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ABSTRACT

The circular chromosome of Escherichia coli has
been suggested to fold into a collection of sequen-
tially consecutive domains, genes in each of which
tend to be co-expressed. It has also been suggested
that such domains, forming a partition of the
genome, are dynamic with respect to the physio-
logical conditions. However, little is known about
which DNA segments of the E. coli genome form
these domains and what determines the boundaries
of these domain segments. We present a computa-
tional model here to partition the circular genome
into consecutive segments, theoretically suggestive
of the physically folded supercoiled domains, along
with a method for predicting such domains under
specified conditions. Our model is based on a
hypothesis that the genome of E. coli is partitioned
into a set of folding domains so that the total
number of unfoldings of these domains in the
folded chromosome is minimized, where a domain
is unfolded when a biological pathway, consisting of
genes encoded in this DNA segment, is being
activated transcriptionally. Based on this hypoth-
esis, we have predicted seven distinct sets of such
domains along the E. coli genome for seven physio-
logical conditions, namely exponential growth, sta-
tionary growth, anaerobiosis, heat shock, oxidative

stress, nitrogen limitation and SOS responses.
These predicted folding domains are highly stable
statistically and are generally consistent with
the experimental data of DNA binding sites of
the nucleoid-associated proteins that assist the
folding of these domains, as well as genome-scale
protein occupancy profiles, hence supporting our
proposed model. Our study established for the first
time a strong link between a folded E. coli chromo-
somal structure and the encoded biological
pathways and their activation frequencies.

INTRODUCTION

It was discovered in 1970s that the Escherichia coli
chromosome is organized into a collection of consecutive
plectonemic DNA loops, each having its two ends con-
nected with each other by binding with nucleoid-
associated proteins (NAPs) (1,2). Each of such loops,
also called a ‘supercoiled domain’ or simply ‘supercoil’,
ranges between 10 and 100 kb in sequence length (3) and
folds independent of the other loops into a negatively
coiled conformation. It has been speculated that the
folded chromosomal structure is dynamic (4), and the
domain boundaries are distributed along the genome in
a seemingly random manner (5). Imaging data have
revealed that the folded conformation of the E. coli
chromosome changes in response to the changing
cellular and environmental conditions (6). For instance,
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the chromosome has substantially more supercoils during
the exponential growth than during the stationary phase,
suggesting that the physical organization of the chromo-
some may play a role in the regulation of gene expression
(7,8). Interestingly, some of the NAPs, which can bend
or bridge DNAs, are also transcription factors such as
H-NS, FIS and IHF, providing further evidence about
the possible links between chromosomal folding and tran-
scription regulation.
The advent andmaturation of various experimental tech-

niques such as ‘CHIP-sequencing’ (9–12) techniques for
identification of the DNA-binding sites of NAPs and the
‘chromatin conformation capture’ techniques (13–15) have
clearly accelerated the study of the folded chromosomal
structures, but mostly of eukaryotic organisms. As of
now, only limited data on the folded E. coli chromosomal
structures have been collected mostly focused on the
binding of NAPs on the DNA. One recent study on bacter-
ial chromosomes usinghigh-resolutionmicroscope revealed
that H-NSs may play a more important role in bacterial
chromosomal organization than the other NAPs (16).
A number of computational studies have also been

carried out with the goal of understanding the folded
structures of bacterial chromosomes. For instance,
analyses of E. coli ‘omic’ data have revealed periodicities
along the genome of co-expressed genes (4,17), as well as
of co-evolved genes (18) and cis-regulatory elements
(19,20), all seemingly related to the supercoils in the
folded chromosomal structure. A model for the local
arrangement of the E. coli chromosomal loci has been
proposed based mostly on the geometric consideration
(21). In addition, studies have been carried out aiming
to capture the relationship among the loop domains
based on a confinement and entropic repulsion model as
well as the information about transcription regulation
networks (22). While these studies have provided hints
about possible links between sequence level signals and
the folded chromosomal structures, none of them have
established a clear definition of the individual folding
domains with detailed boundary information, not to
mention their dynamic nature with respect to different
physiological conditions.
We have recently discovered that operons of more fre-

quently activated pathways tend to group into fewer
sequential clusters in a bacterial genome (23), and specif-
ically they tend to minimize the overall genomic spread
among the consecutive operons of the same metabolic
and regulatory pathway (24,25) across all the pathways.
One possible explanation of this discovery is that the
E. coli chromosome is organized into consecutive
domains that minimize the total number of the unfolding
of these domains during the life cycle of the organism,
where such a domain is unfolded when a biological
pathway, consisting of genes encoded in this DNA
segment, is being activated transcriptionally; here we use
the total number of unfolding to approximate the total
energy needed to unfold the relevant folded domains.
This hypothesis has been strongly supported by our
recent study of the global genomic arrangement of bacter-
ial operons (23). Based on this hypothesis, we have pre-
dicted seven distinct sets of folding domains of the E. coli

genome under seven different physiological conditions: ex-
ponential growth, stationary phase, anaerobiosis, heat
shock, oxidative stress, nitrogen limitation and SOS re-
sponses. We found that (i) the predicted sets of folding
domains are highly stable with respect to perturbations
to the gene-expression data used to make the prediction;
(ii) they are generally consistent with the limited experi-
mental data on the folded supercoil structures collected
under the exponential and stationary growth conditions;
and (iii) their boundaries are consistent with the available
NAP-binding sites and genome-scale protein occupancy
data, hence supporting our prediction. We believe that
this study provides an effective framework for elucidation
of the chromosomal organization, its dynamic nature and
its functional relationship to transcription regulation of
E. coli and other bacteria.

