of acetyl-CoA to acetaldehyde (i.e. ALDH activity) is preventing ethanol production in those strains.

The *adhE* gene is a frequent target for spontaneous mutations in ethanol producing strains. Mutations have been observed in *adhE* in several *Clostridium thermocellum* strains adapted for increased ethanol tolerance $[27^{\circ}, 28^{\circ}]$, as well as one strain engineered for increased ethanol production by deletion of hydrogenase genes [29]. Mutations in *adhE* have also been observed in strains of *T. saccharolyticum* engineered for increased ethanol production (Zheng *et al.*, unpublished data).

AdhE is clearly an interesting target for metabolic engineering. Recently the crystal structure of the ADH domain of the AdhE protein from *G. thermoglucosidasius* was determined to 2.5 Å resolution [30]. This detailed structure will allow for better predictions of targeted mutations.

Aldehyde ferredoxin oxidoreductase (AOR) pathway

Of the organisms that produce ethanol from acetyl-CoA, the most common pathway for subsequent ethanol production involves the ALDH reaction, which converts acetyl-CoA to acetaldehyde. There is an alternative pathway, however, where acetyl-CoA is converted to acetate by acetyl-CoA synthetase (ACS, Eq. (6)) and then acetate

acetyl-CoA + ADP
$$\rightarrow$$
 Acetate + CoA + ATP (6)

acetate +
$$Fd(red) \rightarrow acetaldehyde + Fd(ox)$$
 (7)

This pathway was first suggested by White *et al.* in 1989 [31], and later mentioned as a theoretical possibility in *Clostridium ljungdahlii* [32], however direct evidence of the functioning pathway has only recently been presented [33[•]].

Acetate and ATP production

We have previously discussed elementary modes that allow for theoretical yield of ethanol production. There are a number of alternative modes for other fermentation products. Eq. (8) describes a mode for the production of acetate:

$$Pyruvate + NADH \rightarrow acetate + ATP + CO_2 + 2H_2$$
(8)

Comparing Eqs. (1) and (8) shows the tradeoff between ethanol and acetate or H_2 production, if electrons are diverted to hydrogen production, additional ATP can be generated by acetate kinase. Further energy can be conserved in the form of a proton motive force through the transfer of electrons from reduced ferredoxin to protons generating H_2 via a membrane-integral energy-conserving proton-translocating NiFe-hydrogenase. The generation of H_2 from NAD(P)H via a hydrogenase is not thermodynamically favorable, so organisms that produce exclusively acetate, CO₂ and H₂ (Eq. (8)), couple the transfer of electrons from ferredoxin to H₂ with the transfer of electrons from NADH to H₂ via an electronbifurcating hydrogenase [34^{••}].

Amino acid production

Amino acids are an often-overlooked fermentation endproduct. From a redox and carbon balance, the amino acids alanine and valine are equivalent to lactate (i.e. they consume pyruvate and NAD(P)H in a 1:1 ratio). Indeed alanine is a major end-product in wild type *Pyrococcus furiosus* [35], as well as a range of thermophilic Archaea and Bacteria [36]. Amino acids, including alanine and valine, as significant end-products have also been observed in *C. thermocellum* under certain growth conditions [37]. As we use molecular techniques to direct flux to a single end product, we need to be mindful of these alternative possibilities.

Metabolic engineering

For many years, the availability of genetic tools was a major limitation to engineering of thermophilic organisms. Over the past several years, genetic tools have been developed for the engineering of a variety of thermophilic organisms, including examples from the genera *Clostridium*, *Thermoanaerobacterium*, *Thermoanaerobacter*, *Geobacilus*, *Caldicellulosiruptor* [7,38–40], *Pyrococcus* [41], and *Ogataea* [42]. Technologies are being developed to further broaden the suite of organisms for which molecular engineering is available.

Thermoanaerobacterium saccharolyticum

T. saccharolyticum is a gram-positive anaerobic thermophile that was originally isolated for its ability to grow on xylan at pH < 4.5 [43]. It natively produces ethanol, acetate, lactate, H_2 and CO_2 .

Initial metabolic engineering of T. saccharolyticum JW/YS-485 involved the elimination of lactate production by deletion of the lactate dehydrogenase (1dh) gene, resulting in a 5% increase in ethanol yield [44,45°], Subsequent elimination of acetate production by deletion of phosphotransacetylase (*pta*) and acetate kinase (*ack*) resulted in a strain (ALK1) that produced only ethanol with yields of 90-100% of theoretical. This strain was cultivated in a continuous culture for 3000 h with increasing feed concentrations to produce strain ALK2, which achieved an ethanol yield of 92%, titer of 33 g/l and productivity of 2.2 g/l/h (Table 1) [45[•]]. In strain ALK2, both of the genetic modifications resulted in the chromosomal incorporation of an antibiotic resistance marker. Since only two antibiotic markers were available for T. saccharolvticum at the time, no further modifications could be performed with that strain. To overcome this problem, the *ldh* and *pta-ack* deletion strain was reconstructed with a maker recycling strategy $[46^{\bullet\bullet}]$. This new strain, M0355, had similar performance to ALK2, with an ethanol yield of 94%, titer of 25 g/l and productivity of 1.13 g/l/h (Table 1).

It has been shown that salt accumulation from pH control is a major factor limiting the growth of Thermoanaerobacterium strains [47]. Although strain M0355 did not produce significant quantities of organic acids, ethanol production resulted in the acidification of the medium due to uptake of ammonium. To reduce the need for pH control, the strain was engineered to use urea as a source of nitrogen [48]. This (along with adaptation and mutagenesis of the parent strain, M0863), enabled strain M1051 to achieve an ethanol titer of 54 g/l, while maintaining a yield of 88% of theoretical (Table 1). Further engineering was performed on this strain, including repair of a broken methionine gene and elimination of genes involved in the production of polysaccharide. The resulting strain, M1442, produced ethanol with a yield of 90% of theoretical, a titer of 61 g/l and a productivity of 2.13 g/l/h (Table 1). It is unclear whether these additional improvements were due to the genetic modifications or changes in fermentation conditions [49].

Another approach to engineering *T. saccharolyticum* was the deletion of hydrogenases to constrain electron flux.

Conversion of pyruvate to acetyl-CoA via PFOR produces reduced ferredoxin (Figure 1). The electrons from ferredoxin can either be used for hydrogen production or ethanol production, and theoretically a decrease in hydrogen production should result in an equivalent increase in ethanol production. Deletion of the *hfs* hydrogenase resulted in 96% reduction in hydrogen production and 95% reduction in acetate production, but no change in ethanol production [50]. The organism instead distributed carbon and electron flux to lactate production. Subsequent elimination of lactate production by deleting the *ldh* gene increased ethanol yield, but it was still only 67% of theoretical (Table 1).

Thermoanaerobacter mathranii

Although it is a different genus, T. mathranii BG1 (wild type) is an anaerobic thermophile similar in physiology to T. saccharolyticum. It has a strong native ability to produce ethanol, with yields of 62-90% of the theoretical maximum [24,51,52]. The ethanol yield depends on the carbon source, with mannitol giving the highest yield, followed by xylose and then glucose. Several engineering strategies have been pursued to further increase the ethanol yield. In the wild type strain, the carbon flux not directed to ethanol production is directed to lactate and acetate production. The first strategy was deletion of lactate dehydrogenase in strain BG1 to generate strain BG1L1, which resulted in an improvement in ethanol yield of 3% [24] to 35% (Table 1) [52]. This improvement was seen on several different substrates, including glucose, xylose and mannitol.

A second engineering strategy attempted to increase the availability of reducing equivalents by expressing glycerol dehydrogenase (gldA) and feeding the strain glycerol in addition to either glucose or xylose [52]. Expression of gldA under control of a constitutive promoter led to a 55% decrease in ethanol production. Expression of gldA under control of a xylose-inducible promoter, in combination with a deletion of *ldh*, led to a 20% increase in ethanol production (compared to the *ldh* deletion alone). It is difficult to know the relative effect of the difference in promoter (constitutive versus xylose-inducible) compared with the difference in genetic background (wild type versus *ldh* deletion), since the factors were not tested separately. A further confounding factor is that the strains expressing gldA were found to consume at least some of the glycerol added to the media, but in many cases this was not factored into the ethanol yield calculations. This strain produced ethanol at a yield of 94% of theoretical (Table 1) [52].

A third engineering strategy was overexpression of the bifunctional alcohol and aldehyde dehydrogenase, adhE, which increased ethanol production by 10% compared with the parent strain (*ldh* deletion), during growth on xylose. Because the adhE gene was under the control of a

Table 1

Theoretical yield calculations assume that one glucose (or equivalent) molecule can be converted into two ethanol molecules, and one xylose molecule can be converted into 5/3 ethanol molecules. In cases where the amount of substrate consumed was not reported, it was assumed that the substrate was completely consumed

