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Abstract 

The availability of a large number of sequenced bacterial genomes allows researchers not only to 

derive functional and regulation information about specific organisms but also to study the 

fundamental properties of the organization of a genome. Here we address an important and 

challenging question regarding the global arrangement of operons in a bacterial genome: why 

operons in a bacterial genome are arranged in the way they are. We have previously studied this 

question and found that operons of more frequently activated pathways tend to be more clustered 

together in a genome. Specifically, we have developed a simple sequential distance-based pseudo 

energy function and found that the arrangement of operons in a bacterial genome tend to 

minimize the clusteredness function (C value) in comparison with artificially-generated 

alternatives, for a variety of bacterial genomes. Here we extend our previous work, and report a 

number of new observations: (a) operons of the same pathways tend to group into a few clusters 

rather than one; and (b) the global arrangement of these operon clusters tend to minimize a new 

“energy” function (C+ value)  that reflects the efficiency of the transcriptional activation of the 

encoded pathways. These observations provide insights into further study of the genomic 

organization of genes in bacteria. 
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Introduction  

Up till very recently, our understanding about the global arrangement of operons in a bacterial 

genome has been very limited, mainly because of the lack of relevant data. The availability of 

both genomic and transcriptomic data for a large number of bacterial organisms 

(http://www.ncbi.nlm.nih.gov/genome/browse/) provides unprecedented opportunities for 

researchers to derive novel and deeper understanding about what determines the organization of 

the genomic information (such as operons and associated regulatory systems) in a genome. 

Understanding such an issue not only satisfies our scientific curiosity but also provides useful 

information that can guide the synthesis of artificially-designed chromosomes and organisms in 

the emerging field of synthetic biology [1-3]. A number of computational studies have been 

carried out aimed at understanding the genomic organization of genes. These include the studies 

of gene expression periodicities along a bacterial genome [4-8], transcriptional regulation [9-11], 

functional relatedness [5, 12, 13] and co-evolution relationship versus genomic co-locations [14]. 

While substantial efforts have been invested in studying the genome organization since early 90’s 

[15-18], our understanding about the factors and rules that may determine the global organization 

of a genome is still fragmented.  

We have previously proposed the first model aimed to explain the organizational principle of a 

bacterial genome [19]. Our main finding was that the global arrangement of operons in a 

bacterial genome is tightly determined by the activation frequencies of the biological processes 

encoded in the genome, including metabolic and transcriptional regulation pathways [19, 20]. 

This relationship can be captured to a large degree using a simple mathematical function, based 

on the sequential relationships among the relevant operons [19].  

    Here we extend our previous work to provide new and deeper understanding about the global 

arrangement of operons. Specifically we developed an improved scoring function which makes 

the current genomic arrangement of operons stand out more substantially against the alternative 

arrangements. This allows us to discover that operons in the same metabolic or transcriptional 

regulation pathway tend to group into a few, rather than one, sequentially nearby clusters, and the 

global arrangement of these operon clusters tends to make the transcriptional activation of the 



  

 

encoded pathways as efficient as possible.  

 

Results 

We have carried out our study on E. coli K-12, which has 4144 protein-encoding genes [21] and 

2462 predicted operons [22]. The 347 biological pathways encoded in E. coli K12 are retrieved 

from EcoCyc [23] and expression data for each gene under 466 growth conditions from the M3D 

database [24] are used to estimate the activation frequency of each pathway. 

 

Operons encoding the same pathways tend to be clustered locally, but not globally, along 

the genome 

We have previously used the following function to measure the global clusteredness of the 

component operons of the ith pathway,   [19],  

 

Where  represents the number of operons in the ith pathway and  is the distance between the 

jth operon and [ ]th operon (i.e., median operon) in the ith pathway. Then the overall 

clusteredness of the operons encoding all the pathways, , can be measured using the following 

function:  

 

where N is the number of pathways under consideration (N = 347 in this study).  A key discovery 

that we made was that the current genomic locations of all the operons in E. coli K12 tend to 

minimize this function in comparison with artificially-generated alternatives [19].  

