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a b s t r a c t

Recent trends suggest that future biotechnology will increasingly rely on mathematical models of the bio-
logical systems under investigation. In particular, metabolic engineering will make wider use of metabolic
pathway models in stoichiometric or fully kinetic format. A significant obstacle to the use of pathway
models is the identification of suitable process descriptions and their parameters. We recently showed
that, at least under favorable conditions, Dynamic Flux Estimation (DFE) permits the numerical character-
ization of fluxes from sets of metabolic time series data. However, DFE does not prescribe how to convert
these numerical results into functional representations. In some cases, Michaelis–Menten rate laws or
canonical formats are well suited, in which case the estimation of parameter values is easy. However, in
other cases, appropriate functional forms are not evident, and exhaustive searches among all possible
ifferential inclusion
nverse problem

achine learning
arameter estimation
iecewise approximation
ower-law

candidate models are not feasible. We show here how piecewise power-law functions of one or more vari-
ables offer an effective default solution for the almost unbiased representation of uni- and multivariate
time series data. The results of an automated algorithm for their determination are piecewise power-law
fits, whose accuracy is only limited by the available data. The individual power-law pieces may lead to
discontinuities at break points or boundaries between sub-domains. In many practical applications, these
boundary gaps do not cause problems. Potential smoothing techniques, based on differential inclusions

discu
and Filippov’s theory, are

. Introduction

Enormous advances in molecular biology, engineering and
omputer science have propelled the computational analysis of
iological systems into the center of systems biology, and it is
ecoming feasible to use systems biological methods like pathway
nalysis in biotechnology and, especially, metabolic engineering.
he main challenge for practical applications of computational
ystems biology is currently the process of making the compu-
ational models fit the dynamic responses of biological systems.
his challenge consists of two related sub-tasks. The first is the
etermination of suitable functions that are capable of describing
he observed dynamics with sufficient accuracy, and the second is
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

he identification of parameter values that render a good numer-
cal fit between observed and modeled responses. Although these
wo sub-tasks are clearly dependent on each other, they are differ-
nt in character. While the second task of parameter identification
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is primarily a technical issue, which may be difficult, but which
one might expect to be solvable with brute force, if not with ele-
gance, the task of determining appropriate functions exceeds the
realm of pure computation and requires insight into the biologi-
cal phenomenon under investigation, numerous assumptions and
simplifications, which cannot always be validated, and some degree
of ingenuity in finding or inventing functional forms that fit the
need. The reason that this sub-task is complicated is that nature
has not provided us with guidelines for selecting these functions,
and that it is usually not feasible to reduce biological processes to
elemental physical processes for which mathematical descriptions
are available (Voit, 2008).

Many models of biochemical systems in the past used functional
forms that were chosen from a default repertoire of candidates,
which included Michaelis–Menten and Hill rate laws, their general-
izations toward several substrates, inhibitors and other modulators
(Schulz, 1994), or so-called canonical representations like power-
law (Voit, 1991) and lin-log functions (Heijnen, 2005). However, it
is becoming increasingly evident that the standard rate functions
se power-law modeling of biological systems. J. Biotechnol. (2010),

are not always applicable and that they, like canonical represen-
tations, are simply too inaccurate for reliable extrapolations of the
model to new experimental conditions.

In an attempt to respond to these challenges, we recently pro-
posed Dynamic Flux Estimation as a useful tool for estimating

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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etabolic pathway systems (Goel et al., 2008). This method con-
ists of two phases, of which the first is entirely model free, while
he second requires the choice of a mathematical representation
f all involved fluxes. More specifically, the first phase consists of
olving a linear system of fluxes in such a manner that the change
n each variable pool at each time point is the numerical result of
uxes entering and exiting the pool. Under ideal conditions, this
olution can be obtained with straightforward methods of linear
lgebra; in other cases, additional biological information, comple-
enting the observed metabolic time series, is needed (Voit et al.,

009). In either case, the solution of the first phase of DFE consists
f a set of points characterizing the dynamic profile of each flux
ver the observed time interval. This solution allows inspection
f each flux either plotted against time or against its contributing
etabolites and modulators. However, since the representation is

ot functional, it does not allow simulations of new scenarios or
xtrapolations to untested conditions.

The key goal of the second phase is the conversion of these
umerical representations into functional forms, which subse-
uently permit simulations, extrapolations, and other manipula-
ions and analyses with the model. If the numerical representation
f a flux exhibits a simple trend, a function like a Michaelis–Menten
r Hill rate law, or even a simple power-law representation, may
erve as an adequate model. Indeed, the arsenal of traditional
iochemical process descriptions is essentially unlimited (Schulz,
994), yet it may still be insufficient. For instance, Peskov et al.
2008) recently proposed a representation of the phosphofructo-
inase reaction in Escherichia coli that by far exceeds the complexity
f any traditional rate laws. In cases where the typical candidates
f biochemistry fail, there is no guidance as to what other func-
ional forms might yield satisfactory flux fits. Without an evident
unctional format, one might try to exhaust a set of more complex
andidate functions, but it is clear that it is logistically difficult and
omputationally very expensive to execute such a search.

As an alternative with minimal bias, we propose here the use
f univariate or multivariate piecewise power-law functions. It is
nown that such functions with sufficiently many pieces are capa-
le of modeling unknown data trends with arbitrary accuracy. It

s also known that even single power-law functions are often rea-
onable descriptions of biological processes in vivo, in most cases
utperforming linear and other simple functions. Thus, the search
or a moderately small number of pieces, each described with a
ower-law function, appears to be quite natural. One might wonder
hether this inference of piecewise representations really qualifies

s model identification. Two arguments seem to provide affirma-
ive answers. First, if the piecewise representation is sufficiently
ccurate, it may serve as an extrapolation tool that is likely much
etter than a single-pieced representation. Furthermore, once suit-
ble pieces have been identified, it might at least in principle be
ossible to reverse-engineer a single function that provides a col-

ective, smooth representation of all individual pieces and, thus, the
ata describing the process.

If the numerical flux representation depends on only one vari-
ble, the determination of suitable breakpoints and fitting intervals
ay be accomplished by inspection. However, this is no longer fea-

ible if the flux depends on multiple variables. In the following we
escribe an algorithm, adapted from a method for piecewise lin-
ar systems analysis, that automatically dissects the flux-variable
pace into suitable segments within which the flux is represented
ith a product of power-law functions. The algorithm works well

or fluxes that depend on a single variable or on a larger number
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

f variables. It allows the specification of the number of desired
egments or iteratively increases this number until an acceptable
esidual error is reached. The resulting piecewise representation is
direct generalization of models within the widely used modeling

ramework of Biochemical Systems Theory (Savageau, 1976; Voit,
 PRESS
hnology xxx (2010) xxx–xxx

2000) and introduces minimal bias due to the choice of functional
forms.

