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Abstract

Pathway enrichment analysis represents a key technique for analyzing high-throughput omic data, and it can help to link
individual genes or proteins found to be differentially expressed under specific conditions to well-understood biological
pathways. We present here a computational tool, SEAS, for pathway enrichment analysis over a given set of genes in a
specified organism against the pathways (or subsystems) in the SEED database, a popular pathway database for bacteria.
SEAS maps a given set of genes of a bacterium to pathway genes covered by SEED through gene ID and/or orthology
mapping, and then calculates the statistical significance of the enrichment of each relevant SEED pathway by the mapped
genes. Our evaluation of SEAS indicates that the program provides highly reliable pathway mapping results and identifies
more organism-specific pathways than similar existing programs. SEAS is publicly released under the GPL license agreement
and freely available at http://csbl.bmb.uga.edu/,xizeng/research/seas/.
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Introduction

High-throughput omic techniques are being increasingly more

widely used by large research centers as well as by individual labs

because of the rapidly decreasing costs and the increasing quality

of the data generated. The rapid accumulation of the omic data has

provided unprecedented new opportunities for biologists to study

substantially more complex problems at a systems level [1,2] than

just a few years ago. As a key technique in linking individual

genes/proteins to biological processes, pathway enrichment analy-

sis is being widely used to study pathway-level activities based on

the activities of individual genes/proteins observed using omic

techniques [3,4]. A number of computational tools have been

developed to provide pathway enrichment analyses against dif-

ferent pathway databases. As of now, the majority of the existing

tools have been designed for pathway analyses for human or

eukaryotes in general, including ArrayXPath [5], GenMAPP [6],

DAVID [7], PathwayExplorer [8], PathExpress [9] and Pathway

Miner [10]. Among all these analysis tools, gene mapping from a

specified organism to the pathway genes covered by the underlying

(pathway) database is typically done through gene ID [5,6,7] or

orthology mapping [11,12]. A pathway is considered as enriched

by a set of genes if they overlap the pathway at a substantially

higher percentage of the pathway genes than expected by chance.

Statistical enrichment analysis methods fall into three classes

according to enrichment algorithms [13]: (i) singular enrichment

analysis (SEA), which calculates an enrichment P-value on each

pathway and lists the enriched pathways in a linear table based on

the hyper-geometric distribution assumption [14] or using Fisher

exact test [15,16] among a few other methods [17] [18]; (ii) gene

set enrichment analysis [19], which considers an entire gene

set (without pre-selection) encoded in a genome and associated

experimental values (for instance expression fold change); and (iii)

modular enrichment analysis [20], which uses the key idea of SEA

but considers pathway-pathway or gene-gene relations in its

enrichment P-value calculation. In this paper, we will use the SEA

method because of its simplicity and popularity, and may consider

the other two classes of enrichment analysis methods in our future

work.

Currently there are a few popular pathway databases in the

public domain, without a particular one being the predominant

one [21], as they each have their own strengths and limitations,

making each of them suitable for different application scenarios.

For example, the KEGG Pathway database [22] has a collection of

generic pathways mostly derived based on known biochemical

reactions rather than how individual organisms execute the

reactions. Hence these generic pathways could be considered as

a superset of the corresponding pathways specific to individual

organisms, i.e., not every reaction in a KEGG pathway is encoded

in every organism [23]. So mapping these generic pathways to

specific organisms generally requires manual examination to

ensure the mapping quality. The SEED Subsystem database is

another pathway resource; each subsystem (pathway) for a specific

organism in SEED is constructed by a group of domain experts

[24], making its pathway genes more organism-specific and

generally more reliable than KEGG pathways. Its limitation is
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that its coverage might not be as high as KEGG pathways. For

example, the KEGG pathways cover 2,983 E. coli genes while

SEED covers only 2,181 while exceptions exist. For instance,

KEGG covers 2,296 B. subtilis genes while SEED covers 2,303.

