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Abstract

Dilute acid-based pretreatment represents one of the most important pretreatment technologies to reduce biomass recalcitrance and it has 
been successfully applied to a wide range of feedstocks. During this type of pretreatment, the relative lignin content usually increases partially 
due to the loss of carbohydrates. More importantly, it has been reported that the increase of lignin content after dilute acid pretreatment 
is mainly due to the formation of pseudo-lignin. The exact reaction mechanisms leading to the formation of pseudo-lignin is still under 
investigation. However, it has been proposed that rearrangement of hydroxymethylfurfural (HMF) or furfural can produce aromatic type of 
compounds which can further undergo polymerization reactions to from a lignin-like polyphenolic structures termed as pseudo-lignin. This 
mini-review mainly covers recent advances in understanding the fundamentals of pseudo-lignin formation during dilute acid pretreatment, 
the impact of its formation on enzymatic hydrolysis, and how to suppress its formation during dilute acid pretreatment.
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Introduction
Increasing global energy demand and environment concerns 

have led to rapid development of converting renewable resources 
such as lignocelluloses biomass to biofuels such as cellulosic 
ethanol [1]. Relatively high costs associated with the bioprocess 
and the sub-optimal yield of ethanol production remains a 
great challenge due to the natural resistance of the plant cell 
wall to enzymatic deconstruction. As a result, a chemical or 
physical pretreatment is usually required prior to the enzymatic 
hydrolysis step to disrupt the lignin-hemicellulose matrix and 
increase cellulose accessibility, which subsequently increases 
the following hydrolysis efficiency [2]. 

Over the past decades, different pretreatment technologies 
have been developed to reduce biomass recalcitrance [3]. 
Among all the available pretreatment technologies up-to-date, 
dilute acid-based pretreatment using a variety of acids including 
sulfuric acid, nitric acid, or hydrochloric acid remains as one 
of the most important technologies for cellulosic ethanol. It is  
 

 
normally performed with acid concentration less than 4wt% 
over a wide range of temperature (120 to 210 °C) [4]. It also 
has been applied on a wide range of feedstock such as poplar 
[5], switch grass [6], wheat straw [7], rice straw [8], bagasse [9], 
maize stems [10], and corn stover [11]. It is well known that this 
acidic type of pretreatment, in the absence of an organic solvent, 
is less effective in terms of lignin removal, and in fact, the relative 
content of Klason lignin is normally found to be increased after 
dilute acid pretreatment. For example, Foston et al. reported that 
the Klason lignin content significantly increased from ~25% to 
~40% after dilute acid pretreatment of Populus [6]. This is of 
course partially due to the loss of carbohydrates especially the 
hemicellulose during pretreatment. However, Sannigrahi et al. 
reported that the formation of pseudo-lignin by the dehydration 
and polymerization of carbohydrates should be responsible for 
this unusual increase of lignin content [12]. In addition, it was 
also reported by Li et al. that only ~50% of the Klason lignin 
extracted from a hot water pretreated aspen was actual lignin 
[13].
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Understanding the fundamentals of pseudo-lignin chemistry 
is important from the bioconversion process perspective. 
Optimization of current pretreatment technologies is often 
guided b carbohydrate loss during pretreatment and lignin 
residue content and/or structure after pretreatment. Lignin is 
well known to effect enzymatic hydrolysis negatively due to its 
physical barrier role and its unproductively binding to enzymes 
[14,15]. Therefore, development of novel low pH pretreatments 
with diminished pseudo-lignin formation will significantly 
reduce the enzyme loadings required for an efficient enzymatic 

hydrolysis, hence improve the overall process economics. In 
conclusion, the formation of pseudo-lignin during any low pH 
pretreatment is unfavorable as it originates from carbohydrate 
degradation and more importantly, it may be even more 
detrimental to enzymatic hydrolysis compared to native lignin. 
This mini-review highlights recent advances in understanding 
the fundamentals of pseudo-lignin formation, the impact of its 
formation on enzymatic hydrolysis rate and yield, and how to 
suppress its formation during pretreatment.