2. Problem statement

We consider a system of the form

ẋi = V+
i

(x1, x2, . . . , xn+m) − V−
i

(x1, x2, . . . , xn+m), (1)

where index i (i = 1, . . ., n) refers to dependent variables, while
higher indices (n + 1, . . ., n + m) refer to independent variables. The
non-negative influx and efflux functions V+

i
and V−

i
may possibly

consist of sums of other functions describing different contribu-
tions to the production or degradation of xi.

Once the functions V+
i

and V−
i

are specified, simulations with the
model in Eq. (1) are easily performed, and many methods are avail-
able for mathematical analyses of features such as local stability
or parameter sensitivities at the system’s steady states. However,
before such analyses are feasible, it is necessary to specify the func-
tions in the model. As discussed in Section 1, this specification
consists of two parts, namely the determination of the mathemat-
ical structure of the functions and the identification of suitable
parameter values.

It is by now widely recognized that the estimation of parameter
values from time series data is much simplified if the data are first
smoothed, because smoothing permits the computation of slopes
at any desired number of points along the time trajectory of any of
the system variables (Vilela et al., 2007). The slopes, in turn, can be
used as a set of substitutes for the differentials on the left-hand side
of each differential equation at k time points (Si(tk) ≈ ẋi(tk)) (Voit
and Savageau, 1982; Varah, 1982). This procedure has two signifi-
cant advantages. First, the differential equations no longer have to
be integrated numerically, which usually requires substantial com-
putational effort, often consuming between 95% and close to 100%
of the entire estimation time (Voit and Almeida, 2004). Second,
the slope substitution in effect decouples the system of differen-
tial equations and permits parameter estimation one equation at
a time, thus facilitating simpler sequential or parallel execution.
Many applications of these methods have been analyzed in the
fields of genomics and metabolic pathway analysis (Chou and Voit,
2009). The latter is particularly well suited because pathways not
only have a well-defined connectivity but also entail conservation
of mass at nodes and within the entire system. Most comments in
the following therefore refer to metabolic pathway systems, even
though other biological systems are not categorically excluded.

While the slope substitution and decoupling method has found
plenty of applicability (Chou and Voit, 2009) and was shown to
be statistically sound (Brunel, 2008), it still requires in most cases
the estimation of parameters in sets of nonlinear (algebraic) equa-
tions. This estimation is not always trivial. Indeed it is common
that evolutionary or regression algorithms are unable to find the
global optimum within a reasonable time, while global estimation
methods, such as branch-and-bound methods, are computationally
expensive and sometimes difficult to implement (Guillen-Gosalbez
and Sorribas, 2009; Polisetty et al., 2006). A second common issue
is that entire ensembles of solutions may model the data with
similar residual errors, thus causing model identification problems
(Gutenkunst et al., 2007a,b; Raue et al., 2009). These ensembles
may form more or less elliptical regions whose center is the optimal
solution, but it is also possible that distinctly different solution sets
are indistinguishable with respect to the residual error. Finally, a
se power-law modeling of biological systems. J. Biotechnol. (2010),

less-recognized issue is the compensation of errors among different
terms within an equation, among sets of equations, or even within a
single term (Raue et al., 2009; Goel, 2009). In the simplest case, two
parameters p and q may always appear in the same combination,
such as p/q, which precludes their individual identification. In other

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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ases, conserved quantities are much more complex and difficult to
etect and characterize. Error compensation is a hideous problem:
he fit to one or a few training datasets may be quite good, because a
adly estimated parameter in one term is compensated by an incor-
ect parameter in a different term. However, if the resulting model
s used for extrapolations to new conditions, the compensation may
o longer hold and the model fit becomes unacceptable.

Dynamic Flux Estimation (DFE) addresses this issue of error
ompensation (Goel, 2009). DFE begins with a model-free estima-
ion phase, where a linear system of fluxes is constructed at each
ime point. These fluxes correspond to the functions affecting the
ynamics of each variable (as in Eq. (1)), but only their values are
aken at one point at a time, and a functional specification is not
equired. Thus, at time point tk, equations of the following type are
onstructed:

˙ i(tk)=Influx1(tk)+Influx2(tk)+· · ·−Efflux1(tk)−Efflux2(tk)−· · ·. (2)

Under ideal conditions (see Goel et al., 2008), the collection of all
hese linear equations for all variables can be solved directly with

ethod of linear algebra, and the result is a set of points character-
zing the dynamic profiles of all fluxes in the system. In other words,
ne obtains model-free representations of all fluxes as discrete time
eries. For example, if Efflux2 in Eq. (2) depends on variables x3
nd x6 and if we rename this flux for simplicity as V, one obtains
dataset of the form {x3(tk), x6(tk), V(tk); k = 1, . . ., K}. From this

esult, one obtains an impression of V as a function of time and/or
s a function of x3 and x6.

The second phase of DFE is model based. Here, the task is to
ssign functional forms to the flux profiles that were obtained in
he first phase. Ideally, such a function should perfectly match
he plot of the flux versus time and also versus its alleged sub-
trates and modulators. If a suitable functional form is known or
an be assumed with some justification, this matching step is eas-
ly accomplished with a nonlinear regression algorithm. However,
f no such form is known, it is unclear how to proceed.

A possible default candidate is a power-law representation of
he form

i = �i

n∏

j=1

x fij
j , (3)

here the rate constant � i is non-negative and the kinetic orders fij
re real numbers. These representations were proposed as useful
pproximations for metabolic systems 40 years ago and have been
he method of choice in many applications. They form the basis
f a modeling framework that is now widely recognized as Bio-
hemical Systems Theory (BST; Voit, 1991, 2000; Savageau, 1969a,b,
970, 1976; Torres and Voit, 2002). Power-law representations are

ntriguing because they are nonlinear and cover an enormously
ich repertoire of functional responses when they are embedded
n differential equations (Savageau and Voit, 1987), yet individu-
lly permit a simple logarithmic transformation to linearity. It was
lear from the beginning of BST and its roots in Taylor approxi-
ation theory that power-law functions are local representations

hat are useful for modeling the dynamics of variables operating
ithin a moderate range about their normal states, but that they
ay incur unacceptable errors if one tries to fit complex functional

hapes that extend over wide ranges of variation in the involved
etabolites and modulators.
Because power-law functions can be seen as linearizations in

ogarithmic space, their range of applicability may be extended
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

n two ways. First, higher order terms could be considered in
rder to improve the accuracy of approximation (Cascante et al.,
991). However, while theoretically reasonable, this strategy leads
o convoluted representations that are rather inconvenient for fur-
her analyses and modeling purposes. As an alternative, one may
 PRESS
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consider piecewise representations. For univariate functions, it is
relatively easy to determine such representations, and they have
been used, for instance, in the analysis of gene circuits (Savageau,
2001, 2002). However, for multivariate functions, the suitable
determination of a piecewise power-law representation becomes
difficult. In the following, we present an algorithm that automati-
cally identifies appropriate piecewise power-law representations.