Pictal	Organism	Strain	Description	Yield	Titer	Productivi	ty Temperature	e Reference	Notes
InteractionInteractio				% theoretica	d .				
	PDC mode			maximum	g/I	g/l/h	°C		
Control<	Ogataea polymorpha	DL-1 356	wild type	34%	13.0	-	48°C	Grabek-Lejko et al 2011	glucose, table 1
Non-watching<	Ogataea polymorpha Ogataea polymorpha	DL-1 356 mcHpGSH2 DL-1 356 mcHpGSH2	overexpressing gamma glutamylcysteine synthetase overexpressing gamma glutamylcysteine synthetase	96%	45.0	0.99	48°C 48°C	Grabek-Lejko et al 2011 Grabek-Lejko et al 2011	glucose, figure 1
James and set of the set of	Goobacillus thormosluposidarius	TM90	Idb delation	51%			45°C	Van rod at al. 2012	accuming maximum theoretical othered yield
		11003		5176	-	-	45.0	van zyrei al. 2013	of 0.51 g ethanol per g glucose
Can Nate And Can and	Geobacillus thermoglucosidasius	TM89 pGO111	Idh deletion expression wild type PDC from Gluconobacter oxydans	47%	•		45°C	Van zyl et al. 2013	assuming maximum theoretical ethanol yield of 0.51 g ethanol per g glucose
	Geobacillus thermoglucosidasius	TM89 pGOF111	Idh deletion expression codon harmonized PDC from	69%	-	-	45°C	Van zyl et al. 2013	assuming maximum theoretical ethanol yield
	PDH mode		Giuconobacter oxydans						or 0.5 r g entanoi per g glucose
	Geobacillus thermoglucosidasius	NCIMB 11955	wild type	22%	3.5	0.54	60°C	Cripps et al. 2009	corrected for ethanol in gas phase
	Geobacilius thermoglucosidasius Geobacillus thermoglucosidasius	TM236	Idh and pfl deletions	60%	6.4	0.86	60°C	Cripps et al. 2009 Cripps et al. 2009	corrected for ethanol in gas phase
	Geobacillus thermoglucosidasius	TM180	Idh deletion, pdh upregulatd	84%	14.5	2.23	60°C	Cripps et al. 2009 Cripps et al. 2009	corrected for ethanol in gas phase
ProblemProblemIntermediation starting in the starting intermediation starting in 	Geobacillus trermogiacosidasids	11012-92	an and pri deletions, pun opregulated	3076	13.8	2.12	000	Cripps et al. 2003	confected for estation in gas phase
The mean of the set o	PFOR mode	wt	wild type	669/	17	0.29	50°C	Decai Querinet and Lund 2004	alucase table 1 rate calculated from figure 4
Normality DescriptionNormal Problem Probl	Thermoanaerobacterium saccharolyticum	TD1	Idh deletion	69%	1.8	0.32	50°C	Desai, Guerinot and Lynd 2004 Desai, Guerinot and Lynd 2004	glucose, table 1, rate calculated from figure 4
	Thermoanaerobacterium saccharolyticum	WT	wild type	75%	16		55°C	Shaw et al. 2008	xvlose table S1
	Thermoanaerobacterium saccharolyticum	L-ldh	ldh deletion	79%	1.7	-	55°C	Shaw et al. 2008	xylose, table S1
	I hermoanaerobacterium saccharolyticum Thermoanaerobacterium saccharolyticum	pta/ack ALK1	pta-ack deletion Idh, pta-ack deletion	100%	2.2	:	55°C	Shaw et al. 2008 Shaw et al. 2008	xylose, table S1 xylose, table S1
	Thermoanaerobacterium saccharolyticum	WT	wild type	60%	3.4		55°C	Shaw et al. 2008	xylose, table S2
NormalizationWithin Provide All and and Provide All and and 	Thermoanaerobacterium saccharolyticum	ALK2 ALK2	ldh, pta-ack deletion, evolved in chemostat	92%	33.0	2.20	55°C	Shaw et al. 2008	xylose, grown in chemostat, figure S1
	Thermoanaerobacterium saccharolyticum	Wild type	wild type	58%	14		55°C	Show et al. 2011	cellobiose table 1
	Thermoanaerobacterium saccharolyticum	M0350	pyrF, pta-ack deletion	56%	0.6		55°C	Shaw et al. 2011	cellobiose, table 1
	Thermoanaerobacterium saccharolyticum Thermoanaerobacterium saccharolyticum	M0350(pMU424) M0353	pyrF, Idh deletion, pta-ack deletion repaired pyrF, pta-ack, Idh deletion	70%	1.7		55°C 55°C	Shaw et al. 2011 Shaw et al. 2011	cellobiose, table 1 cellobiose table 1
Temmonological matrix constraintModepack of Sectorand the sector<	Thermoanaerobacterium saccharolyticum	M0355	pta-ack, ldh deletion	59%	0.8		55°C	Shaw et al. 2011	cellobiose, table 1
	Thermoanaerobacterium saccharolyticum	M0355	pta-ack, ldh deletion	94%	25.3	1.13	55°C	Shaw et al. 2011	cellobiose, figure 2
	Thermoanaerobacterium saccharolyticum	YS485	wild type	47%	1.2		55°C	Shaw et al. 2009	cellobiose, table 2
	Thermoanaerobacterium saccharolyticum Thermoanaerobacterium saccharolyticum	HKO1 HKO2	ech deletion	46%	1.3		55°C	Shaw et al. 2009 Shaw et al. 2009	cellobiose, table 2 cellobiose, table 2
	Thermoanaerobacterium saccharolyticum	HKO3	hfs deletion	41%	0.9		55°C	Shaw et al. 2009	cellobiose, table 2
ImmergencicationMCG PMik byth dataco PMik byth dataco 	Thermoanaerobacterium saccharolyticum	HKO5	ech, hfs deletion	39%	0.8		55°C	Shaw et al. 2009	cellobiose, table 2 cellobiose, table 2
Tempore existence used unique de la construcciónAl 20prine de la construcciónentre de la	Thermoanaerobacterium saccharolyticum	HKO6 HKO7	hfs, hydA deletion	32%	0.5	:	55°C	Shaw et al. 2009 Shaw et al. 2009	cellobiose, table 2
Intermedication scattering The measure back in a data back in data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole state, it data back in general part with CPCF of the hole 	Thermoanaerobacterium saccharolyticum	ALK2	pta-ack, Idh deletion	101%	2.5	-	55°C	Shaw et al. 2009	cellobiose, table 2
Temperspectacient matching with the state is approximate with the state is appro	Thermoanaerobacterium saccharolyticum	M0863	pta-ack, ldh deletion, evolved for ethanol tolerance	79%	3.8		55°C	Shaw et al. 2012	cellobiose, table 2
Internative State in National State St	Thermoanaerobacterium saccharolyticum	M1051	pta-ack, ldh deletion, expressing ureABCDEFG at ldh locus	85%	12.6		55°C	Shaw et al. 2012	cellobiose, table 2
Theorea M42 Apple Add Add Add Add Add Add Add Add Add Ad	Thermoanaerobacterium saccharolyticum Thermoanaerobacterium saccharolyticum	M1051 M1051	pta-ack, Idn deletion, expressing ureABCDEFG at Idn locus pta-ack, Idh deletion, expressing ureABCDEFG at Idh locus	88%	12.6	0.72	55°C	Shaw et al. 2012 Shaw et al. 2012	cellobiose, figure 3 cellobiose, figure 2
Personasciencide metricing hermonisciencide metricing herm	Thermoanaerobacterium saccharolyticum	M1442	Δpta-ack Δldh Δor796 urease metE Δeps	90%	61.0	2.13	55°C	Herring et al. 2012	cellulose with added enzyme, data from text
Improve subscription in the subscription is bit in t	Thormoonoorobactor mathrapii	RG1	wild type	629/	16		70°C	Vac and Mikkelson 2010a	growth on vuloco, coloulated from data from figure 3
Immerschelter mittratiB01witk type to deckon, gab not markins, syles inductible promotion011070°<	Thermoanaerobacter mathranii	BG1G1	Idh deletion, gldA from T. maritima, xylose inducible promoter	83%	1.8		70°C	Yao and Mikkelsen 2010a	growth on xylose, calculated from data from figure 3 growth on xylose, calculated from data from figure 3
Internationalization matrixed BB(1) Internatinin matrixed BB(1) I	Thermoanaerobacter mathranii Thermoanaerobacter mathranii	BG1 BG1L1	wild type Idb deletion	68%	1.6	:	70°C 70°C	Yao and Mikkelsen 2010a Yao and Mikkelsen 2010a	growth on xylose, figure 4 growth on xylose, figure 4
Internationation matrixed BG1.1 Mediation BG1.4 Mediation Mediation <td>Thermoanaerobacter mathranii</td> <td>BG1G1</td> <td>ldh deletion, gldA from T. maritima, xylose inducible promoter</td> <td>94%</td> <td>2.3</td> <td>-</td> <td>70°C</td> <td>Yao and Mikkelsen 2010a</td> <td>growth on xylose, figure 4</td>	Thermoanaerobacter mathranii	BG1G1	ldh deletion, gldA from T. maritima, xylose inducible promoter	94%	2.3	-	70°C	Yao and Mikkelsen 2010a	growth on xylose, figure 4
Immediate 	Thermoanaerobacter mathranii	BG1L1	Idh deletion	83%	4.6		70°C	Georgieva et al. 2008	glucose and xylose, from table 1
Intermonancelector muturationBG1E1bit deletion, addit compared number of the deletion, addition addit	Thermoanaerobacter mathranii	BG1	wild type	84%	2.3		70°C	Yao and Mikkelsen 2010b	xylose, from table 4
InstructureDescriptionDescriptio	Thermoanaerobacter mathranii	BG1L1	Idh deletion	87%	2.4		70°C	Yao and Mikkelsen 2010b	xylose, from table 4