We have previously developed a software tool KOBAS [11] for

enrichment analyses of KEGG pathways, which has been widely

used since its publication [25]. Here we present a new tool for

enrichment analyses against SEED subsystems, called SEAS

(SEED-based Enrichment Analysis System). SEAS provides three

ways for gene mapping to subsystems through gene ID, orthology

or homology mapping based on the availability of the relevant

information, and identifies the statistically enriched pathways in

SEED. We have extensively tested the performance of SEAS by

re-annotating known pathways of E. coli and B. subtilis in SEED,

and found that the mapped pathways are highly reliable, achieving

79% precision and 95% coverage for E. coli and 66% precision

and 74% coverage for B. subtilis. Our additional evaluation results

on microarray data and newly sequenced genome suggest that

SEAS can identify more organism-specific pathways than KEGG-

based pathway annotation. To the best of our knowledge, SEAS is

the first software for SEED pathway enrichment analysis.

Results and Discussion

The workflow of SEAS consists of two main steps as shown in

Figure 1: (a) it first maps the query genes to SEED subsystems

based on sequence similarity search or ID mapping; and (b) it then

compares the ratio of the query genes out of all the genes in each

mapped subsystem versus the ratio of the query genes out of the

whole gene set of the query genome or some other background

ratio prepared by the user, and identifies significantly enriched

subsystems.

Gene mapping to pathways by multiple strategies
Mapping the query genes to pathways involves searching the

well-annotated gene database in SEED that currently has 1,414

organisms. We have implemented three strategies in SEAS, one of

which will be used depending on the availability of the relevant

information. When the query genes are already in SEED, we will

use the original (pathway) annotation in SEED directly if the

SEED ID is available for the query or through ID mapping using

the NCBI GI number as the universal ID. When the genes are not

covered but have available genome in SEED, we will use the

mapping results between the query genes and the pathway genes

in SEED given by the official RAST server using Bi-Directional

Best Hit (BDBH) [26], or use the mapping results by our own P-

MAP program [27] when operons for the query genome are

available. P-MAP uses both high sequence similarity and operon

information for orthologous gene mapping, and hence tend to

make the mapping results more accurate than BDBH when it is

applicable. When neither of these two methods provides useful

mapping results, which could be true for partially sequenced

genomes and meta-genomes, we use NCBI BLAST (blastp for

DNA, blastx for protein) (see Material and Methods on E-value

cutoff), to compare the query genes/proteins against one or more

reference genomes in SEED specified by the user, in which we

select the top hit with known annotation in SEED. The SEAS

program provides the option for the user to choose one of the

options to do gene mapping.

The first two strategies have been well evaluated in the original

papers on SEED [24], RAST [26] and P-MAP [27] so we focus on

the assessment of the third strategy. Specifically, we will re-

annotate the pathways of E. coli and B. subtilis (already in SEED)

based on SEED pathways encoded by other genomes (as

references). The annotation is quite time-consuming if all genomes

in SEED are used as references, but the coverage could be low if

only one is used considering the reference genome may not

be evolutionarily close enough to contribute useful annotation

templates. To balance the annotation performance and coverage,

our idea is to combine some reprehensive genomes for each group

of reference genomes having similar evolutional distances to the

query genome. To assess this idea, we have evaluated different

combinations of reference genomes in an iterative manner

(Figure 2 and 3) based on the taxonomic distance, defined as the

number of nodes in the path from the query organism to its closest

common ancestor with its reference organism in the taxonomy

tree defined in the KEGG Genome database (see Figure 2A and

3A). Based on the taxonomic distance, we have designed the

following three strategies: the single genome strategy, which selects

only one reference genome from SEED every time, but with

different distance each time (see Figure 2B and 3B); multiple genome
strategy #1, which starts with a genome in SEED having the

smallest taxonomic distance to the query genome and iteratively

adds the next closest genome each time until K genomes have

been selected for a user selected K.0 (see Figure 2C and 3C); and

multiple genome strategy #2, which starts from the farthest genome in

SEED to the query genome and iteratively adds the next farthest

genome each time until K genomes have been selected, trying to

cover the best studied genomes as references, which could be close

or distant. We compared the SEAS-based re-annotation results

against the original pathway annotation of the two organisms in

SEED using the following measures:

Precision~
TP

TPzFP
, and Coverage~

TP

TPzFN
,

where TP (true positive) is the number of the genes for which the

Figure 1. A schematic representation of the SEAS workflow.
Each rectangle represents a program, each cylinder represents a data-
base, and the others are flat text files for input, output or intermediate
results.
doi:10.1371/journal.pone.0022556.g001

SEAS: SEED-Based Pathway Enrichment Analysis
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SEAS-based annotation is the same as the original SEED

annotation, FP (false positive) is the number of the genes for

which the SEAS-based annotation is different from the original

SEED annotation, and FN (false negative) is the number of genes

in the genome with SEED annotations but not SEAS annotations.