Thus, our goal is the following: given metabolic time series data
corresponding to an unknown, univariate or multivariate function,
compute a piecewise power-law representation that is suitable in a
sense that it fits the data within an acceptable error while consisting
of the smallest possible number of pieces. The problem of a piece-
wise power-law regression, as posed here, is not straightforward,
because, given a set of samples of a flux V, which is possibly affected
by noise, one has to compute both a partitioning into regions in the
space of metabolites and the behavior of the unknown function V
over each of them. Because of the “mixed nature” of the problem,
classical approximation techniques cannot be directly applied, and
it is instead necessary to develop a specific, customized method.
The principles of such a method were introduced a few years ago
for linear systems, where the regions in the space of variables are
polyhedra and the behavior of the function V in each region is
approximated by a linear expression (Ferrari-Trecate and Muselli,
2002; Ferrari-Trecate et al., 2001a).

3. Methods

3.1. An algorithm for piecewise linear regression

Ferrari-Trecate and Muselli (2002) and Ferrari-Trecate et al.
(2001a) introduced a machine learning method for piecewise linear
regression based on Artificial Neural Networks (ANNs). The solution
of such a machine learning problem involves the reconstruction of
an unknown function W: X → Y from a finite set M of samples of
W (the so-called training set), which is possibly corrupted by noise.
Upon training, the result is tested against a set of data that was not
used during training and is typically called the validation set. ANNs
may be applied to two groups of such problems according to the
range of values assumed by the output Y. For Boolean-like output
(0 or 1; on or off) or for output with a limited number of elements,
one speaks of a classification problem, while output coded by a
continuous variable requires the solution of a regression task. The
identification of an optimal partition that is of interest in (Ferrari-
Trecate and Muselli, 2002; Ferrari-Trecate et al., 2001a), as well
as here, lies right at the border between classification and regres-
sion, because the input space X has to be subdivided into a small
number of disjoint regions and the behavior of the unknown, con-
tinuous function W over each of these regions has to be generated.
Thus, the method proposed in Ferrari-Trecate and Muselli (2002)
and Ferrari-Trecate et al. (2001a) combines local estimation, clus-
tering in weight space, multi-categorical classification, and linear
regression, which we will substitute by power-law regression. The
original method may be summarized as follows.

Let X be a polyhedron in the n-dimensional space �n+\{0} and
let {Xs}S

s=1 be a polyhedral partition of X, i.e., Xi ∩ Xj = Ø for every i,

j = 1, . . ., S and
⋃S

i=1Xi = X . The target of piecewise linear regression
is to reconstruct an unknown function f: X → �+ assuming linear
behavior in each region Xs:

f (x) = zs = ws0 +
n∑

wsjxj, (4)
se power-law modeling of biological systems. J. Biotechnol. (2010),

j=1

when only a training set M containing m samples (xk, yk), k = 1, . . ., m
is available. The output yk gives an evaluation of f(xk) subject to
noise in xk ∈ X, and the region Xs to which xk belongs is not known in

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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ig. 1. Diagram of a neural network realizing a piecewise linear function (adapted
rom Ferrari-Trecate and Muselli, 2002; Ferrari-Trecate et al., 2001a).

dvance. Scalar weights ws0, ws1, . . . , wsn, for s = 1, . . ., S, uniquely
haracterize the function f, and their estimation is the target of
he piecewise linear regression problem. For notational purposes,
he weights are collected in a vector ws. Since the regions Xs are
olyhedral, they can be defined by a set of ls linear inequalities of
he type:

sj0 +
n∑

k=1

asjkxk ≤ 0. (5)

The scalars asjk, for j = 1, . . ., ls and k = 0, 1, . . ., n, can be col-
ected in a matrix As whose estimation thus becomes the target of
he reconstruction process for every s = 1, . . ., S. Discontinuities are
llowed and indeed are often present at the boundaries between
wo regions Xs.

Following (Ferrari-Trecate and Muselli, 2002; Ferrari-Trecate et
l., 2001a), a neural network realizing a piecewise linear function f
f this kind can be modeled as shown in Fig. 1.

As previously noted, the solution of the piecewise linear regres-
ion requires a combination of classification and regression: the
lassification aims at finding matrices As to be inserted into the
ate layer of the neural network, whereas the latter provides the
eight vector ws as input to the hidden layer connections (Fig. 1).

Ferrari-Trecate and Muselli (2002) and Ferrari-Trecate et al.
2001a) solved the problem in four steps that correspond to specific
asks and are outlined below.

. Local regression
For every k = 1, . . ., m do the following:
1a. Form the set Ck containing the pair (xk, yk) and the samples
(x, y) ∈ M associated with c − 1 nearest neighbors x to xk.
1b. Perform linear regression to obtain the weight vector vk of
a linear unit fitting the samples in Ck.

. Clustering
Perform a clustering process in the space �n+1 to subdivide the

set of weight vectors vk into S groups Vs.
. Classification

Build a new training set M′ containing the m pairs (xk, sk),
where Vsk

is the cluster containing vk. Train a multi-categorical
classification method to produce the matrices As for the regions
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

Xs.
. Regression

For every s = 1, . . ., S perform linear regression on the samples
(x, y) ∈ M with x ∈ Xs to obtain the weight vector ws for the sth

unit in the hidden layer.
 PRESS
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In the following, we are interested in power-law functions
rather than linear functions and, correspondingly, use either lin-
ear regression in log space or power-law regression. In order to
make the necessary alterations to the linear method as clear as
possible, Table 1 shows, side by side, the steps in the different
procedures.

In broad strokes, the linear and power-law methods are struc-
tured as follows (excluding self-evident log-transformations):

1. Associate to each data point a local linear model (Step 1);
2. Aggregate local models with similar features into clusters (Step

2);
3. Classify data points corresponding to local models in the same

cluster and estimate the regions (Step 3);
4. Estimate the parameter vectors (Step 4).

Each step faces distinct challenges and assumptions, which may
be summarized as follows:

1. Step 1 requires the specification of the number of neighboring
points c, which is needed for each local regression. The bigger the
number c, the bigger is the number of mixed points (i.e., points
providing spurious information about the true model). For this
reason, one should like to keep c as low as possible. At the same
time, one needs to choose c large enough to counteract the effects
of noise on the accuracy of the local models. Thus, the choice of
c is a trade-off.