Thermonancolation ethanoclas JAV20 Thermonancolation ethanoclas JAV20 with yop with yop with yop with yop hermonancolation ethanoclas JAV20 with yop hermonancolation ethanoclasvith yop hermonancolation ethanoclas with yop hype foeldoin ype foeldoin ype foeldoin hermonancolation ethanoclasvith yop hermonancolation ethanoclas with yop hermonancolation ethanoclas hermonancolation ethanoclas with yop hermonancolation ethanoclasvith yop hermonancolation ethanoclas with yop hermonancolation ethanoclas hermonancolation ethanoclas hermonancolation ethanoclasvith yop hermonancolation ethanoclas hermonancolation ethanoclas hermonancolation ethanoclas hermonancolation ethanoclas hermonancolation ethanoclasvith yop hermonancolation ethanoclas hermonancolation ethanoclas <b< td=""><td>i nermoanaerobacter mathranii</td><td>BGIEI</td><td>Idn deletion, adne expression with xylose inducible promoter</td><td>95%</td><td>2.6</td><td>-</td><td>70-0</td><td>Yao and Mikkelsen 2010b</td><td>xylose, from table 4</td></b<>	i nermoanaerobacter mathranii	BGIEI	Idn deletion, adne expression with xylose inducible promoter	95%	2.6	-	70-0	Yao and Mikkelsen 2010b	xylose, from table 4
Themasian conceiner effunctions 10000 while while and Bornerspression 21% 0.4 - 40°C Peng, Wu and Shao 2000 purces, table 1 Obstrictum Themaselum ApyrE apyrE and pla deletion 23% 0.7 - 55°C Trapatir et al. 2010 cellobose, figure 4 Obstrictum Themaselum ApyrE and pla deletion 23% 0.7 - 55°C Trapatir et al. 2010 cellobose, figure 4 Obstrictum Themaselum M1034 vpl 0.8 0.7 - 55°C Trapatir et al. 2010 cellobose, figure 4 Obstrictum Themaselum M1034 vpl 0.8 1.8 - 55°C Trapatir et al. 2011 cellobose, figure 4 Obstrictum Themaselum M1144 tpl pla 0.8 1.8 - 55°C Apyrose et al. 2011 cellobose, figure 4 Obstrictum Themaselum M1144 tpl pla 0.8 2.8 - 55°C Apyrose et al. 2011 cellobose, figure 4 Obstrictum Themaselum M1145 tpl pla dapoA 0.8 - 55°C Apyrose et al. 2011 cellobose, figure 4 Obstrictum Themaselum M1125 dapla dapoA 0.6 - 55°C Apyrose et al. 2011 cellobose, figure 8 Obstri	Thermoanaerobacter ethanolicus JW200	wt	wild type	89%	3.6	-	72°C	Wiegel and Ljungdahl 1981	glucose, table 2
Obstidium thermoselum Continuum thermoselumut ApprgroBit-catwild type pprf wind packeloton24% 24% 56%0.7 0.7 0.61 0.55%Tright ist al. 2010 0.55%celbbiose, figure 4 celbbiose, figure 5Obstidium thermocelumM1725 M1725 M1725 M1725 Celbbiose M1725 Celbbiose M1725 Celbbiose Celbbiose, figure 4 celbbiose, figure 5Obstidium thermocelumM1726 M1725 M1725 Celbbi	Thermoanaerobacter ethanolicus JW200 Thermoanaerobacter ethanolicus JW200	adhE	adhE overexpression	21%	0.3	-	45°C	Peng, Wu and Shao 2008 Peng, Wu and Shao 2008	glucose, table 1
Contridum thermocellum Appr pr formion 25% 0.7 - 55°C Tripith i et 2010 celabolas, figure 4 Contridum thermocellum M0033 vf 1 12% 1.4 - 55°C Tripith i et 2010 celabolas, figure 4 Contridum thermocellum M0335 vf 1.1% 1.1% 1.4 - 55°C Tripith i et 2010 celabolas, figure 4 Contridum thermocellum M1354 tpt bh 1.1% 2.20 - 55°C Arryros et al. 2011 celabolas, figure 3 Contridum thermocellum M1357 tpt bh 1.1% 2.20 - 55°C Yrops et al. 2011 celabolas, figure 3 Contridum thermocellum M1570 tpt bh ph avolved 15% 0.6 - 55°C Yrops et al. 2011 celabolas, figure 3 Contridum thermocellum M1728 Abpt ApoOA 17% 0.64 - 55°C Yrops et al. 2011 celabolas, figure 3 Contridum thermocellum M1728 Abpt ApoOA 17% 0.64 - 55°C Yrops et al. 2014 celabolas, figure 3 Contridum thermocellum <td>Clostridium thermocellum</td> <td>wt</td> <td>wild type</td> <td>24%</td> <td>07</td> <td></td> <td>55°C</td> <td>Trinathi et al. 2010</td> <td>cellobiose figure 4</td>	Clostridium thermocellum	wt	wild type	24%	07		55°C	Trinathi et al. 2010	cellobiose figure 4
Closticium thermocellum Apta gap Dif-cat pyrF and pla deletion 30% 0.8 - 55°C Trgath et al. 2010 cellibores, figure 4 Costricium thermocellum M1334 tpt 12% 1.4 - 55°C Argyros et al. 2011 cellibores, figure 4 Costricium thermocellum M1344 tpt ch 10% 2.0 - 55°C Argyros et al. 2011 cellibores, figure 3 Costricium thermocellum M1444 tpt ch 2.0 - 55°C Argyros et al. 2011 cellibores, figure 3 Costricium thermocellum M1444 tpt ch 2.0 - 55°C Argyros et al. 2011 cellibores, figure 3 Costricium thermocellum M1570 hpt disp0A 7.1% 0.4 - 55°C Argyros et al. 2011 cellibores, figure 3 Costricium thermocellum M1528 Apt dap0A 2.0% 0.6 - 55°C Argyros et al. 2014 cellibores, figure 3 Costricium thermocellum M1528 Apt dap0A 2.0% 0.8 - 55°C van der Veen et al 2013 cellibores, figure 3 Costricium thermocellum <td< td=""><td>Clostridium thermocellum</td><td>ΔpyrF</td><td>pyrF deletion</td><td>25%</td><td>0.7</td><td>-</td><td>55°C</td><td>Tripathi et al. 2010</td><td>cellobiose, figure 4</td></td<>	Clostridium thermocellum	ΔpyrF	pyrF deletion	25%	0.7	-	55°C	Tripathi et al. 2010	cellobiose, figure 4
Clostidium thermocellum Clostidium thermocellumMX003 MI375 Lostidium thermocellumMX003 MI375 Lostidium thermocellumMX003 MI375 	Clostridium thermocellum	∆pta:gapDHp-cat	pyr- and pta deletion	30%	0.8	-	55°C	Tripathi et al. 2010	cellobiose, figure 4
Lobardium hermocellum M135* tpl th 15% 1.5% - 55°C Appros & al. 2011 cellulose, tigue 3 Costridum hermocellum M135* tpl th 15% 2.0 - 55°C Appros & al. 2011 cellulose, tigue 3 Costridum hermocellum M1464 tpl th pla 2.0 - 55°C Appros & al. 2011 cellulose, tigue 3 Costridum hermocellum M1570 tpl th pla evolved 51% 55°C - 55°C Appros & al. 2011 cellulose, tigue 3 Costridum hermocellum M1570 tpl th pla evolved 51% 55°C - 55°C van der Veen et al 2013 cellulose, table 2 Costridum hermocellum M1725 Approace AdapooA 19% 0.5 - 55°C van der Veen et al 2013 cellulose, table 2 Costridum hermocellum M1725 Approace AdapooA Adth Appta, evolved 21% 0.5 - 55°C van der Veen et al 2013 cellulose, table 2 Costridum hermocellum M1725 Approace ad 1014 ocellulose, topue 3 cellulose, topue 3 cellulose, topue 3 cellulose, topue 3 Costridum hermocellum	Clostridium thermocellum	M0003	wt	12%	1.4		55°C	Argyros et al. 2011	cellulose, figure 3
Costridum thermocellum M1446 hpt pla 2.0 - 55°C Argyros et al. 2011 celulose, figure 3 Costridum thermocellum M1570 hpt kh pla evolved 5.6 - 55°C Argyros et al. 2011 celulose, figure 3 Costridum thermocellum M126 Ahpt AspoOA 17% 5.6 - 55°C var of veen et al 2013 celulose, table 2 Costridum thermocellum M128 Ahpt AspoOA Apla 17% 0.4 - 55°C var of veen et al 2013 celiboise, table 2 Costridum thermocellum M128 Ahpt AspoOA Apla 17% 0.4 - 55°C var of veen et al 2013 celiboise, table 2 Costridum thermocellum M125 Ahpt AspoOA Apla 24% 0.8 - 55°C war of veen et al 2013 celiboise, figure 5 Costridum thermocellum W125 Ahpt AspoOA Apla 24% 0.8 - 55°C Biswas et al. 2014 celiboise, figure 5 Costridum thermocellum W126 odelion of al hydrogenases except et h 54% 0.0 - 55°C Biswas et al. (unpublished) celiboise Costri	Clostridium thermocellum Clostridium thermocellum	M1354 M1375	npt hpt ldh	15%	2.0		55°C	Argyros et al. 2011 Argyros et al. 2011	cellulose, figure 3 cellulose, figure 3
Costation M152 hpt du pa 2.5 2.5 - 55 C Agyros et al. 2011 celables, hgue 3 Costation M1570 hpt du pa 55% 55 - 55°C Agyros et al. 2011 celables, hgue 3 Costation M1570 hpt dapoA 17% 0.4 - 55°C van der Venn et al 2013 celables, hab 2 Costation M1570 Appl dapoA Apin 19% 0.4 - 55°C van der Venn et al 2013 celables, hab 2 Costation M1575 Appl dapoA Apin 29% 0.8 - 55°C van der Venn et al 2013 celablose, hab 2 Costation M1725 Appl dapoA Apin 29% 0.8 - 55°C wan der Venn et al 2013 celablose, hab 2 Costation M1725 Appl dapoA Apin 29% 0.8 - 55°C wan der Venn et al 2014 celablose, figure 5 Costation M1725 Appl dapoA Apin 29% 0.8 - 55°C Biewas et al. 2014 celablose, figure 5 Costation mutated ahtE adth deleton 34% 0.9	Clostridium thermocellum	M1448	hpt pta	18%	2.0		55°C	Argyros et al. 2011	cellulose, figure 3
Clastidium thermocellum Clastidium thermocellum M1529 M1726 Abpt Asp00A ddh M1529 Abpt Asp00A ddh Appt Asp00A ddh M1529 M1726 Abpt Asp00A ddh Appt Asp00A ddh M1529 M1726 Abpt Asp00A ddh Appt Asp00A ddh M1725 M1726 Abpt Asp00A ddh Appt Asp00A ddh M1725 M1726 Abpt Asp00A ddh Appt Asp0Asp0A ddh Appt Asp0A ddh Appt Asp0A ddh Appt A	Clostridium thermocellum	M1434 M1570	hpt ldh pta evolved	51%	5.6		55°C	Argyros et al. 2011 Argyros et al. 2011	cellulose, figure 3
Clostidium Hermocellum M1629 Alph Aspool Adah 10% 0.6 - 5°C van der Veen et al 2013 celobiose, table 2 Clostidium Hermocellum M1725 Alph Aspool Adah 2% 0.8 - 5°C van der Veen et al 2013 celobiose, table 2 Clostidium Hermocellum M1725 Alph Aspool Adah 2% 0.8 - 5°C van der Veen et al 2013 celobiose, table 2 Clostidium Hermocellum adhE'[EA) wulde dahE 2% 0.8 - 5°C Biewas et al. 2014 celobiose, figure 5 Clostidium Hermocellum adhE'[EA) multed adhE 2% 0.0 - 5°C Biewas et al. 2014 celobiose, figure 5 Clostidium Hermocellum dahE'[EA) multed adhE 2% 0.0 - 5°C Biewas et al. 2014 celobiose, figure 5 Clostidium Hermocellum dahE'[EA] wulde dahE 3% 0.9 - 5°C Biewas et al. 2014 celobiose, figure 5 Clostidium Hermocellum dahE'[EA] wulde dahE 5% 1.4 - 5°C Biewas et al. 2014 celobiose, figure 5	Clostridium thermocellum	M1726	Abot Aspo@A	17%	0.4		55°C	van der Veen et al 2013	cellohiose table 2