We observed from Figures 2 and 3 that (i) more closely related

genomes generally provide more information for pathway

annotation as expected (Figure 3B) although exceptions may exist

such as S. enterica provides more information than Y. pestis for

annotation of E. coli pathways possibly because S. enterica (55% of

4,737 genes are annotated) has more annotated genes than Y. pestis

(51% of 5,125 genes are annotated) (Figure 2B); (ii) multiple

genomes always provide more pathway-annotation information

than individual genomes, also as expected; (iii) multiple genome

strategy # 1 generally gives rise to more information for pathway

annotation than multiple genome strategy # 2 (Figure 2C, 2D, 3C

and 3D); and (iv) multiple genomes, when used in conjunction with

their taxonomic distance information, have the best pathway

annotation performance, achieving 55% precision and 90%

coverage for E. coli and 66% precision and 74% coverage for B.

subtilis For this case, 10% of original annotations for E. coli and

26% for B. subtilis are missed by SEAS (see Table S1). The missing

subsystems include arabinose utilization, DNA replication, syn-

thesis of aromatic compounds, DNA repairs for E. coli, and

transporter, pyridoxine regulon, and spore coat, DNA repair for B.

subtilis. Our explanation is that these subsystems do not have

annotated equivalent subsystems in the reference genomes.

Overall, homology search against multiple reference genomes

with a wide range of different taxonomic distances generally give

rise to generally good pathway annotation and can partially

overcome the issue that homology search against one reference

genome often leads to mapping to paralogs rather than orthologs.

Pathway enrichment with statistic test
We have employed four statistic methods for pathway

enrichment analysis, and a user can choose one as we have done

with the KOBAS software [25], each of which tests whether a

given gene set overlaps with a specific pathway substantially more

considerably than by chance. Specifically, the four methods are

hyper-geometry test, binomial test, x2 test, and Fisher exact test.

The hyper-geometric test requires that the input include a subset

of the background annotation. If x2 test is unreliable (e.g., with

expected frequencies ,5), SEAS will automatically switch to

Fisher’s exact test. The binomial test is the fastest method when

the number of sequences is large [25]. We have also implemented

a correction procedure for the false discovery rate (FDR) using multtest

(2.8.0) provided in the R package [28], knowing that multiple

hypothesis tests (one test per pathway) in each analysis performed

could result in high false positive errors (see Methods and

Material).

We have evaluated our pathway enrichment analysis using a

gene set of E. coli, consisting of 42 differentially expressed genes

with fold change $2 or #0.5 in the E. coli ackA mutant (able to

produce acetyl phosphate but not metabolize it) in comparison

Figure 2. SEAS-based re-annotation of E. coli pathways using 11 reference genomes. (A) Taxonomic distance between reference genomes
and E. coli. The first column represents the reference genomes, used in the x-axis in (B)–(D); (B) Re-annotation of E. coli pathways using the single
genome strategy; (C) Re-annotation of E. coli pathways using the multiple genome strategy#1; (D) Re-annotation of E. coli pathways using the multiple
genome strategy #2.
doi:10.1371/journal.pone.0022556.g002