2. The goal of Step 2 is to determine S clusters. This is accomplished
via clustering algorithms, that require S as an input. In some cases,
the number of desired clusters is given a priori. However, if S is
not known, it may theoretically be estimated from the dataset.
According to Ferrari-Trecate et al. (2003), this can be done by
adopting clustering algorithms where the number of clusters is
not fixed a priori but automatically estimated (Fritzke, 1997).

3. At Step 3 each cluster is expected to collect all local models
with similar features, data points are classified, and sub-model
datasets are built accordingly. The regions {Xs}S

s=1 can be found
by resorting to pattern-recognition algorithms. The main disad-
vantage is that the fastest pattern-recognition algorithms may
leave gaps in the input domain X, when the dimension of X is
greater than one. More precise algorithms that do not leave holes
are available, but they are considerably slower and require more
memory. Specifically, for the identification of a small number
of pieces with a large number of data points, the fast Proximal
Support Vector Classification (PSVC) algorithm is recommended,
and results are obtained within seconds or minutes on a standard
PC. However, if the dimension of the problem is greater than
one, it is not guaranteed that the union of regions will cover
the input domain. To avoid gaps, one may use Multi-category
Robust Linear Programming (MRLP), if access to professional Lin-
ear Programming (LP) and Quadratic Programming (QP) solvers
like CPLEX is available.

4. Conceptually, this is the easiest step. The data points in each
region {Xs}S

s=1 can be used for estimating the parameter vectors of
the linear (or, respectively, power-law) regression. It is apparent
that Xs must contain enough data points to perform both the local
regressions and the estimation of scalar parameters composing a
parameter vector. If a cluster contains few points, it is discarded
and the number of modes is reduced.

3.2. Piecewise Power-Law Regression
se power-law modeling of biological systems. J. Biotechnol. (2010),

Given the general strategy in the previous section and in Table 1,
it is now relatively straightforward to adapt the original linear
method to power-law models. This adaptation begins with a log-
arithmic transformation of the data. In logarithmic coordinates,

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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Table 1
Steps toward piecewise linear and piecewise power-law models.

Method Original linear method Piecewise power-law model based
on linear regression

Piecewise power-law model based
on power-law regression

Logarithmic transformation
Local regression (Step 1)
Clustering (Step 2)
Classification (Step 3)

Linear regression (Step 4) Linear regression Inverse-logarithmic
transformation

Inverse-logarithmic
transformation

Power-law regression

Key features Output is a piecewise linear
approximation to a function. The

Output is a piecewise power-law
approximation with the sum of
quare
he un
onlin

Output is a piecewise power-law
approximation with the sum of
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sum of squared errors is E1. s
t
n

he piecewise power-law function becomes piecewise linear, and
e therefore implement the first three steps of local regression,

lustering, and classification of the above algorithm with the log-
ransformed data. This transition allows us to obtain a polyhedral
artition of the input domain in logarithmic space. Implementa-
ion of Step 4 (linear regression) yields the weight parameters in
q. (4) for the data in logarithmic coordinates. These parameters
re the rate constant and the kinetic orders of the target rep-
esentation in piecewise power-law format. When we apply the
nverse-logarithmic transformation, the polyhedral partition that is
roduced by the algorithm for logarithmic data becomes a partition
f the initial input domain that is bounded by nonlinear surfaces
iven by

sj0 +
n∑

k=1

asjk ln xk ≤ 0, (6)

here the coefficients asjk (k = 0, 1, . . ., n; s = 1, . . ., S) were obtained
n the classification Step 3 of the algorithm. In this manner we
btain a piecewise power-law approximation to an unknown
unction, where sub-domains of the partition are defined by
q. (6).

The procedure has all the advantages of linear regression. How-
ver, because the logarithmic transformation distorts the error
tructure of the problem, the least squares error for the resulting
iecewise power-law is in general less accurate than the corre-
ponding error obtained by power-law regression of the original
ata. As a partial remedy, it is therefore advantageous to mod-

fy Step 4 of the algorithm by applying a power-law regression
o the original data over each of the S regions in Eq. (6). Even
hough the regression is now nonlinear, the increase in compu-
ational difficulty is modest, due to the partition in small pieces.
n other words, the partition of the initial domain localizes the
rocess of approximation to sub-domains, thereby reducing the
isk of failure of the power-law regression. While this modification
educes error distortion to some degree, it does not affect Steps
-3, in which the boundaries of the domains are determined. As
consequence, the domains are optimal in log space but not nec-

ssarily in Cartesian space and, for instance, result in better fits
or small values of metabolite concentrations, which become more
ronounced in the logarithmic representation. Expressed differ-
ntly, the method is optimized toward relative, rather than absolute
rrors, which in many cases in biology is actually an advantage. We
ill see the consequences of this distortion in the first example
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

f Section 4. The same example demonstrates that the distortion
ecomes less significant as the algorithm uses higher numbers of
egments.

The modified algorithm thus proceeds as follows. Let X be the
mage of X in the n-dimensional logarithmic space Rn and let {Xs}S

s=1
d errors E2 < E1 (provided
known function is
ear).

squared errors E3 < E2 < E1
(provided the unknown function is
nonlinear).

be a polyhedral partition of X, i.e., Xi ∩ Xj = Ø for every i, j = 1, . . ., S

and
⋃S

i=1Xi = X . Let M be the image of M in logarithmic space Rn.

1. Logarithmic transformation
Transform the data points (xk, yk) (k = 1, . . ., m) logarithmically

to xk = ln xk, yk = ln yk.
2. Local regression

For every k = 1, . . ., m do the following:
2a. Form the set Ck containing the pair (xk, yk) and the samples
(x, y) ∈ M associated with c − 1 nearest neighbors x to xk.
2b. Perform a linear regression to obtain the weight vector vk

of a linear unit fitting the samples in Ck.
3. Clustering

Perform a clustering process in the space Rn+1 to subdivide the
set of weight vectors vk into S groups Vs.

4. Classification
Build a new training set M′ containing the m pairs (xk, sk),

where Vsk
is the cluster containing vk. Train a multi-categorical

classification method to produce the matrices As for the polyhe-
dral regions Xs.

5. Inverse-logarithmic transformation
Exponentially transform the data back to Cartesian space:

xk = exp(xk), yk = exp(yk). Utilize matrices As to obtain the par-
tition of the input domain given by Eq. (6).

6. Regression
For every s = 1, . . ., S perform power-law regression on the sam-

ples (x, y) ∈ M with x ∈ Xs to obtain the rate constant and the
kinetic orders for each sub-domain given by Eq. (6).