Clostridium thermocellum M1830 Abpt Aspool Adht Apta, evolved 21% 0.8 - 55°C van der Veen et al 2013 celibiose, table 2 Clostridium thermocellum M1725 Abpt Aspool Adht Apta, evolved 21% 0.5 - 55°C van der Veen et al 2013 celibiose, table 2 Clostridium thermocellum adht ² (EA) mutated adht ² in adht ² 21% 0.6 - 55°C Biswas et al. 2014 celibiose, figure 5 Clostridium thermocellum adht ² (EA) mutated adht ² in adht ² 0.0 - 55°C Biswas et al. 2014 celibiose, figure 5 Clostridium thermocellum wild type 34% 0.9 - 55°C Biswas et al. (unpublished) celibiose Clostridium thermocellum MyrdGacht deletion of al hydrogenases except ech 53% 1.4 - 55°C Biswas et al. (unpublished) celibiose Clostridium thermocellum MyrdGacht deletion of al hydrogenases except ech 53% 1.4 - 55°C Biswas et al. (unpublished) celibiose Clostridium thermocellum L1345 hpt deletion al hydrogenases except ech 34% 0	Clostridium thermocellum	M1629	Δhpt Δspo0A Δldh	19%	0.5	-	55°C	van der Veen et al 2013	cellobiose, table 2
Costridum thermocellum WT 1313 wild type 0.8 - 55°C Biswas et al. 2014 cellobiose, figure 5 Costridum thermocellum adhE*(EA)Adh mutated adhE and kh deleton 38% 1.0 - 55°C Biswas et al. 2014 cellobiose, figure 5 Costridum thermocellum WT 1313 wild type 38% 1.0 - 55°C Biswas et al. 2014 cellobiose, figure 5 Costridum thermocellum WT 1313 wild type 38% 1.0 - 55°C Biswas et al. 2014 cellobiose, figure 5 Costridum thermocellum WT 1313 wild type 64810 of al hydrogenases except ech 53% 1.4 - 55°C Biswas et al. (unpublished) cellobiose Costridum thermocellum UT wild type 64810 of al hydrogenases except ech 53% 1.4 - 55°C Biswas et al. (unpublished) cellobiose Costridum thermocellum UT solution thermocellum US solution 34% 0.9 - 55°C Deng et al. 2013 cellobiose, figure 3 form corrigendum Costridum thermocellum US wild type 9% 0.0 - 65°C Deng et	Clostridium thermocellum Clostridium thermocellum	M1630 M1725	Ahpt Aspo0A Apta Ahpt Aspo0A Aldh Apta, evolved	29%	0.8	-	55°C 55°C	van der Veen et al 2013 van der Veen et al 2013	cellobiose, table 2 cellobiose, table 2
Lostridum thermocellum W1 1313 with type 29% 0.8 - 55°C Bewas et al. 2014 celicitosics, figure 5 Costridum thermocellum adh? [EA] matted adh? 2% 0.0 - 55°C Biswas et al. 2014 celicitosics, figure 5 Clostridum thermocellum adh? [EA] matted adh? 2% 0.0 - 55°C Biswas et al. 2014 celicitosics, figure 5 Clostridum thermocellum 20% 0.0 - 55°C Biswas et al. (unpublished) celicitosics, figure 5 Clostridum thermocellum 20% 0.9 - 55°C Biswas et al. (unpublished) celicitosics Clostridum thermocellum 20% 0.9 - 55°C Biswas et al. (unpublished) celicitosics Clostridum thermocellum L1345 hpid delion of all hydrogenases except etch 94% 0.9 - 55°C Deng et al. 2013 celicitosics, figure 5 from corrigendum Clostridum thermocellum L1345 hpid deleion 86% 0.9 - 55°C Deng et al. 2013 celicitosics, figure 6 from corrigendum Clostridum thermocellum L1345 hp									
Clostridium thermocellum adht" (EA)Aldh mutated adhtE and thh deletion 39% 1.0 - 55°C Biewas et al. 2014 celichoise, figure 5 Clostridium thermocellum MYI 313 wild type 34% 0.9 - 55°C Biewas et al. 2014 celichoise, figure 5 Clostridium thermocellum AdydG deletion of all tydrogenases except ech 53% 1.4 - 55°C Biewas et al. (unpublished) celichoise Clostridium thermocellum LL345 thjdGadech 64% 0.9 - 55°C Biewas et al. (unpublished) celichoise, figure 3 from corrigendum Clostridium thermocellum LL345 thjdeletion 84% 0.9 - 55°C Deng et al. 2013 celichoise, figure 3 from corrigendum Clostridium thermocellum LL345 thjdeletion 84% 0.9 - 55°C Deng et al. 2013 celichoise, figure 3 from corrigendum Clostridium thermocellum LL345 thjdeletion 47% 1.0 - 55°C Deng et al. 2013 celichoise, figure 3 from corrigendum Clostridium thermocellum LL345 thjdeletion 47% 0.9 - <t< td=""><td>Clostridium thermocellum</td><td>adhE*(EA)</td><td>mutated adhE</td><td>29%</td><td>0.8</td><td></td><td>55°C</td><td>Biswas et al. 2014 Biswas et al. 2014</td><td>cellobiose, figure 5 cellobiose, figure 5</td></t<>	Clostridium thermocellum	adhE*(EA)	mutated adhE	29%	0.8		55°C	Biswas et al. 2014 Biswas et al. 2014	cellobiose, figure 5 cellobiose, figure 5
Obstirdium thermocellum WT 1313 wild type 94% 0.9 - 55°C Biswas et al. (unpublished) celobiose Obstirdium thermocellum deletion of all hydrogenases except ech 55% 1.4 - 55°C Biswas et al. (unpublished) celobiose Clostirdium thermocellum WT wild type 6% 1.4 - 55°C Biswas et al. (unpublished) celobiose Clostirdium thermocellum WT wild type 84% 0.9 - 55°C Deng et al. 2013 celobiose celobiose Clostirdium thermocellum DS8 L1345 hpt deletion 84% 0.9 - 55°C Deng et al. 2013 celobiose, fgure 3 from corrigendum Clostirdium thermocellum DS8 L1345 hpt deletion 84% 0.9 - 55°C Deng et al. 2013 celobiose, fgure 3 from corrigendum Clostirdium thermocellum DS8 L1345 hpt deletion 84% 0.9 - 55°C Deng et al. 2013 celobiose, fgure 3 from corrigendum Clostirdium thermocellum DS8 MT 14 - 55°C Deng et al. 2014 cel	Clostridium thermocellum	adhE*(EA)∆ldh	mutated adhE and ldh deletion	38%	1.0	-	55°C	Biswas et al. 2014	cellobiose, figure 5
Clostridium thermocellum AlydG deletion of all hydrogenases except ech 55% 1.4 - 55°C Biewase etal. (unpublished) celicboise Clostridium thermocellum MydG ach deletion of all hydrogenases except ech 61% 1.6 - 55°C Biewase etal. (unpublished) celicboise Clostridium thermocellum L1345 hpt deletion all hydrogenases except ech 34% 0.9 - 55°C Biewase etal. (unpublished) celicboise Clostridium thermocellum L1345 hpt deletion all hydrogenases inserted at lch locus 39% 0.9 - 55°C Deng et al. 2013 celicboise, figure 3 from corrigendum Clostridium thermocellum L1113 D58 with maic enzyme deletion 47% 1.2 - 55°C Deng et al. 2013 celicboise, figure 3 from corrigendum Clasticial/biosityptr bescii JWCB001 wild type 0% 0.0 - 65°C Chung et al. 2014 celicboise, table 8.2; rate dat from figure 4 Clasticial/biosityptr bescii JWCB02 Ich deletion and able coverspression 33% 0.7 - 65°C Chung et al. 2014 celicboise, table 8.2; rate dat from figure 4 </td <td>Clostridium thermocellum</td> <td>WT 1313</td> <td>wild type</td> <td>34%</td> <td>0.9</td> <td></td> <td>55°C</td> <td>Biswas et al. (unpublished)</td> <td>cellobiose</td>	Clostridium thermocellum	WT 1313	wild type	34%	0.9		55°C	Biswas et al. (unpublished)	cellobiose
Costridium Thermocellum WT wild type 0.9 - 55°C Deng et al. 2013 celloblose, figure 3 from corrigendum Costridium Thermocellum L1345 hpt deletion 39% 0.9 - 55°C Deng et al. 2013 celloblose, figure 3 from corrigendum Costridium Thermocellum L1345 hpt deletion 39% 1.0 - 55°C Deng et al. 2013 celloblose, figure 3 from corrigendum Costridium Thermocellum L1113 DS8 with malic enzyme deletion 9% 1.0 - 55°C Deng et al. 2013 celloblose, figure 3 from corrigendum Caldicellubosityptor bescii JWCB01 wild type 0% 0.0 - 65°C Chung et al. 2014 celbolose, figure 3 from corrigendum Caldicellubosityptor bescii JWCB02 kift deletion and athE overexpression 0% 0.0 - 65°C Chung et al. 2014 celbolose, table 8.2; rate dath from figure 4 Caldicellubosityptor bescii JWCB032 kift deletion of pyrf, for genetic manipulation 2% 0.05 - 72°C Basen et al. 2014 matose, figure 2, residual substrate nor teported Pyrococcus Kiroisus EA COM11 <td>Clostridium thermocellum Clostridium thermocellum</td> <td>ΔhydG AbydG Aech</td> <td>deletion of all hydrogenases except ech deletion of all hydrogenases except ech</td> <td>53%</td> <td>1.4</td> <td></td> <td>55°C 55°C</td> <td>Biswas et al. (unpublished) Biswas et al. (unpublished)</td> <td>cellobiose</td>	Clostridium thermocellum Clostridium thermocellum	ΔhydG AbydG Aech	deletion of all hydrogenases except ech deletion of all hydrogenases except ech	53%	1.4		55°C 55°C	Biswas et al. (unpublished) Biswas et al. (unpublished)	cellobiose