    Our recent study indicates that while our initial one-cluster model per pathway provides an 

informative approximation, it is too crude. Our current analysis suggests that each pathway, 

particularly the one encoded by a large number of operons, tends to consist of a few operon 

clusters along the genome, as illustrated in Figure 1 (taking the four largest pathways in EcoCyc 

as examples). Based on this realization and analysis of the M3D gene expression data, we 

hypothesize that all the operons are arranged at specific genomic locations to facilitate the most 

efficient transcription of the operons encoding each pathway during the life cycle of the bacteria.  



  

 

    We aim to use the following  function (to distinguish with previous C value,  was used 

here) to assess the validity of this hypothesis by identifying a partition of the genome into set of 

genomic segments such that the function is minimized:  

 

where N is the number of known pathways encoded in the target genome;  is the number of 

partitioned segments of the genome to be determined;  represents the activation frequency of 

the pathway estimated from the gene expression data in M3D following the method described 

previously [19] (with default value 1 for each pathway if such information is not available);  is 

the number of partitioned segments containing operons of the ith pathway;  is the number of 

operons in the jth partitioned segment ( ), and  is the number of operons of the ith 

pathway covered in the jth partitioned segment;  is defined to be 0 if  = 0; otherwise 

 - ; and  is a scaling factor whose default value is set as 1. Intuitively, this 

function measures the total number of partitioned segments that encode the operons of each 

pathway across all the pathways, along with a measurement of the density of such operons 

among all the operons encoded in each partitioned segment. A detailed dynamic programming 

procedure for calculating an optimal partition of a target genome, along with the associated M 

value, is given in Materials and methods section.  

     

We have randomly reshuffled the genomic locations of X% (X= 10, 20, …, 100) of all the E. 

coli K12 operons with the locations of the remaining operons fixed, and calculated the   value 

of each reshuffled genome. We reshuffled the genomic locations of selected operons 100,000 

times for each X, as we did in our original study [19]. Figure 2A shows the  value distribution 

for all the selected Xs versus the current genome of E. coli K12. Clearly we see that  

value of the current genome tends to be smaller than the  values of the alternatives, i.e., the 

artificially-generated genomes. To compare the current scoring function with our previous 

scoring function , we did the same calculation using the previous function (shown in Figure 

2B). We have estimated the tail probability of “X < the dash line” (dash line denotes the current 

genomic arrangement), i.e., a P-value, for each score distribution in Figure 2, which is 

summarized in Table 1.  



  

 

Through the above analysis, we have demonstrated that the current genomic arrangement of 

operons in the genome of E. coli K12 tends to minimize the  value compared to those of the 

alternative genomic arrangements of operons; and the function makes the actual genome 

stands out more significantly than previous  function against the alternatives. The effect of 

increasing the impact of defined in (3) or estimating the actual pathway activation frequency 

based on M3D microarray data is presented in Figure S1 and Table S1. 

 

Pathway-based analysis of the genomic partition  

The above calculation also gives rise to an optimal partition of the E. coli K12 genome into 104 

segments, which optimizes the  value (see details in Table S2). We have examined how the 

operons encoding the 347 biological pathways are located in the 104 partitioned segments of the 

E. coli genome. For each of the randomly-shuffled genomes and the original genome of the E. 

coli K12 shown in Figure 2, we retrieved the corresponding partitioned segments and calculated 

the total number of partitioned segments covered by each pathway across all the 347 pathways 

under consideration. From Figure 3, we can see that this total number of the current genome of E. 

coli K12 is clearly smaller than any of the randomly-reshuffled genomes.  

In a separate study (Ma et al., unpublished data), we provided strong evidence that each of 

the partitioned segments corresponds to a supercoiled domain in the folded chromosome of E. 

coli K12[25-28], each being independently foldable. Clearly when a pathway needs to be 

activated, the (folded) segments containing operons of the pathway need to unfold first to make 

all the relevant operons transcriptionally accessible, a process that consumes energy. The data 

shown in Figure 3 suggests that the organism has evolved to minimize the total number of 

segments that need to be unfolded in order to activate each pathway, hence making this part of 

the operating cost for the living bacteria as small as possible.  