Structural Characterization of Pseudo-Lignin
Table 1: Pseudo-lignin yield during hydrothermal and dilute acid pretreatment of cellulosic substrates [18-20].

Sample Pretreatment conditions Klason lignin content (%) Pseudo-lignin Yield (%)

Avicel cellulose 140 °C, 1 wt% H2SO4, 30 min N/A 0

Avicel cellulose 160 °C, 1 wt% H2SO4, 40 min N/A 0.51

Avicel cellulose 180 °C, 2 wt% H2SO4, 40 min N/A 85.7

Poplar a-cellulose 170 °C, 0.10M H2SO4, 20 min 6.61 0

Poplar a-cellulose 180 °C, 0.10M H2SO4, 40 min 19.95 44.58

Poplar holocellulose 180 °C, 0.10M H2SO4, 40 min 37.37 51.3

Poplar holocellulose 180 °C, 0.20M H2SO4, 60 min 86.93 33.71

Bamboo holocellulose 170 °C, H2O, 30min 1.5 Trace

Bamboo holocellulose 170 °C, H2O, 90min 2 Trace

Bamboo holocellulose 170 °C, H2O, 150min 3.1 58.2

Bamboo holocellulose 170 °C, H2O, 240min 6.2 54.1

For characterization purposes, pseudo-lignin is normally 
produced and isolated from dilute acid pretreated lignin-free 
materials such as a-cellulose and holocellulose. Table 1  shows 
some typical yields of pseudo-lignin isolated from different 
resources under different pretreatment conditions. A variety of 
analytical techniques including GPC, FTIR, NMR, SEM have been 
utilized to characterize pseudo-lignin. Molecular weight (MW) of 
isolated pseudo-lignin from different resources is shown in Table 
2. In general, the MW of pseudo-lignin is much lower than that of 
milled wood lignin. For example, the weight average MW (Mw) 
of milled poplar lignin and pseudo-lignin derived from dilute 
acid pretreated poplar holocellulose at 180 °C were found to be 
10002g/mol and 5050g/mol, respectively [16,17]. Pretreatment 

severity was not found to be a huge impact factor on the MW 
of pseudo-lignin (Table 2) [18-20]. In addition, MW of pseudo-
lignin derived from dilute acid pretreated holocellulose was 
found larger than that of pseudo-lignin extracted from pretreated 
a-cellulose (Table 2) [16]. FTIR and 13C NMR analysis were also 
used to provide additional information on the chemical structure 
of pseudo-lignin, which indicated that pseudo-lignin was mainly 
composed of hydroxyl, carbonyl and aromatic structures 
[12]. These results clearly indicated that pseudo-lignin was 
a polyphenolic, lignin-like material with aliphatic, aromatic, 
and carbonyl structures derived from cellulose/hemicellulose 
fragments released during acid hydrolysis reactions. 

Table 2: Weight-average (Mw) and number-average (Mn) of pseudo-lignin isolated from dilute acid pretreated cellulosic substrates [18,19].

Sample Mw (g/mol) Mn (g/mol) PDI

Bamboo holocellulose pretreated 
at 170 °C, H2O, 150min 3410 1200 2.84

Bamboo holocellulose pretreated 
at 170 °C, H2O, 240min 5340 3320 1.6

Poplar a-cellulose pretreated at 
180 °C, 0.10 M H2SO4, 40min 3440 1080 3.17

Poplar holocellulose pretreated at 
180 °C, 0.10 M H2SO4, 40min 5080 1240 4.09

Poplar holocellulose pretreated at 
180 °C, 0.20 M H2SO4, 60min 5970 1190 5
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Lignin can be redistributed during dilute acid pretreatment, 
leading to the formation of lignin droplets of various 
morphologies [10,21-24]. During the dilute acid pretreatment, 
lignin was reported to coalesce on plant cell wall and then 
migrate into the bulk liquid phase in form of droplets or balls 
[21]. This kind of lignin aggregation normally requires the 
pretreatment temperature to exceed the lignin phase transition 
temperature. Similar to this kind of re-deposit lignin droplets, 
pseudo-lignin can be also exist as discrete spherical droplets on 
the surface of pretreated holocellulose with a range of sizes from 
0.3 to 8.0mmm [12]. Figure 1 illustrates a SEM image of pseudo-
lignin deposition on surface of poplar holocellulose during dilute 
acid pretreatment.