Lostratium hermocelum V1 with type 34% 0.9 - 5x C Deng et al. 2013 celibiose, fgure 3 from configendum Costratium hermocelum DS4 L1345 hpt deleton 8% 0.9 - 5x C Deng et al. 2013 celibiose, fgure 3 from configendum Costratium hermocelum DS4 L1345 with pryvate kinase inserted at ldh locus 8% 0.9 - 5x C Deng et al. 2013 celibiose, fgure 3 from configendum Costratium hermocelum L1113 DS8 with maic enzyme deletion 8% 1.0 - 5x C Deng et al. 2013 celibiose, fgure 3 from configendum Caldioteliulositypor bescii JWCB001 with type 0% 0.0 - 65°C Chung et al. 2014 celibiose, table 32, rate data from figure 4 Caldioteliulositypor bescii JWCB032 idh deletion enzyme from configendum 3% 0.7 - 65°C Chung et al. 2014 celibiose, table 32, rate data from figure 4 Caldioteliulositypor bescii JWCB032 idh deletion enzyme from configendum 3% 0.7 - 65°C Chung et al. 2014 celibiose, table 32, rate data from figure 4 Caldioteliulositypor bescii JWCB032 idh deletion for perf, for geneic manipulation 2% 0.05 - 72°C<							5500	D	
Obsträum hermocellum DS L345 with pryrvale kinase inserted at ldh locus 39% 10 - 55°C Deng et al. 2013 celibolose, figure 3 from configendum Caticaliulusistuptor besci JWCB001 wild type 0% 12 - 55°C Deng et al. 2013 celibolose, figure 3 from configendum Caticaliulusistuptor besci JWCB01 wild type 0% 0.0 - 65°C Chung et al. 2014 celibolose, table 32, rate data from figure 4 Caticaliulusistuptor besci JWCB018 thin deletion and and: Forevexpression 0% 0.0 - 65°C Chung et al. 2014 celibolose, table 32, rate data from figure 4 Caticaliulusistuptor besci JWCB02 thin deletion and and: Forevexpression 0% 0.0 - 65°C Chung et al. 2014 celibolose, table 32, rate data from figure 4 Pyrococcus furiosus COM1 deletion of pyrF, for genetic manipulation 2% 0.05 - 72°C Basen et al. 2014 maltose, figure 20, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teth514,062?) and adh (Teth.54,064) 17% 0.02 72°C Basen et al. 2014 maltose, figure 20, residual substrate no	Clostridium thermocellum Clostridium thermocellum	WT 11345	wild type hot deletion	34%	0.9		55°C 55°C	Deng et al. 2013 Deng et al. 2013	cellobiose, figure 3 from corrigendum cellobiose, figure 3 from corrigendum
Lossmaum memocesum L1113 Ubs with maic enzyme detetion 4 % 1.2 - 55°C Dang et al. 2013 celtbolose, figure 3 from configendum Calcicululusiruptor bescii JWCB001 wild type 0% 0.0 - 65°C Chung et al. 2014 celtbolose, table 32; rate data from figure 4 Calcicululusiruptor bescii JWCB01 this deletion and abfE overspression 0% 0.0 - 65°C Chung et al. 2014 celtbolose, table 32; rate data from figure 4 Calcicululusiruptor bescii JWCB032 tip deletion and abfE overspression 3% 0.7 - 65°C Chung et al. 2014 celtbolose, table 32; rate data from figure 4 Pyroaccus furiosus COM1 deletion of pyrF, for genetic mainplation 2% 0.05 - 72°C Basen et al. 2014 mailose, figure 20; residual substrate not reported Pyroaccus furiosus EA COM1 expressing adhE (Teth514, 0.627) 4% 0.10 - 72°C Basen et al. 2014 mailose, figure 20; residual substrate not reported Pyroaccus furiosus EA COM1 expressing adhE (Teth514, 0.627) and adh (Teth514, 0.627) 17% 0.45 - 72°C Basen et al. 2014 mailose, figure 20; residual substrate not reported Pyroaccus furiosus A COM1 expressing adhE (Teth514, 0.627) and adh	Clostridium thermocellum	DS8	LL345 with pyruvate kinase inserted at ldh locus	39%	1.0	-	55°C	Deng et al. 2013	cellobiose, figure 3 from corrigendum
Califoldiositypor besci JWCB001 wild type 0% 0.0 - 65°C Chung et al. 2014 celobiose, table 32; rate data from figure 4 Califoldiositypor besci JWCB032 kih deelon and ahE oversopression 0% 0.0 - 65°C Chung et al. 2014 celobiose, table 32; rate data from figure 4 Califoldiositypor besci JWCB032 kih deelon and ahE oversopression 33% 0.7 - 65°C Chung et al. 2014 celobiose, table 32; rate data from figure 4 Pyrococcus furiosus COM1 deletion of pyrF, for genetic manipulation 2% 0.0° - 72°C Basen et al. 2014 rmatose, figure 20; residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teth511, 0.62?) and adh.Teth.5(34) 1% 0.45 - 72°C Basen et al. 2014 matose, figure 20; residual substrate not reported Pyrococcus furiosus A COM1 expressing adhE (Teth514, 0.62?) and adh.Teth.5(34) 1% 0.45 - 72°C Basen et al. 2014 matose, figure 20; residual substrate not reported Pyrococcus furiosus A COM1 expressing adh.Teth514, 0.68?) and adh.Teth.5(34) 3% 0.97 0.02 72°C Basen et al. 2014 matose, figure 20; residual substrate not reported	Ciostridium thermocellum	LL1113	DS8 with malic enzyme deletion	47%	1.2	-	55°C	Derig et al. 2013	cenopiose, figure 3 from corrigendum
Catical consusceptor testin Unit testinint Unit Orange Unit Chung et al. 2014 Ceeboose, table 82, rate data from fugre 4 Catical fullosis upbrobescii JWCB032 Idh deletion and anE overexpression 3% 0.7 - 65°C Chung et al. 2014 ceeboose, table 82, rate data from fugre 4 Pyrococcus furiosus COM1 deletion and anE overexpression 3% 0.05 - 72°C Basen et al. 2014 matose, figure 20, residual substrate not reported Pyrococcus furiosus E COM1 expressing adhE (Teh514_0627) 4% 0.10 - 72°C Basen et al. 2014 matose, figure 20, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teh514_0627) and adh (Teh_0564) 17% 0.45 - 72°C Basen et al. 2014 matose, figure 20, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teh514_0627) 0.45 - 72°C Basen et al. 2014 matose, figure 20, residual substrate not reported Pyrococcus furiosus A COM1 expressing adhE (Teh514_0664) 33% 0.97 0.02 72°C	Caldicellulosiruptor bescii	JWCB001	wild type	0%	0.0	-	65°C	Chung et al. 2014	cellobiose, table s2, rate data from figure 4
Pracoccus furiosus COM1 deletion of pyrF, for genetic manipulation 2% 0.05 - 72°C Basen et al. 2014 maltose, figure 2C, residual substrate not reported Pyrococcus furiosus E COM1 expressing adhE (Teth514_0627) 4% 0.10 - 72°C Basen et al. 2014 maltose, figure 2C, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teth514_0627) and adhA (Teth_0664) 17% 0.45 - 72°C Basen et al. 2014 maltose, figure 2C, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teth514_06527) and adhA (Teth_0664) 17% 0.45 - 72°C Basen et al. 2014 maltose, figure 2C, residual substrate not reported Pyrococcus furiosus A COM1 expressing adhE (Teth514_06527) and adhA (Teth_054_0654) 0.7% 0.02 72°C Basen et al. 2014 maltose, figure 2D, residual substrate not reported	Caldicellulosiruptor bescii	JWCB032	Idh deletion and adhE overexpression	33%	0.0	-	65°C	Chung et al. 2014 Chung et al. 2014	cellobiose, table s2, rate data from figure 4
Pyrococcus furiosus E COM1 expressing adhE (Teth514_0627) 4% 0.10 72*C Basen et al. 2014 malaxe, igure 2C, residual substrate not reported Pyrococcus furiosus EA COM1 expressing adhE (Teth514_0627) and adhA (Teth_0564) 17% 0.45 72*C Basen et al. 2014 malaxe, igure 2C, residual substrate not reported Pyrococcus furiosus A COM1 expressing adhE (Teth514_06527) and adhA (Teth_0564) 17% 0.45 - 72*C Basen et al. 2014 malaxe, igure 2C, residual substrate not reported Pyrococcus furiosus A COM1 expressing adhE (Teth514_06527) and adhA (Teth_0564) 17% 0.02 72*C Basen et al. 2014 malaxe, igure 2C, residual substrate not reported	Pvrococcus furiosus	COM1	deletion of pyrF, for genetic manipulation	2%	0.05		72°C	Basen et al. 2014	maltose, figure 2C, residual substrate not reported
Pyrococcus funosus EA COMM expressing adhE (Teth514,0827) and adhA (Teth_0564) 17% 0.45 - 72°C Basen et al. 2014 malose, figure 20, residual substrate not propried Pyrococcus funosus A COMM expressing adhL (Teth514,0827) and adhA (Teth514,064) 17% 0.45 - 72°C Basen et al. 2014 malose, figure 20, residual substrate not reported Pyrococcus funosus A COMM expressing adhL (Teth514,0627) and adhA (Teth514,064) 35% 0.02 72°C Basen et al. 2014 celablosa celablosa <td>Pyrococcus furiosus</td> <td>E</td> <td>COM1 expressing adhE (Teth514_0627)</td> <td>4%</td> <td>0.10</td> <td>-</td> <td>72°C</td> <td>Basen et al. 2014</td> <td>maltose, figure 2C, residual substrate not reported</td>	Pyrococcus furiosus	E	COM1 expressing adhE (Teth514_0627)	4%	0.10	-	72°C	Basen et al. 2014	maltose, figure 2C, residual substrate not reported
	Pyrococcus furiosus Pyrococcus furiosus	A	COMT expressing adha (Teth514_0627) and adhA (Teth_0564) COM1 expressing adhA (Teth514_0564)	35%	0.45	0.02	72°C 72°C	Basen et al. 2014 Basen et al. 2014	cellobiose, figure 2D, residual substrate not reported