SEAS: SEED-Based Pathway Enrichment Analysis
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with the E. coli pta-ackA mutant (unable to produce acetyl

phosphate) [18]. We used the hyper-geometric test for the

enrichment analyses of the SEAS and KOBAS programs. Among

the 42 genes, 22 are found in the enriched KEGG pathways and

24 in the enriched SEED pathways. Seven SEED pathways are

identified to be significantly enriched by SEAS, as shown in

Table 1, while three KEGG pathways are identified to be enriched

by KOBAS [11] (see Table S2). Overall, the results from SEAS

and KOBAS are generally consistent with the result of the original

study: flagella related genes play an important role in the E. coli

pta-ackA mutant versus ackA mutant [18,29]. SEAS generally gives

more detailed information than KOBAS-based pathway annota-

tion due to the nature of the SEED pathways, as in the case of type

1 pili mannose sensitive fimbriae, named as a secretion system by

KEGG. Compared to KOBAS, SEAS identified three enriched

pathways that KOBAS did not identify, namely colanic acid

biosynthesis associated with cell adhesion [30] and lysozyme

inhibitors associated with cell wall synthesis [31] without missing

any significant KEGG pathways. Notably, SEAS identified b1922

as the s28 factor, a minor sigma factor responsible for initiation of

transcription at a number of genes involved in motility [32], while

KOBAS annotates it as motility proteins and RNA polymerase,

which suggests that the mutation of pta and ackA affect the activity

of s28 factor and thus regulates the expression of the genes related

with flagellum and flagellar motility (see Table S2).

We have also compared the pathway annotation performance

by the two programs on a newly sequenced genome, N. profundicola
[33] using E. coli pathways in KEGG and SEED as references,

respectively (using FDR#0.05 as cutoffs). 14 out of 147 (covering

1,053 genes) KEGG pathways are enriched for N. profundicola and
46 out of 225 (covering 856 genes) SEED pathways are enriched,

as shown in Table S3. We noted that the pathways related to

ribosome, tRNA biosynthesis, transcription factor, ABC trans-

porter, cell motility, flagella, are enriched in both KEGG and

SEED. Overall, SEAS identified 31 significant pathways that the

KOBAS did not identify, including folate biosynthesis, fatty acid

biosynthesis, chorismate synthesis, selenocysteine metabolism,

DNA repair, biotin synsthesis, histidine biosynthesis, riboflavin to

FAD, purine biosynthesis, which is consistent with the conclusions

in the paper [33]; while it missed six significant pathways identified

by KOBAS (see Table S3). Overall SEAS and KOBAS are clearly

complementary to each other as expected based on the com-

plementary nature of their underlying pathway databases.

Software design and implementation
The SEAS system consists of two main steps: pathway

annotation and enrichment analysis, each of which can be run

through a command-line, annotate and pathfind, respectively.
The program is implemented using the Mono cross platform

(http://www.mono-project.com), open source.NET development

Figure 3. SEAS-based re-annotation of B. subtilis pathways using 11 reference genomes. (A) Taxonomic distance between reference
genomes and B. subtilis. The first column represents the reference genomes, which are used in the x-axis in (B)–(D); (B) Re-annotation of B. subtilis
pathways using the single genome strategy; (C) Re-annotation of B. subtilis pathways using the multiple genome strategy #1; (D) Re-annotation of
B.subtilis pathways using the multiple genome strategy #2. L. sphaericus is very low in panel B at position 4 on the x-axis as it has no pathway
annotation information.
doi:10.1371/journal.pone.0022556.g003

SEAS: SEED-Based Pathway Enrichment Analysis
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platform, which can run on Windows, Linux and Mac OS X. All

the programs are well documented, which can be quickly accessed

by the ‘-h’ option. SEAS is released under the GNU General

Public License (GPL), and the program along with related data are

freely available at http://csbl.bmb.uga.edu/,xizeng/research/

seas/.

SEAS runs very fast for ID-mapping based pathway annotation

and pathway enrichment analysis; the only slow step of the system

is the BLAST search, which takes about 1.5 hours with a single

reference genome and 8.5 hours with 10 reference genomes for

pathway (re)annotation of E. coli on a Linux workstation (6 CPUs

and 8G memory). To support large-scale pathway annotation,

SEAS also accepts outputs from BLAST using the (-i blastout)
option, making the program very fast if the BLAST results are

done in advance.

If the user has a list of protein sequences (fasta format), a typical

session of pathway enrichment analysis is as follows:

1. Pathway annotation of the given list of proteins: seas.exe

annotate –b blastp –i fasta –o ‘‘Escherichia coli,Bacillus

subtilis’’ –f example.fasta.example.annotations, where -b
specifies the BLAST program (blastp for protein sequence

and blastx for DNA sequences), -i for the input format, -o for
reference genome(s), -f for the input and ‘‘.example.annotations’’
specifies the output.