3.3. Implementation as MatLab toolbox

The Hybrid Identification Toolbox (HIT) is a free MatLab tool-
box for regression with piecewise linear maps. HIT implements
the clustering-based algorithms described in (Ferrari-Trecate et
al., 2001b, 2003; Ferrari-Trecate and Muselli, 2003; Ferrari-Trecate
and Schinkel, 2003). In addition, HIT provides facilities for plot-
ting and validating the identified models. HIT uses routines of the
MPT toolbox (Kvasnica et al., 2004) for handling polytopes and
solving Linear Programming (LP) and Quadratic Programming (QP)
problems. These toolboxes can be used to implement the first
four steps of the modified algorithm, which produce the parti-
tion of the input domain. As soon as the partitioning is known,
one can perform a power-law regression, using MatLab or other
software.
se power-law modeling of biological systems. J. Biotechnol. (2010),

One of the default assumptions of the algorithm is that the num-
ber of sub-domains S in the target solution is given. However, this
may not always be desirable. For instance, one may want to create
a minimal partition that satisfies a maximally acceptable error. If
S is unknown, it may be estimated from the dataset. According to

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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4.2. Piecewise power-law regression of a multivariate function

As a more complicated example, suppose we had analyzed N
time series with K time points each from a metabolic pathway
ig. 2. Two-piece power-law fit to the Hill function in Eq. (7). See text for explana-
ions.

errari-Trecate et al. (2003), this can be done by adopting cluster-
ng algorithms where the number of clusters is not fixed a priori
nd is automatically estimated (Fritzke, 1997). As a simple alterna-
ive, one may run the algorithm with increasing values for S until
n acceptable solution is reached. This strategy is quite reasonable
ecause the algorithm is fairly fast on a standard PC. An example is
resented in Section 4.

Another parameter to be specified is the number c of nearest
eighbors (see 2.a of the modified algorithm). HIT provides facili-
ies for the selection of S and c through cross-validation. For details
bout tuning the parameter c the reader is referred to Ferrari-
recate et al. (2003).

. Results

.1. Piecewise power-law regression of a univariate function

For reasons of easy illustration and visualization, it is benefi-
ial to study the algorithm for modeling a univariate function. It
s known that a single power-law function cannot model S-shaped
ynamics well, and we therefore use as a base function the Hill rate

aw

(x1) = Vmxh
1

Kh
m + xh

1

(7)

ith arbitrarily chosen Hill coefficient h = 4, maximal velocity
m = 100, and Michaelis constant Km = 50. The artificial dataset con-
ists of 200 points that are uniformly spread out over the interval
1, 200].

As a first illustration, we specify the number of sub-domains
s S = 2. The result of the algorithm is a good fit for small values
f x1 and a less appealing fit for large values (Fig. 2). The break-
oint at x1 = 47 is obtained directly by the algorithm, and the sum
f squared errors in this case is SSE = 84. Inspection makes it clear
hat the interval of lower values of V is better represented than
he interval containing higher values of V. The imbalance is due to
he fact that the partitioning algorithm works on logarithms of the
ata and therefore on relative errors, which are more pronounced
or small concentrations x1.

One may proceed in two ways. Either, one may specify S = 3
nd redo the analysis. Or, one may retain the fit for the interval
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

0, 47] and compute a two-piece approximation of the remain-
ng interval [47, 200]. The result of the latter strategy is a good
epresentation of high values [117, 200] and a reasonable repre-
entation of the center interval (Fig. 3). The residual error is now
SE = 43, which roughly corresponds to a 50% error reduction. A
Fig. 3. An improved fit is obtained if the interval of higher concentrations from the
previous fit (Fig. 2) is automatically split into two. The new breakpoint is x1 = 117
and the residual error is SSE = 43.

third application of the algorithm to this center interval leads to
a four-piece representation with a much reduced error of SSE = 14
(Fig. 4).

An obvious question is the minimally required number of data
points. While the question itself is important and valid, its answer
is surprisingly complicated, because it depends on a number of
factors, including the complexity of the function, the complexity
in relation to the noise in the data, and the desired smoothness.
For instance, the identification of an exponential function with-
out much noise may only require three or four data points, while
a damped oscillation or a more complicated function may need
dozens or more points, even if the noise level is low. Another
factor influencing the minimum number of data points is their spa-
tial distribution. If many data points are clustered within a small
domain, they do not convey much information. Similarly, if many
time courses are available but represent only a small portion of the
possible space of values of the variables, not much is gained from
additional, similar data.

As an example, Fig. 5 shows fits to the Hill function (Eq. (7);
compare with Figs. 2–4) obtained with 50, 20, and 10 error-free
points, respectively.
se power-law modeling of biological systems. J. Biotechnol. (2010),

Fig. 4. A much improved fit is obtained if the former center interval (Fig. 3) is further
split into two. The new residual error is SSE = 14.

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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Fig. 5. Piecewise power-law fits to the Hill function in Eq. (7) when smaller numbers
of data points are available than in Figs. 2–4. Reducing the number of data points to
50 (top panel) does not alter the earlier results much. If the number of data points is
f
b
f

s
b
c
t
t
o
D
t
w
t
s
t

an SSE of 425 (results not shown). In order to reduce SSE, we exe-
cute the piecewise power-law method for two sub-domains (S = 2).
The resulting representations in log space and Cartesian space are
shown in Figs. 7 and 8. The residual error in this case is SSE = 319
urther reduced to 20 (center panel), four pieces can no longer be estimated, and the
est option is a representation with three pieces. Finally, only 2 pieces are possible
or a dataset containing 10 points (bottom panel).

ystem involving some number of metabolites. The differences
etween the N time series may be the result of different initial
onditions, such as different amounts of substrate input. Under
he action of the pathway system, each metabolite exhibits some
ime trend, which is affected directly or indirectly by some or all
f the other variables. Suppose we had analyzed the data with
FE and that one of the processes in the system, V, was known

o depend directly only on two of the system variables, x1 and x2,
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

hich themselves were affected by other variables. The result of
he DFE analysis that is pertinent here would then consist of N data
ets {x1(tk), x2(tk), V(tk)}n (k = 1, . . ., K; n = 1, . . ., N). The true func-
ion V, which we however pretend not to know, is a two-variable
Fig. 6. Different datasets correspond to points that form trend lines lying on the sur-
face given by Eq. (8). The shape and location of the trend lines depend, for instance,
on the initial conditions of the pathway model, in which x1 and x2 are just two of
several metabolites.

Hill function of the form

V(x1, x2) = Vmxh
1xh

2

(Kh
m1 + xh

1)(Kh
m2 + xh

2)
(8)

with the arbitrarily chosen Hill coefficient h = 2 for both com-
ponents, a maximal velocity Vm = 150, and Michaelis constants
Km1 = 600 and Km2 = 0.1.