Rate was calculated only when time-course data was available.

xylose-inducible promoter, the effect of *adhE* expression during growth on glucose was not measured. The resulting strain produced ethanol from xylose at a yield of 95% of theoretical [24].

Thermoanaerobacter ethanolicus

Wild type T. ethanolicus JW200 (ATCC 31550) is an anaerobic thermophile similar to both T. mathranii and T. saccharolyticum. A key feature distinguishing T. ethanolicus from T. mathranii is the lack of the ech hydrogenase, which may account for its higher native ethanol yield [53]. T. ethanolicus produces ethanol at 88% of theoretical yield under certain conditions, although this value has been reported to vary between 55% and 95% depending on growth conditions [54]. One engineering strategy used to increase ethanol production in this organism was overexpression of adhE. Transformation of plasmid pTE16 (with adhE cloned into it) into T. ethanolicus resulted in a 3-fold increase in ALDH activity and a corresponding 40% increase in ethanol production (Table 1) [55]. The ethanol and acetate production data reported for this strain only account for 18% (wild type) and 25% (adhE overexpression strain) of the glucose carbon initially present, so it is difficult to make any strong conclusions about the effect of this metabolic engineering strategy.

Clostridium thermocellum

C. thermocellum is an anaerobic thermophile. It is similar to the previously described Thermoanaerobacter and Thermoanaerobacterium species in that it produces ethanol, acetate, lactate, CO_2 and H_2 as its major fermentation products, however it is capable of solubilizing crystalline cellulose (which Thermoanaerobacter and Thermoanaerobacterium cannot) and does not consume pentose sugars (which Thermoanaerobacter and Thermoanaerobacterium do). It is this cellulose-solubilizing ability that has generated interest in metabolic engineering of C. thermocellum for ethanol production.

Initial attempts to engineer C. thermocellum focused on eliminating lactate and acetate production [56]. Elimination of acetate production by deletion of the pta gene had very little effect on ethanol production, although lactate production increased. Development of additional genetic tools allowed the deletion of both *ldh* and *pta* simultaneously [57]. Initially there was no increase in ethanol production, but subsequent serial transfer to improve growth resulted in a strain that produced ethanol at 51% of theoretical yield and a titer of 5.6 g/l (Table 1). Another approach for engineering C. thermocellum started with a disruption of the sporulation pathway gene spo0A, followed by deletions of *ldh* and *pta* and adaptation for rapid growth in a chemostat [37]. The best strain from this strategy produced ethanol at a yield of 29% of theoretical. It was discovered that the engineered strains were also producing large quantities of amino acids, in some cases 17% of carbon flux.

Another metabolic engineering strategy involved adapting *C. thermocellum* for growth in the presence of high concentrations of exogenous ethanol [58]. This strain produced less ethanol and more lactate, acetate and ethanol. Subsequent deletion of *ldh* eliminated lactate production and increased ethanol production. The resulting strain had a yield of 38% of theoretical (Table 1) [59].

One interesting feature of *C. thermocellum* is its lack of pyruvate kinase, a common enzyme in glycolysis. *C. thermocellum* is thought to convert phosphoenolpyruvate to pyruvate via oxaloacetate and malate (known as the 'malate shunt'). To test the hypothesis that this pathway was responsible for low yield, a pyruvate kinase gene from *T. saccharolyticum* was expressed in *C. thermocellum*. This did not have a dramatic effect on ethanol production, however subsequent deletion of malic enzyme increased the ethanol yield to 47% of theoretical (Table 1) [60].

Another metabolic engineering strategy that was attempted was the deletion of hydrogenases. Although *C. thermocellum* has a several different hydrogenases, many of them can be disabled by deleting a key hydrogenase maturation protein, *hydG*. Deletion of *hydG* increased ethanol yield from 34% to 53% of theoretical. Further deletion of the *ech* hydrogenase completely eliminated hydrogen production and further increased the ethanol yield to 61% of theoretical (Table 1,[29]).

Caldicellulosiruptor bescii

C. bescii is an extremely thermophilic anaerobic bacterium with an optimal growth temperature of 75 °C. It consumes both simple and complex polysaccharides (including cellulose) and produces lactate, acetate, carbon dioxide and hydrogen, but does not produce ethanol. To allow for ethanol production, first lactate production was eliminated by deletion of the *ldh* gene. Then a bifunctional aldehyde and alcohol dehydrogenase, *adhE* from *C. thermocellum*, was introduced. The resulting strain produced ethanol at 33% of the maximum theoretical yield (Table 1) [61[•]]. This strain converts a significant amount of cellobiose to glucose, which suggests that metabolic bottlenecks remain in upper glycolysis.

Pyrococcus furiosus

P. furiosus is a hyperthermophilic archaeon with an optimum growth temperature of 100 °C. It can consume maltose, cellobiose, beta-glucan, starch and protein. It produces carbon dioxide and hydrogen, but does not produce ethanol. This organism uses the AOR pathway (described above, Eqs. (6) and (7)) for production of acetaldehyde. Recently it was engineered for ethanol production by the expression of *adhA* from *Thermoanaerobacter* sp. X514, which allows the acetaldehyde from the AOR pathway to be converted to ethanol [33°]. The resulting strain produced ethanol with a yield of 35% of theoretical (Table 1).

Geobacillus thermoglucosidasius

G. thermoglucosidasius is a thermophilic, facultative-anaerobic bacillus that can ferment glucose, xylose and arabinose and can tolerate up to 10% ethanol (v/v) [6]. The wild type organism makes predominantly lactate, with small amounts of ethanol, acetate and formate also produced. The first metabolic engineering strategy was elimination of lactate production by deletion of the *ldh* gene, improving ethanol yield from 22% to 52% of theoretical (Table 1) [62^{••}]. The next engineering strategy was the deletion of the pyruvate-formate lyase (*pfl*) gene and overexpression of the pyruvate dehydrogenase (*pdh*) gene. Flux through PFL results in electron transfer to formate. Those electrons can be conserved by formate dehydrogenase (FDH) activity (which is annotated to be present in G. thermoglucosidasius, Figure 1). In strains of G. thermoglucosidasius with PFL present, very little formate accumulates (less than 10% of carbon flux on a C3 basis). Unfortunately, since no *pdh* deletion has been described in this strain, we cannot say anything about the relative flux distribution between PFL and PDH, only that FDH flux is slightly lower than PFL flux. Of the three changes, both the *ldh* deletion and *pdh* overexpression substantially increased ethanol production. Deletion of *pfl* had a mixed effect on ethanol production depending on the strain background. Combining all three modifications (Idh deletion, *pfl* deletion and *pdh* overexpression) resulted in strain TM242 [62**]. This strain produced ethanol at a vield of 90% of theoretical, titer of 15.9 g/l and productivity of 2.12 g/l/h (Table 1).

Another strategy for increasing ethanol yield is introduction of the PDC pathway (Eq. (2)). A PDC enzyme from Zymomonas mobilis was expressed in G. thermoglucosidasius and found to function at 52 °C, although there was no change in ethanol production [14]. A pdc gene from Gluconobacter oxydans was expressed in the G. thermoglucosidasius ldh deletion strain and showed increased ethanol production at 45 °C, but not 52 °C [15]. The resulting strain, TM89 pGOF111, produced ethanol at 69% of theoretical yield (Table 1). Overall this strategy was not as successful as the strategy of overexpressing a native pdh gene.

Ogataea polymorpha

Ogataea (formerly Hansenula) polymorpha is a thermotolerant yeast that can produce ethanol from glucose at 48 °C. Although it has both pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC) enzymes, it seems likely that PDC is the primary pathway for ethanol production for the following reasons. In O. polymorpha, ethanol production under anaerobic conditions can be improved by overexpression of PDC [63]. In all eukaryotes that do not contain the bifunctional alcohol and aldehyde dehydrogenase gene, adhE (i.e. including O. polymorpha), ethanol is produced via PDC [64]. Finally, there are no reports of enzymes which can convert acetyl-CoA to acetaldehyde in yeast [65].