2. Pathway enrichment analysis with the whole E. coli genome as

background: seas.exe pathfind –m hyper -1 example.ann -2

‘‘Escherichia coli’’ .example.pathways, where -m specifies

statistical method (hyper for hyper-geometric test, binom for

binomial test, chisq for Chi Square test and fisher for Fisher

Exact test), -1 for sample annotation file from the above step

and -2 specifies background annotation file, with built-in whole

genome by species name or from the above step.

Conclusion
We have developed a new pathway enrichment analysis system,

SEAS, for prokaryotes, which maps a given set of genes to SEED

pathways along with a statistical significance assessment. Our

evaluation result showed that SEAS-based pathway annotations

tend to provide more reliable pathway predictions with slightly

smaller coverage compared to a KEGG-based pathway enrich-

ment tool KOBAS, hence it provides a new pathway enrichment

tool complementary to KOBAS. We anticipate that the perfor-

mance by SEAS will continue to improve as the coverage of SEED

pathways continues to increase rapidly. As the only available tool

specifically designed for SEED pathway enrichment analysis in the

public domain, we believe that SEAS will add to the value of the

SEED database, which is now being widely used by bacteriologists.

Materials and Methods

Data
The genome sequences and relevant annotations were down-

loaded from ftp://ftp.ncbi.nih.gov/genomes/Bacteria on 12/30/

2010. The SEED database was downloaded from ftp://ftp.

theseed.org/genomes/SEED on 12/30/2010. The KEGG data-

base was downloaded from ftp://ftp.genome.jp/pub/kegg/genes/

organisms on 12/30/2010.

Pathway mapping from multiple reference genomes
When the query genes are not in SEED but have the sequence

information, SEAS can annotate them by using the RAST server

[26] or the P-Map program [27] when the whole genome is

available; otherwise, SEAS annotates them based on sequence-

similarity homology search against multiple reference genomes

already in SEED. Specifically, SEAS does sequence similarity

search for each query gene against the reference genome(s) using

NCBI BLAST (blastp for protein and blastx for DNA), and selects

the best hit as its mapped orthologous gene if (i) its BLAST E-

value#1025; (ii) its E-value ranks among the top five hits (Rank#5);

and (iii) the gene has pathway information in SEED. If the user

specifies multiple reference genomes, SEAS merges them into a

single ‘‘genome’’ using the NCBI BLAST program and then

applies the aforementioned algorithm for the subsequent pathway

annotation. We have implemented a Ruby (http://ruby-lang.org)

script to help select multiple reference genomes that are diverse in

taxonomic distances. The script selects the organism out of those

with the same taxonomic distance that has the most similar

number of genes to that of the query genome. Currently the

default value for the number of multiple reference genomes is set

to be ten to ensure our aforementioned re-annotation result on the

two genomes have the best precision and coverage (see Figure 2C

and 3C), which can be changed by the user. The script can be

freely downloaded from http://csbl.bmb.uga.edu/,xizeng/

research/seas/.

Enrichment analysis with statistic test
The statistic test methods are implemented as a separate R

(http://www.r-project.org) script that is easy to extend with new

methods and that to do enrichment analysis with other pathway

databases outside of SEAS. The script is integrated seamlessly into

the SEAS program.

Table 1. Comparison between pathway enrichment analyses by KEGG- and SEED-based predictions.

KEGG pathway FDR SEED subsystem FDR

Bacterial motility proteins 0 Flagellum 0

Flagellar assembly 1.0610214 Type 1 pili, mannose sensitive fimbriae 4.761028

Secretion system 9.461023 Flagellar motility 3.261023

Flagellum in Camphlobacter 3.261023

Bacterial chemotaxis 4.661022

Lysozyme inhibitors 4.661022

Colanic acid biosynthesis 4.661022

FDR (false discovery rate) is a correction for high false positive errors when doing multiple hypothesis testing.
doi:10.1371/journal.pone.0022556.t001

SEAS: SEED-Based Pathway Enrichment Analysis
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