Each dataset corresponds to a single time course and forms a
dotted trend line on the three-dimensional surface that is given
by Eq. (8) in the space of x1, x2, and V (Fig. 6). In reality this sur-
face is unknown. Even with 13 complete datasets, the observed
data constitute a rather sparse sample of the surface, demonstrat-
ing how difficult the quest for the minimal number of necessary
data is (Fig. 6). In our example, the data are noise free, but noise is
no hindrance to the partitioning and approximation method and is
therefore ignored here for clarity.

The operating domain for the algorithm is specified as
˝ = [min(x1), max(x1)] × [min(x2), max(x2)]. Fitting the data with
a single two-variable power-law over the entire domain ˝ yields
se power-law modeling of biological systems. J. Biotechnol. (2010),

Fig. 7. Two-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines (see text for explanations). The representation shown is in
logarithmic coordinates. See Fig. 8 for a Cartesian representation.

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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ig. 8. Two-domain power-law representation for 13 datasets sampling the space
x1, x2, V) as trend lines (see text for explanations). In contrast to Fig. 7, the repre-
entation here is in Cartesian coordinates.

hich corresponds to a reduction of about 25% over the single
ower-law fit.

As the next illustration we increase the number of sub-domains
o S = 4. This higher resolution reduces SSE to 176, which corre-
ponds to about 40% of the single-domain fit, but one notes that
he algorithm begins to suffer from an insufficient number of data
oints in some of the sub-domains. The results in log space and
artesian space are shown in Figs. 9 and 10. One also notes the gaps

n representation. These gaps are caused by MatLab’s fast Prox-
mal Support Vector Classification pattern-recognition algorithm
or reconstructing the regions. If it is necessary to fill these gaps, a
lower method such as Multi-category Robust Linear Programming
MRLP) must be employed.

It is not easy to judge the quality of approximation from
hese global plots. It is therefore useful to show how well indi-
idual time courses (x1(tk), x2(tk), V(tk)) are represented by the
our-piece power-law representation. Six examples are given in
ig. 11, where the black symbols represent the original data, while
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

orresponding piecewise approximations are shown in different
olors. One can see that the approximation quality depends on
he particular dataset as well as the concentrations of x1 and
2.

ig. 9. Four-domain power-law representation for 13 datasets sampling the space
x1, x2, V) as trend lines (blue symbols; see text for explanations). The corresponding
epresentation in Cartesian space is shown in Fig. 10. The fit with four pieces is
ignificantly improved over a fit with two pieces (Fig. 7), with the SSE being reduced
rom 319 to 176.
Fig. 10. Four-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines. The corresponding representation in log space is shown in
Fig. 9. The fit with four pieces is much better than the corresponding fit with two
pieces (Fig. 8).

The algorithm is not limited to two dimensions and can,
in principle, be applied to any number of dependent variables.
Such examples are difficult to visualize and require rich datasets.
Nonetheless, if such data are given, the algorithm performs the
classification and piecewise representation quite quickly.

5. Discussion

Until about a decade ago, biomathematical modeling was in
some sense easier, because the comparatively poor quality of
data allowed for substantial latitude. For instance, even rather
crude approximations were often still considered consistent with
the modeled data, due to large experimental error bands. Recent
developments in molecular and high-throughput biology have
changed this situation. It is now feasible to measure comprehensive
metabolic time series, sometimes even in vivo (Neves et al., 2000),
and the resulting data are often so good and plentiful that infe-
rior model descriptions can no longer survive and that it quickly
becomes evident when the deviations between model and data
are systematic, rather than statistic. Furthermore, methods like
Dynamic Flux Estimation (DFE; Goel et al., 2008) reach beyond
standard fitting routines by identifying individual flux represen-
tations and their dependency not only just on time but also on its
contributing metabolites and modulators. While a significant step
forward, this result leads to a new challenge, namely the identifi-
cation of specific functional forms matching the inferred numerical
flux profile. Experience in our lab indicates that these profiles are
often much more complicated than previously assumed and that
simple Michaelis–Menten, Hill, or power-law functions are some-
times, but not always, capable of representing them appropriately
(Goel, 2009). This insight, in turn, suggests the need for either an
intensified, yet targeted search for suitable local representations
of metabolic processes, or an expansion of the simple canonical
approximations that in the past were found to be useful defaults.

In this article we have discussed the second of the two options.
Specifically, we showed how piecewise power-law representa-
tions for unknown functional relationships between fluxes and
metabolites can automatically be constructed with a customized
adaptation of software that had been proposed for piecewise
linear systems analysis (Ferrari-Trecate and Muselli, 2002; Ferrari-
se power-law modeling of biological systems. J. Biotechnol. (2010),

Trecate et al., 2001a). This expansion is directly in line with
Biochemical Systems Theory (Voit, 1991, 2000; Savageau, 1976;
Torres and Voit, 2002) and the next logical step beyond piece-
wise definitions of single power-law functions (e.g., Savageau, 2001,
2002).

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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ig. 11. Comparison of individual time trends in V as a function of its substrates x1 a
uality of the piecewise power-law approximations. Error-free data are shown as b

The proposed algorithm resolves the main difficulty in
econstructing piecewise power-law representations, namely the
imultaneous (integer-valued) subdivision of the variable space
nd the optimized (real-valued) estimation of parameters within
ach subdivision. Interestingly, this dual task is solved automati-
ally and requires only a few settings of operational parameters,
hich however is not a problem. The number of clusters, S, can

ither be predetermined, increased sequentially, or estimated with
n adaptive algorithm (Fritzke, 1997), and the number of neigh-
oring points for each local regression (parameter c) can be tuned
hrough cross-validation with a built-in option of the HIT software
n Matlab (Ferrari-Trecate et al., 2003).

Theoretically, the proposed software permits arbitrarily accu-
ate representations of univariate or multivariate processes. In
eality, however, the method is limited by the number of data
oints and their representation of the manifold on which they

ie. Metabolic time series that correspond to trend lines within a
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

arrow sub-manifold constitute limited samples that may allow
he inference of the sub-manifold, but not of the entire manifold,
hich might be of interest for extrapolation studies. Obviously, the
ethod is also limited by the complexity of the manifold itself. If

his manifold is smooth and monotonic, a few sub-domains with
. Depending on the particular dataset, the shape of V is quite different, and so is the
ymbols and pieces of approximation in different colors.

their own power-law models might be sufficient. By contrast, a
ragged manifold will require many more sub-domains and quickly
lead to situations where the data samples are no longer represen-
tative and sufficiently comprehensive.