Figure 1: SEM image of pseudo-lignin deposition on surface of 
poplar holocellulose after dilute acid pretreatment [23].

Reaction Mechanisms Leading to the Formation of 
Pseudo-Lignin

The exact mechanisms leading to the formation of pseudo-
lignin are still under investigation due to the complexity of 
pseudo-lignin structure and the heterogeneity of reaction 
sources and media. However, the presence of high proportions 
of unsaturated carbons in pseudo-lignin structure strongly 
indicated that acid hydrolysis of carbohydrates polymers to 
their corresponding monosaccharide’s and the subsequent 
dehydration and fragmentation of sugars probably took place 
during the acid pretreatment. Hydroxymethylfurfural (HMF) 
and furfural can be produced from 6 and 5-carbon sugars 
such as glucose and xylems via acid catalyzed dehydration 
reactions [25,26]. HMF and furfural can be further subjected to 
rearrangements to produce other aromatic compounds which 
might be the key intermediates for pseudo-lignin formation. For 
example, 3,8-dihydroxyl-2-methylchromone was reported as 
one of the main aromatic products in the acidic degradation of 
xylems [27]. Similarly, hydrolytic ring-opening reaction of HMF 
was reported to generate 1,2,4-benzenetriol (BTO) in yields of 
46% [28]. These intermediates can be then converted to pseudo-
lignin via polymerization/polycondensation reactions. For 
instance, it has been reported that BTO could react with HMF 
or furfural to produce a three-dimensional polymer via acid 
catalyzed aromatic electrophonic substitution [18]. Figure 2 
summarized the reaction mechanisms mentioned above, which 
highly suggested presence of acid and high temperatures are 
probably two crucial conditions for the pseudo-lignin formation. 
Understanding the reaction pathways leading to the formation of 

pseudo-lignin will provide insights into how to suppress pseudo-
lignin generation, though much work still needed to be done.

Figure 2: Proposed reaction pathways for pseudo-lignin 
formation.

Impact of Pseudo-Lignin on Enzymatic Hydrolysis

Figure 3: Enzymatic hydrolysis time course of poplar 
holocellulose mixed with dilute acid pretreated lignin or pseudo-
lignin [30].

Li and co-workers reported that the lignin droplets 
deposited on the surface of plant cell wall significantly inhibited 
cellulose hydrolysis, mainly through surface blockage [21]. 
Their study indicated the nonspecific binding of lignin droplets 
to enzymes was not the key source of inhibition. Similar to the 
lignin redeposit droplets, pseudo-lignin formed during dilute 
acid pretreatment can also exist as discrete spherical droplets 
on the surface of pretreated materials, and its formation is 
obviously not desired due to the fact that pseudo-lignin can 
directly decrease cellulose accessibility by blocking the surface 
binding sites. On the other hand, pseudo-lignin is also known 
to unproductively bind to cellulase and inhibit its action [29]. 
Kumar et al. studied the enzymatic hydrolysis of Avicel cellulose 
mixed with pseudo-lignin derived from pure xylose, and it was 
reported that even a small amount of pseudo-lignin addition 
could have a noticeable negative impact on enzymatic hydrolysis 
yield [20]. Further protein adsorption experiments revealed 
that pseudo-lignin bound to enzymes unproductively. A recent 
study by Hu et al. further demonstrated the formation of pseudo-
lignin needed to be avoided as they proved that pseudo-lignin 
is much more detrimental to enzymatic hydrolysis than regular 
dilute acid pretreated lignin (Figure 3)[30]. More specifically, 
dilute acid pretreated lignin only inhibited enzymatic hydrolysis 
in its initial stage and had a nearly negligible impact on the 
overall conversion percentage after 48 h as shown in Figure 
3, whereas pseudo-lignin addition could decrease enzymatic 
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hydrolysis yield up to 25% [30]. It is worth mentioning pseudo-
lignin is insoluble in water, therefore the hydrophobic structural 
functionality of pseudo-lignin is probably responsible for its 
nonproductive association with enzymes.