Another metabolic engineering strategy involved overexpression of gamma glutamylcysteine synthetase, which is thought to help the cell tolerate ethanol stress. The resulting strain, DL-1 356 mcHpGSH2, was able to produce ethanol with a yield of 96% of theoretical, titer up to 45 g/l and productivity of 1 g/l/h (Table 1) [66^{••}].

Improving ethanol titer

As reviewed elsewhere [4], growth of thermophilic saccharolytic bacteria not previously exposed to ethanol is generally inhibited by modest (e.g. ≤ 20 g/l) concentrations of added ethanol. Growth in the presence of ethanol added at concentrations ≥ 50 g/l has been demonstrated for many organisms in this category following selection in the presence of ethanol. Maximum concentrations of ethanol produced by thermophilic bacteria are in general lower — typically by a factor of two or more — than the maximum concentrations of added ethanol that permit growth. We have previously termed this phenomenon the 'titer gap' [5]. Economical recovery of ethanol requires concentrations of >40 g/l [67]. Thus it appears that production of ethanol at these concentrations is not limited per se by tolerance, but by some other factor.

Closing the titer gap in order to produce commercially recoverable ethanol concentrations will likely require understanding the mechanisms of ethanol inhibition and taking steps to ameliorate them. Results reported to date point to imbalances in the concentrations of reduced and oxidized nicotinamide cofactors as being particularly important reasons for the cessation of growth and fermentation due to ethanol concentration. In both C. thermocellum and T. pseudethanolicus, it has been shown that mutations which reduce NADH-linked alcohol dehydrogenase activity are associated with increased ethanol tolerance [27°,68]. For T. pseudethanolicus, it has been suggested that elevated levels of NADH in the presence of ethanol inhibit glycolysis at the glyceraldehyde-3phosphate dehydrogenase (GAPDH) step [69]. In O. polymorpha, ethanol titer was improved from 13 to 45 g/ 1 by overexpression of the GSH1 gene to increase intracellular levels of glutathione (Table 1) [66^{••}]. Glutathione is a major cellular redox buffer, so modulating glutathione levels to increase ethanol production suggests that ethanol was causing a redox imbalance.

Exposure to ethanol has been correlated with changes in membrane composition in both *C. thermocellum* [70] and *T. ethanolicus* [68], and it has been suggested that these changes compensate for changes in membrane fluidity due to the presence of ethanol. Commenting on ethanol tolerance of *T. pseudethanolicus*, Lovitt *et al.* [69] suggest that inhibition by moderate ethanol concentrations (e.g. 4%) can be rectified by changes in redox metabolism, but

that cell membrane properties are responsible for tolerance and inhibition at 8% ethanol. In our view, redox imbalances are a more likely explanation than membrane effects for the titer gap exhibited by thermophiles in studies to date, but membrane effects may become important as redox imbalances are rectified.

Producing high concentrations of ethanol requires that high concentrations of substrate be fermented. Cessation of growth and/or fermentation at high substrate concentrations can occur for many reasons, and care must be taken to avoid mistakenly attributing such cessation to ethanol. Working with continuous cultures of T. thermosaccharolyticum, Baskaran et al. [47] attributed cessation of growth and fermentation at feed xylose concentrations exceeding 70 g/l to salt resulting from neutralizing organic acid production rather than to ethanol. Similarly, inhibition of T. saccharolyticum grown at high substrate concentrations was attributed to salt accumulation due to neutralization of acid produced in conjunction with ammonia uptake. Salt inhibition was avoided by introduction of the urease operon, resulting in the maximum ethanol titer increasing from 25 to 50 g/l [48]. The urea-utilizing strain of T. saccharolyticum was subsequently shown to produce ethanol at 61 g/l [49], believed to be the highest level reported for a thermophilic bacterium to date and sufficient for industrial application [4,67].

Improving understanding of metabolic pathways

Knowledge of metabolic network stoichiometry is required for the rational metabolic engineering. Genome analysis and automated annotation can provide a basic framework of metabolism. Functional genomics (proteomics, transcriptomics) can complement and refine our interpretation by allowing us to observe which metabolic pathways are operating under different growth conditions in both wild type and mutant strains [71,72]. However direct biochemical assay remains the gold standard for deepening our understanding of metabolism, particularly for subtle effects such as cofactor preference. For example, the role of GTP as an important energy currency in C. thermocellum has been recently described thanks to the observation that its glucokinase is GTP rather that ATPdependent [73[•]]. Another example is the discovery of the widespread role of flavin-based electron bifurcation in microbial metabolism [34^{••}].

In addition to studying a metabolic pathway in the context of its native host, pathways can be studied by transfer to an exogenous host. Attempts to transfer a pathway often result in the discovery of a previously overlooked component. For example, transferring the *pdc* gene from *Z. mobilis to E. coli* resulted in modest ethanol production which revealed the necessity of additionally transferring the *Z. mobilis adhB* gene [74]. To truly understand a pathway it is often necessary to transfer it into several different exogenous hosts.

To allow for inexpensive production of ethanol, an organism needs to achieve a yield of >90% of theoretical, titer of >40 g/l and productivity of >1 g/l/h [67]. There are many examples of metabolic engineering for increased yield, and it is possible to observe some similarities among approaches. Titer and productivity have only begun to be studied, and our understanding of the factors underlying these properties is still piecemeal.

Of the four elementary modes for ethanol production from pyruvate, we have found thermophilic examples for three of them: the PDH mode from *G. thermoglucosidasius*, the PFOR mode from *T. saccharolyticum* (and several others) and the PDC mode from *O. polymorpha*. In most of the cases presented, a native pathway has been modified to allow ethanol production near theoretical maximum yield. In *C. bescii* and *P. furiosus*, ethanol was not produced in the wild type strains (or produced at trace levels), and addition of an exogenous gene dramatically increased ethanol production, however in both of these strains the ethanol yield is far below the theoretical maximum.

There are no examples of transferring a high-yielding thermophilic ethanol production pathway to a strain with low ethanol production that result in ethanol production at near theoretical yield. By contrast, the mesophilic pET operon, consisting of pyruvate decarboxylase and alcohol dehydrogenase from *Z. mobilis*, reliably produces ethanol at high yield in a wide range of mesophilic organisms [75–77]. It is hoped that by better understanding the genes and pathways involved in the thermophilic ethanol production pathways, we will one day be able to transfer these pathways to new organisms as readily as the pET pathway in mesophiles.

Acknowledgements

We wish to thank Johannes P. van Dijken for many useful discussions.

Funds provided to RS by Genome Canada for the project 'Microbial Genomics for Biofuels and Co-Products from Biorefining Processes' (MGCB²). Funds provided to DO and LL by the BioEnergy Science Center.

The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- •• of outstanding interest
- Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, Jackson RD, Jordan N, Kaffka S, Kline KL et al.: Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 2014, 48:7200-7203.

- 2. Singer S, Denruyter J-P, Jeffries B: *The Energy Report 100% Renewable Energy by 2050.* 2011.
- 3. OECD-FAO Agricultural Outlook 2014. OECD Publishing; 2014.
- Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. *Microbiol Mol Biol Rev* 2002, 66:506.
- Olson DG, McBride JE, Shaw AJ, Lynd LR: Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23:396-405.
- 6. Barnard D, Casanueva A, Tuffin M, Cowan D: Extremophiles in biofuel synthesis. *Environ Technol* 2010, **31**:871-888.
- Chang T, Yao S: Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 2011, 92:13-27.
- Lin L, Xu J: Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. *Biotechnol Adv* 2013, 31:827-837.
- Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA: Thermophilic ethanologenesis: future prospects for secondgeneration bioethanol production. *Trends Biotechnol* 2009, 27:398-405.
- 10. Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R:
- Linking genome content to biofuel production yields: a metaanalysis of major catabolic pathways among select H2 and ethanol-producing bacteria. *BMC Microbiol* 2012, **12**:295.

Comprehensive review of the fermentation pathways of mixed-acid fermenting bacteria.

- Izquierdo JA, Sizova MV, Lynd LR: Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. *Appl Environ Microbiol* 2010, 76:3545-3553.
- Sahm H, Bringer-Meyer S, Schimz K-L: Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 1986, 146:105-110.
- Raj KC, Talarico LA, Ingram LO, Maupin-Furlow JA: Cloning and characterization of the *Zymobacter palmae* pyruvate decarboxylase gene (PDC) and comparison to bacterial homologues. *Appl Environ Microbiol* 2002, 68:2869-2876.
- Thompson A, Studholme D, Green E, Leak D: Heterologous expression of pyruvate decarboxylase in *Geobacillus* thermoglucosidasius. Biotechnol Lett 2008, 30:1359-1365.
- Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA: Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2013 http://dx.doi.org/10.1007/s00253-013-5380-1.
- Ma K, Hutchins A, Sung SJS, Adams MWW: Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci U S A 1997, 94:9608-9613.
- Eram MS, Oduaran E, Ma K: The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis. Archaea 2014, 2014:349379.
- Berríos-Rivera S: Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD⁺dependent formate dehydrogenase. *Metab Eng* 2002, 4:217-229.
- Biegel E, Müller V: A Na⁺-translocating pyrophosphatase in the acetogenic bacterium Acetobacterium woodii. J Biol Chem 2011, 286:6080-6084.
- Schut GJ, Bridger SL, Adams MWW: Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 2007, 189:4431-4441.
- 21. Wang S, Huang H, Moll J, Thauer RK: NADP reduction with • reduced ferredoxin and NADP reduction with NADH are

coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 2010, **192**:5115-5123.

The first report of a hitherto unknown enzymatic activity that increases the diversity of redox reactions in anaerobes.