By its nature, the proposed method usually leads to represen-
tations with gaps or discontinuities at the boundaries between
sub-domains. These discontinuities come in two types. First, the
illustrative examples identify gaps in the operating domain. These
gaps are entirely due to the choice of a fast pattern-recognition
algorithm by the software and can be circumvented with more
complex and much slower methods. The second type of discon-
tinuity results from the fact that the algorithm does not require
the power-law representations to be continuous on the boundaries
of sub-domains. In most practical applications, these discontinu-
ities will be of no major concern. However, if the discontinuities
are indeed undesirable, inspection of the collection of pieces might
suggest a suitable nonlinear function that could capture the entire
se power-law modeling of biological systems. J. Biotechnol. (2010),

range of variation in variables. If so, this candidate function can
be reverse-engineered and parameterized from the pieces, and the
result is smooth throughout. In this sense, the proposed method is
indeed a means for model identification, even if it is somewhat indi-
rect. As an alternative, Appendix A discusses means of addressing

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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his situation based on differential inclusions and Filippov’s theory
Filippov, 1985).

While issues such as discontinuities should be investigated fur-
her, the proposed piecewise power-law representation, as it is
escribed here, offers a welcome and relatively unbiased alterna-
ive to a potentially unlimited search for suitable functions.
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ppendix A.

The proposed piecewise power-law regression method natu-
ally leads to discontinuities between neighboring sub-domains.
n many cases, these jumps may not cause problems: one simply
efines variables within sub-domains and uses one of the boundary
alues. Nevertheless, the question arises of whether it is possible
n principle to define continuous solutions. A general answer is not
rivial and requires concepts from Filippov’s theory and differential
nclusions (Filippov, 1985). These concepts are sketched out in the
ollowing.

Let us consider the generic vector equation

˙ = f (x) ≡ V+(x) − V−(x), (A1)

here x = (x1, x2, . . ., xn) belongs to the open operat-
ng domain ˝ whose closure ¯̋ is contained in the set

n+ =
{

(x1, x2, . . . , xn)
}

, xj > 0, j = 1, 2, . . . , n. Assume that
fter having performed the piecewise power-law regression we
rrived at the following result: the influx (or efflux) function V+(x)

or V−(x)) is approximated by V+ = �+∏n
j=1x

f +
ij

j
if x ∈ ˝+

i
(or by

− = �−∏n
j=1x

f −
ij

j
if x ∈ ˝−

i
), where the closures ¯̋ ±

i
of the disjoint

pen subsets ˝±
i

⊂ ˝±, i ∈ I± satisfy
⋃

i ∈ I±
¯̋ ±

i
⊃ ˝±. In other

ords, the open sets ˝±
i

constitute a partition of the set ˝±, which
oes not contain gaps as they appeared in Fig. 9; that is, we assume
hat the regression algorithm automatically removes possible gaps
rom the partition.

The approximation leads to the following vector equation

˙ = f̂ (x) ≡ V̂+(x) − V̂−(x), (A2)

where the functions V̂±(x) are defined as follows

ˆ ±(x) = V±
i

(x) ≡ �±
i

n∏

j=1

x
f ±
ij

j
if x = (x1, x2, . . . , xn) ∈ ˝±

i
, i ∈ I±.

This representation simply formalizes the fact that we merged
ifferent pieces of the functions V̂±(x) that are defined differently
ver different operating sub-domains. As any of these pieces is an
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

utput of the automatically performed regression procedure, the
unctions V̂±(x) may be discontinuous on the borders of the oper-
ting sub-domains, i.e., on the sets ˝±\

⋃
i ∈ I± ˝±

i
, respectively. One

lso notes that the regression does not guarantee that the parti-
ions ˝±

i
, i ∈ I±, coincide. This implies that the discontinuity set of
 PRESS
hnology xxx (2010) xxx–xxx

the function f̂ (x) in (A2) may be as big as the union of the respec-
tive discontinuity sets of the functions V̂±(x). Hence the solutions
of the vector equation (A2) are only well defined in any of the open
subsets ˝+

i
∩ ˝−

k
provided that this subset is non-empty. More pre-

cisely, we are able to define mathematically and find (theoretically
or numerically) a piece xij(t) of the entire solution of the vector
equation (A2) for time points t, where xik(t) ∈ ˝+

i
∩ ˝−

k
. In this case,

the solution satisfies the equation having the following power-law
representation:

ẋ = �+
i

n∏

j=1

x
f +
ij

j
− �−

k

n∏

j=1

x
f −
kj

j
. (A3)

This representation is valid only for separate pieces of the entire
trajectory, namely for those satisfying xik(t) ∈ ˝+

i
∩ ˝−

k
.

Now the natural question arises of whether and how it is
possible to join these pieces. The resulting trajectory should be con-
tinuous, being an approximation to the continuous solution x(t) of
the vector equation (A1). But unlike x(t), this approximation may be
non-smooth outside the subsets ˝+

i
∩ ˝−

k
, as the right-hand side

of the approximating vector equation (A2) is discontinuous there.
An answer to the question of how to “glue together” the differ-
ent pieces is not always trivial, even if we sacrifice the property of
smoothness. In fact, it requires a more thorough treatment than we
presented before.

We observe first that the solution to (A3) is not unique, because
it still requires an initial value and an initial time. Assume that we
know how to find any of these solutions and that we are able to
check for which values of t the solutions belong to the sub-domain
˝+

i
∩ ˝−

k
. We know as well that joining the pieces of the solution

should produce a continuous function. Let us first consider the case
where this problem can be easily solved. Assume that we have two
adjacent sub-domains G1 = ˝+

i1 ∩ ˝−
k1 and G2 = ˝+

i2 ∩ ˝−
k2 having

� as the common piece of the boundary. Assume further that the
piece of the solution which belongs to G1 hits � at some point �
at some time point t0. In this case we may try to define a natural
extension of the solution by solving the corresponding vector equa-
tion (A3) in G2 under the additional initial value condition x(t0) = �.
If the resulting solution proceeds into the sub-domain G2, then our
problem is solved, at least as long as the solution belongs to G2 for
t > t0. By definition, this solution is continuous in both G1 and G2,
but its derivative may have a jump at t = t0. This kind of solutions
is well known in the theory of switching systems. Sometimes one
calls the set � the transparent piece of the boundary, because the
solution just travels through � like a ray of light.