 

Concluding remarks  

We have previously demonstrated that operons encoding more frequently activated pathways 

tend to be more clustered together in a genome [19]. We have also noted that what prevents such 

operons from forming one cluster is that many individual operons may each be involved in 

multiple pathways. Hence they form multi-operon clusters as we have demonstrated in this work 

that they tend to form a few operon clusters each contained in a folded genomic segment. To 



  

 

activate a pathway, energy is required to unfold the genomic segments that contain the operons 

encoding the pathway, so that the relevant operons are transcriptionally accessible. By putting all 

these results together, we speculate, with strong evidence, that operons encoding various 

pathways are specifically located in a given genome such there is a tendency to minimize the 

overall energy needed to have the relevant pathways transcribed, during the life cycle of the 

bacteria.  

 

Materials and methods 

A dynamic programming method for genomic partition  

The optimization problem defined in (3) can be solved using a dynamic programming approach. 

The following recurrence equation gives rise to a simple dynamic programming algorithm for 

finding the optimal   value, which generates a partition of a target genome and hence the 

number M of the partitioned segments, where S and E represent the first and the last inter-

operonic regions of the genome, respectively. 

 
where  and  are set at 10k bp and 100k bp, defining the lower and the upper bounds of a 

partitioned segment [10-12].  
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Figure legends 

Figure 1  An illustration of the clustering property of operons in the same pathway 

The four rings from outside to inside, respectively, represent the genomic location of each operon 

in four metabolic pathways, namely phosphoribosyl pyrophosphate (PRPP) pathway (P1), de 

novo purine 2 pathway (P2), PWY0-781 pathway (P3) and glycolysis TCA glyox bypass 

pathway (P4), labeled by the black bars in the corresponding yellow rings. 

 

Figure 2  Comparison of the  and  value distributions for the actual and reshuffled 

genomes 

A. Distributions of -value for the E. coli K-12 genome. B. Distributions of -value for the E. 

coli K-12 genome. In each panel, the x axis represents  or  value and the y axis represents the 

density of reshuffled genomes with a specific  or  value. For each distribution, X% (X = 10, 

20,…, 100) of all the operons were randomly reshuffled, arranged from left to right. The or 

 value for the current arrangement of the operons in E. coli K-12 is represented by a vertical 

dash line.  

 

Figure 3  Comparison of the number of segments required to activate each pathway for the 

actual and the reshuffled genomes 

Ten boxplots for the E. coli K-12 genome, representing X% (X = 10, 20,…, 100) of all the 

operons that were randomly reshuffled, are arranged from left to right. The number of partitioned 

segments for the actual genome is represented by a horizontal dash line.  

 

. 



  

 

 

Supplementary material 

Figure S1   value distributions for two special considerations 

The distributions for actual and reshuffled genomes of  values, considering   =3 (A) and 

actual values for pathway activation frequency (calculated by M3D microarray data) (B). In each 

panel, the x axis represents the  value, and the y axis represents the density of reshuffled 

genomes with a specific  value. 

 

 



  

 

 



  

 

 



  

 

 



  

 

Table 1  Statistical tests of curves in Figure 2 

% of 
reshuffling 

P(  value) P(  value) P(  value) / P(  value) 

10 0.06947282 0.004927 14.09904 

20 0.01698723 0.000201 84.51098 

30 0.003641975 2.09E-06 1740.591 

40 0.000705596 3.44E-08 20492.59 

50 0.000120973 1.42E-11 8523197 

60 1.75E-05 2.72E-14 6.43E+08 

70 2.77E-06 4.31E-18 6.42E+11 

80 7.47E-07 6.50E-22 1.15E+15 

90 2.28E-07 1.01E-24 2.25E+17 

100 1.45E-07 1.09E-25 1.33E+18 

Note: P (X) is the tail probability (P-value) of “X < the dash line” (dash line denotes the current genomic 
arrangement) for each score distribution. The P-values are calculated based on the observations that all the score 
distributions follow a normal distribution by the skewness and kurtosis  test [19] 
 