- Carere CR, Rydzak T, Cicek N, Levin DB, Sparling R: Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N2 and H2 sparging of openbatch cultures of *Clostridium thermocellum* ATCC 27405. *Appl Microbiol Biotechnol* 2014 http://dx.doi.org/10.1007/s00253-013-5500-y.
- 23. Shaw AJ, Jenney FE Jr, Adams MWW, Lynd LR: End-product pathways in the xylose fermenting bacterium, *Thermoanaerobacterium saccharolyticum*. *Enzyme Microb Technol* 2008, **42**:453-458.
- Yao S, Mikkelsen MJ: Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in *Thermoanaerobacter mathranii*. J Mol Microbiol Biotechnol 2010, 19:123-133.
- Bhandiwad A, Guseva A, Lynd L: Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv Microbiol 2013, 2013:46-51.
- Lo J, Zheng T, Hon S, Olson D, Lynd L: The bifunctional alcohol and aldehyde dehydrogenase gene, adhe, is necessary for ethanol production in *Clostridium thermocellum* and *Thermoanaerobacterium saccharolyticum*. *J Bacteriol* 2015 http://dx.doi.org/10.1128/JB.02450-14. (in press).
- Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang SH,
 Land ML, Klingeman DM, Bhandiwad A, Rodriguez M *et al.*: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in *Clostridium thermocellum*. Proc Natl Acad Sci U S A 2011, 108:13752-13757.

The observation that a point mutation in a metabolic enzyme can increase ethanol tolerance suggests that ethanol inhibition of wild-type strain may be metabolic rather than biophysical (e.g. loss of membrane integrity).

 Shao XJ, Raman B, Zhu MJ, Mielenz JR, Brown SD, Guss AM,
 Lynd LR: Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of *Clostridium thermocellum*. *Appl Microbiol Biotechnol* 2011. 92:641-652.

thermocellum. Appl Microbiol Biotechnol 2011, **92**:641-652. Demonstrates that *Clostridium thermocellum* can be transferred on cellulose in the presence of 50 g/l ethanol.

- Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM: Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in *Clostridium thermocellum*. *Biotechnol Biofuels* 2015 http://dx.doi.org/10.1186/s13068-015-0204-4. (in press).
- Extance J, Crennell SJ, Eley K, Cripps R, Hough DW, Danson MJ: Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta Crystallogr D: Biol Crystallogr 2013, 69:2104-2115.
- White H, Strobl G, Feicht R, Simon H: Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of nonactivated carboxylic acids to aldehydes. Eur J Biochem 1989, 184:89-96.
- 32. Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P: *Clostridium Ijungdahlii* represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 2010, 107:13087-13092.
- Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA,
 Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW: Single
- Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW: Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci U S A 2014 http://dx.doi.org/ 10.1073/pnas.1413789111.

Conclusive evidence of aldehyde-ferredoxin oxidoreductase pathway for ethanol production.

 Buckel W, Thauer RK: Energy conservation via electron
 bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. *Biochim Biophys Acta* 2013, 1827:94-113.

Energy conservation via electron bifurcation is a critical concept in fermentative metabolism. This paper reviews the recent advances in our understanding of this phenomenon.

- 35. Schäfer T, Xavier K, Santos H, Schönheit P: Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labeling data and enzyme activities. FEMS Microbiol Lett 1994, 121:107-114.
- 36. Ravot G, Ollivier B, Fardeau ML, Patel BK, Andrews KT: L-Alanine production from glucose fermentation by hyperthermophilic members of the domains bacteria and Archaea: a remnant of an ancestral metabolism? Appl Environ Microbiol 1996, 62:2657-2659.
- 37. Van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC et al.: Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol 2013, 40:725-734.
- 38. Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA: Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 2011, 4:438-448.
- 39. Chung D-H, Huddleston JR, Farkas J, Westpheling J: Identification and characterization of Cbel, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaellIlike enzymes. J Ind Microbiol Biotechnol 2011, 38:1867-1877.
- 40. Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J: Methylation by a unique α -class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLOS ONE 2012, 7:e43844.
- 41. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE, Scott RA, Adams MWW, Westpheling J: Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 2011, 77:2232-2238.
- 42. Faber K, Haima P, Harder W, Veenhuis M, Geert A: Highlyefficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet 1994, 16:305-310.
- Liu SY, Gherardini FC, Matuschek M, Bahl H, Wiegel J: Cloning, sequencing, and expression of the gene encoding a large Slayer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol 1996, 178:1539-1547.
- 44. Desai SG, Guerinot ML, Lynd LR: Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 2004, 65:600-605
- 45. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR,
 Thorne PG, Hogsett DA, Lynd LR: Metabolic engineering of a
- thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 2008, **105**:13769-13774. First demonstration of high ethanol yield in an organism thought to

metabolize pyruvate via pyruvate ferredoxin oxidoreductase.

- 46. Shaw AJ, Covalla SF, Hogsett DA, Herring CD: Marker removal
- system for Thermoanaerobacterium saccharolyticum and •• development of a markerless ethanologen. Appl Environ Microbiol 2011, 77:2534-2536.

Example of engineering the pyruvate-ferredoxin oxidoreductase mode for ethanol production at high yield and titer.

- 47. Lynd LR, Baskaran S, Casten S: Salt accumulation resulting from base added for ph control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 2001, 17:118-125.
- 48. Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD: Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 2012, 14:528-532
- 49. Herring CD, Kenealy WR, Shaw AJ, Raman B, Tschaplinski TJ, Brown SD, Davison BH, Covalla SF, Sillers WR, Xu H et al.: Final report on development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol.

United States Dep. Energy; 2012 http://dx.doi.org/10.2172/ 1033560

- 50. Shaw AJ, Hogsett DA, Lynd LR: Identification of the [FeFe]hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 2009, 191:6457-6464.
- 51. Georgieva TI, Mikkelsen MJ, Ahring BK: Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium *Thermoanaerobacter* BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 2008. 145:99-110.
- 52. Yao S, Mikkelsen MJ: Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 2010, 88:199-208.
- 53. Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R: Genomic evaluation of Thermoanaerobacter spp. for the construction of designer cocultures to improve lignocellulosic biofuel production. PLOS ONE 2013, 8:e59362.
- 54. Wiegel J, Ljungdahl L: Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 1981, 1979:343-348.
- 55. Peng H, Wu G, Shao W: The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200. Anaerobe 2008, 14:125-127.
- Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR et al.: Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 2010, 76:6591-6599.
- 57. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA *et al.*: **High** ethanol titers from cellulose by using metabolically engineered thermophilic encembrid microbes. engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77:8288-8294.
- 58. Rydzak T, Levin DB, Cicek N, Sparling R: End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 2011, 92:199-209.
- 59. Biswas R, Prabhu S, Lynd LR, Guss AM: Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLOS ONE 2014, 9:e86389
- 60. Deng Y, Olson DG, Zhou J, Herring CD, Joe Shaw A, Lynd LR: Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in *Clostridium thermocellum*. *Metab Eng* 2013, **15**:151-158.
- 61. Chung D, Cha M, Guss AM, Westpheling J: Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 2014, 111:8931-8936.

Expression of the *adhE* gene from *Clostridium thermocellum* allowed ethanol production in *Caldicellulosiruptor bescii*, which previously had not been shown to produce ethanol. Ethanol is produced at high yield, although substrate consumption is low.

- 62. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S,
- Martin S, Atkinson T: Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 2009, 11:398-408.

Example of engineering the pyruvate dehydrogenase mode for ethanol production at high yield and titer.

- Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA: Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 2008, 8:1164-1174.
- 64. Atteia A, van Lis R, Tielens AGM, Martin WF: Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta 2013, **1827**:210-223.

- 65. Pronk JT, Steensma HY, van Dijken JP: **Pyruvate metabolism in** *Saccharomyces cerevisiae*. *Yeast* 1996, **12**:1607-1633.
- 66. Grabek-Leiko D, Kurylenko OO, Sibirny VA, Ubiyvovk VM,
- Penninckx M, Sibirny AA: Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 2011, 38:1853-1859.

Example of engineering the pyruvate decarboxylase mode for ethanol production at high yield and titer.

- Dien BS, Cotta MA, Jeffries TW: Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 2003, 63:258-266.
- Burdette DS, Jung S, Shen G, Hollingsworth RI, Zeikus JG: Physiological function of alcohol dehydrogenases and long- chain (C 30) fatty acids in alcohol tolerance of *Thermoanaerobacter ethanolicus*. *Appl Environ Microbiol* 2002, 68:1914-1918.
- 69. Lovitt RW, Shen GJ, Zeikus JG: Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in *Clostridium thermohydrosulfuricum*. *J Bacteriol* 1988, **170**:2809-2815.
- Herrero AA, Gomez RF: Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 1980, 40:571-577.
- 71. Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J: The Thermoanaerobacter glycobiome reveals mechanisms of

pentose and hexose co-utilization in bacteria. *PLoS Genet* 2011, **7**:e1002318.

- Schut GJ, Brehm SD, Datta S, Adams MWW: Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: *Pyrococcus furiosus* grown on carbohydrates or peptides. J Bacteriol 2003, 185:3935-3947.
- 73. Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van
 Dijken JP, Lynd LR: Atypical glycolysis in *Clostridium*

thermocellum. Appl Environ Microbiol 2013, **79**:3000-3008. Reveals many differences from the glycolysis pathway normally assumed.

- Stephanopoulos GN, Aristidou AA, Nielsen J: Metabolic Engineering: Principles and Methodologies. Academic Press; 1998.
- Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF: Genetic engineering of ethanol production in *Escherichia coli*. Appl Environ Microbiol 1987, 53:2420-2425.
- 76. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR et al.: Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505:239-243.
- Guedon E, Petitdemange H, Poincare H, Desvaux M: Improvement of cellulolytic properties of *Clostridium* cellulolyticum by metabolic engineering. *Appl Environ Microbiol* 2002, 68:53-58.