However, this is not the only scenario. Assume, for instance, that
the solution to the corresponding Eq. (A3) satisfying the initial con-
dition x(t0)= � does not belong to G2 for t > t0. In other words, the
solutions of the respective equations in the sub-domains G1 and
G2 approach � ∈ � from both sides, which means that the point �
is attractive. From the mathematical point of view both solutions
stop at �, but we know that this cannot be true, as no solution of
the original vector equation (A1) can stop. Again, from the the-
ory of switching systems it is known that such � gives rise to
so-called “sliding motions” along the piece � , which in this case
is called “black.” This situation is generic in a sense that it cannot
be destroyed by small, even smooth, perturbations. In our setting
such a situation would mean that the solutions cannot simply be
joined at �. To obtain a proper solution we need to trace the slid-
ing motion along � which however cannot be constructed directly
se power-law modeling of biological systems. J. Biotechnol. (2010),

from the representation (A3). The solution may still leave � after
some time, entering G2 at some point �1 at time t1, so that we will
be able to calculate it as the solution of the corresponding Eq. (A3)
subject to the initial condition x(t1) = �1(t > t1) and provided that
we know how to calculate t1 and �1. The latter is only possible if

dx.doi.org/10.1016/j.jbiotec.2009.12.016
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e know exactly the behavior of the solution along � , which is
non-trivial problem in its own. Thus, the main disadvantage of

he piecewise power-law regression method lies in the properties
f the approximating solutions in the vicinity of the boundaries
etween the operating sub-domains. This disadvantage balances
he considerable appeal of this method, namely that the power-
aw representation (A3) is often very efficient and fits biological
ata well.

The question therefore arises as to how to construct approxi-
ating solutions in the discontinuity set of vector equation (A2). A

atural way to do this consists of using smooth approximations of
q. (A2), which replace the right-hand side f̂ (x) with a continuous
pproximation. However, such a replacement makes it impossible
o exploit the representation in (A3) and thus removes the advan-
age of using the power-law formalism. In addition, one is left with
ery steep nonlinearities which are often difficult to handle.

An alternative approach goes back to Filippov’s theory and is
ased upon differential inclusions, i.e., differential equations with
ulti-valued right-hand sides. This approach enables us to define

ontinuous trajectories of the approximating solutions without sac-
ificing the local power-law representations. The price we have to
ay is non-uniqueness of the solutions themselves. The following
ffers a brief explanation for this phenomenon, based on ideas from
hapter 2 of Filippov’s monograph (Filippov, 1985).

Assume that a point x ∈ ˝ is a limit point for the sub-domains
m = ˝+

im
∩ ˝−

km
(m = 1, 2, . . ., M), but not for any other sub-domain

= ˝+
i

∩ ˝−
k

, i.e., x ∈ Ḡm (m = 1, 2, . . ., M), but x /∈ Ḡ for any other
ub-domain. Inside each Gm the vector equation (A2) can be repre-
ented as in (A3):

˙ = f (x, m) ≡ �+
im

n∏

j=1

x
f +
ijm

j
− �−

km

n∏

j=1

x
f −
kjm

j
. (A4)

Let F(x) be the least convex subset of �n containing all vectors
(x, m) (m = 1, 2, . . ., M), i.e., F(x) = co{f (x, m)|m = 1, 2, . . . , M}, and
et us consider the following differential inclusion:

˙ ∈ F(x) (A5)

n the operating domain ˝. A solution to the inclusion (A5) on an
nterval [a, b] is an absolutely continuous function x(t), t ∈ [a, b]

hich satisfies ẋ(t) ∈ F(x(t)) almost everywhere on [a, b].
According to Filippov’s theory, the initial value problem

(t0) = x0 has a solution for some t > t0 provided that x0 ∈ ˝. The
olution either exists for all t > t0, or it blows up at some instant t1:
(t) → ∞ as t → t1. However, this solution is not unique in general.

If x belongs to some sub-domain, i.e., if x ∈ ˝+
i

∩ ˝−
k

, then

y definition F(x) = �+
i

∏n
j=1x

f +
ij

j
− �−

k

∏n
j=1x

f −
kj

j
and we obtain the

ower-law representation (A3). This means that inside any ˝+
i

∩
−
k

the solutions of (A5) coincide with the solutions of (A3). But
he inclusion (A5) gives us much more information about the solu-
ions: it states how to join the separate pieces without losing
ontrol over continuity. Thus, any solution of the inclusion (A5)
ay be viewed as a continuous approximation of the solution to the

ector equation (A1). Moreover, this approximating solution coin-
ides with the solutions of Eq. (A3) on the respective sub-domains.
hus, we have solved (at least theoretically) the problem of how
o define solutions of collections of differential equations obtained
ith piecewise power-law regression.

The approximations thus defined may be non-unique. To see
hy this is so, let us go back to the conventional method of cal-
Please cite this article in press as: Machina, A., et al., Automated piecewi
doi:10.1016/j.jbiotec.2009.12.016

ulating approximating solutions by replacing the right-hand side
ˆ(x) with its smooth approximations f̂˛(x) where the parameter

indicates how good the approximation f̂˛(x) is, i.e., f̂˛(x) → f̂ (x)
s ˛ → 0. The smoothness of f̂˛(x) guarantees the existence of a
nique solution x˛(t) of the initial value problem ẋ = f̂˛(x), x(a) = x0,
 PRESS
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say, on the interval [a, b]. According to Filippov’s theory, the set
{x˛} is compact in the topology of the uniform convergence on [a,
b], and any converging subsequence {x˛� } approaches one of the
solutions x(t) of the differential inclusion (A5) satisfying the same
initial condition x(a) = x0. However, different approximations may
give different limit solutions, so that non-uniqueness of the Fil-
ippov solutions means simply non-uniqueness of approximating
solutions in the piecewise power-law regression algorithm. The lat-
ter is in turn the result of a very special shape of the approximation
(A2): we know how the solutions look like inside any of the oper-
ating sub-domains ˝+

i
∩ ˝−

k
due to the power-law representation

(A3). However, between the operating sub-domains the behavior
of the approximating trajectories becomes more uncertain, which
is reflected in the possible non-uniqueness of the solutions outside
these sub-domains.

In summary, the paper prescribes how to obtain piecewise
power-law representations, even in high-dimensional spaces, but
the problem of constructing smooth approximating solutions
numerically is not solved. Some algorithms based on singular per-
turbation analysis may be useful for this purpose and can be found
in (Plahte and Kjoglum, 2005). Similarly, characterization of the
convergence of the approximating solutions, i.e., the solutions of
the differential inclusion (A5) to the solutions of the vector equa-
tion (A1), is beyond the scope of this paper. The major difficulty
of this characterization is the mean-square convergence of the
approximations in the piecewise power-law regression, which is
distinct from the standard uniform convergence used in the theory
of differential equations and inclusions. It is likely that additional
assumptions on the influx and efflux functions V+(x) and V−(x) are
needed in order to prove convergence of the approximating solu-
tions.
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