Suppression of Pseudo-Lignin Formation during 
Dilute Acid Pretreatment

Lignin redeposits droplets and pseudo-lignin only can 
be formed at elevated temperatures, therefore reducing 
the pretreatment severity is obviously one of the ways to 
reduce or avoid the formation of pseudo-lignin. However, 
as the pretreatment severity decreases, so do the efficient 
of pretreatment in terms of hemicellulose removal and 
cellulose accessibility increase. Compared to the typical batch 
pretreatment, flow through reactor system was shown to 
dramatically increase lignin removal as much as over 90% [31]. 
More importantly, its ability to constantly remove lignin into the 
aqueous phase effectively restricts the condensation reactions. 
As a result, flow through pretreatment can reduce the chances 
of pseudo-lignin formation [31,32].Oxidative polymerization 
seems to play an important role in pseudo-lignin formation 
based on the proposed pathway, therefore performing dilute 
acid pretreatment under non-oxygen environment could be 
another possible alternative method. It was also reported that 
introduction of dimethyl sulfoxide (DMSO) to the acidic medium 
could effectively suppress HMF productions which is one of key 
intermediates during the pseudo-lignin formation [33]. A recent 
study modified a series of dilute acid pretreatment by using N2, 
surfactant Tween-80, or DMSO-water mixture as the reaction 
medium to test these hypotheses for new methods of suppressing 
pseudo-lignin formation without significantly reducing the 
pretreatment severity [34]. As shown in Table 3, addition of N2 
was not effective in terms of pseudo-lignin suppression although 
extra oxygen significantly facilitated pseudo-lignin formation 
as expected. Apparently, introduction of DMSO significantly 
reduced the pseudo-lignin content by ~30%. The coordination of 
HMF with water can be reduced in the presence of DMSO due to 
the stronger interaction of DMSO oxygen with water [35]. From 
the reaction mechanism perspective, the reduction of HMF-
water coordination could protect the HMF molecule from further 
reactions to form pseudo-lignin [34].

Table 3: Klason lignin/Pseudo-lignin contents of various samples 
generated using modified dilute acid pretreatment of poplar holocellulose 
at 180 °C, 1.0wt% H2SO4, 40min [34].

Sample Solids recovery (%) Klason/pseudo-
lignin content (%)

Control sample 18.9 42

O2 – pretreated 18.1 89.2

N2 – pretreated 19.1 48.7

Tween – pretreated 37.8 14.7

DMSO – pretreated 13.3 52.1

Conclusion
Lignin-like materials originated from acid catalyzed 

dehydration of carbohydrate, termed pseudo-lignin, are 
responsible for the increased Klason lignin content after acid-
based biomass pretreatment. Pseudo-lignin can be deposit on 
the surface of biomass during the dilute acid pretreatment in 
forms of discrete spherical droplets or balls, and it is detrimental 
to the subsequent enzymatic hydrolysis, even more detrimental 
than dilute acid pretreated lignin. Therefore, it became essential 
to develop techniques to effectively impeded pseudo-lignin 
formation. Current ongoing pseudo-lignin researches are still 
quite limited to carbohydrate-derived pseudo-lignins, it is quite 
possible that lignin would somehow react with carbohydrate 
degradation products vis polycondensation reactions, 
contributing to the yield of pseudo-lignin. The understanding 
of the most fundamental chemistry associated with pseudo-
lignin formation is crucial for the future bioethanol production. 
Therefore, future work is much needed to fully unlock the secret 
of pseudo-lignin chemistry.
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