MATERIALS AND METHODS

Data acquisition

We retrieved the genes encoding the 347 metabolic
pathways of E. coli K12 from EcoCyc (26), and the ex-
pression data from the M3D database (27), which contain
genome-scale expression data of E. coli collected under
466 conditions. In all, 527 cis-regulatory binding sites of
six NAPs (Fis, H-NS, HU, IHF, Lrp and StpA) in the
E. coli genome were downloaded from RegulonDB (28),
and 537 binding regions of H-NS under stationary growth
conditions are downloaded from (9). In addition, 253
highly expressed genes were obtained from HEG-DB
(29), and 272 extensive protein occupancy domains
(EPODs) of the E. coli genome are downloaded from (30).

Identification of the M3D growth condition groups
associated with different folded structures
of the chromosome

Based on the knowledge that the E. coli chromosome folds
into different conformations during the exponential and
stationary growths, we expect that under some other
growth conditions, the chromosome may fold into alter-
nate conformations to facilitate the efficient activation of
the genes for pathways required for each such class of
growth conditions. For each folded structure engendered
under certain growth conditions, we anticipate that there
should be a set of gene responses consistent across these
conditions. We call each such class of conditions as a
M3D growth condition (MGC) group, and this set of
genes as its ‘marker genes’. The determination of each
set of marker genes is made based on literature research
(31–38) and our understanding of different growth condi-
tions (see Supplementary Method S1). The detailed
gene list for each of the seven conditions is given in
Supplementary Table S1.

We have used the following procedure to identify the
MGC group for each growth condition, collectively
denoted as C, along with the associated gene-expression
data in M3D. Let G denote the entire gene set of E. coli
and Gq � G be a list of specified marker genes whose
activations we suspect should require a distinct folded
structure of the chromosome, with Gj j and Gq

�� ��
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representing the number of genes in G and Gq, respect-
ively. Also let A ¼ faijgjGj�jCj denote the whole M3D
dataset, with aij representing the expression value of
gene i under condition j and Cj j representing the number
of conditions in the M3D dataset, and A0 ¼ fa0ijgm�n be a
0/1 matrix, with a0ij being 1 if aij is among the highest
(or the lowest depending on specific applications) 25%
of the values in fai1, ai2, . . . , aing, otherwise 0, where
fai1, ai2, . . . , aing is the ith row of matrix A, i.e. the expres-
sion levels of gene i under all the conditions. Our goal is
to identify MGCs as maximal subsets of C under which
the majority of the marker genes in each Gq are highly
expressed, i.e. their corresponding values in A0 being 1.
Specifically, we define

MGCq ¼ j

����
P

i2Gq
a0ij

Gq

�� �� 2 0:8, 1½ �, 1 � j � n

( )

for each given Gq. In case an MGCq is empty, we will go
back to adjust the threshold in ½0:8, 1� so each MGCq is a
non-empty set.

Prediction of the folding domains for each MGC group

Our main hypothesis (see ‘Introduction’ section) implies
that (i) the genome of E. coli is partitioned into a set of con-
tiguous domains, each independently folded into a compact
structure in the folded chromosome; and (ii) under differ-
ent growth conditions, the chromosome forms different
sets of such folding domains, where the domain regions
are so determined that minimizes the total number of un-
folding of the folded domains to make their genes tran-
scriptionally accessible when needed. Based on these, we
have made a computational prediction of the domain
boundaries along the genome by formulating the problem
as a constrained optimization problem below.

Based on the published literature, we assume that the
folding domains range L=10kb and U=100kb in
length (3), and the domain boundaries can be only in
inter-operonic regions. So our problem formulation is
to find a partition of the E. coli K12 circular genome so
that the following objective function is minimized:

OFpathway ¼ OF1+�OF2 ð1Þ
with

OF1 ¼
XN
i¼1

fiti ð2Þ

and

OF2 ¼
XN
i¼1

fi
XM
j¼1

!ij ð3Þ

where M is the number of to-be-identified folding
domains; OF1 is the number of unfolding of the predicted
domains to make the relevant pathways transcriptionally
accessible (we assume that each domain will refold after
the transcription of its relevant genes is all done so the
unfolding is needed again when its genes need to be
transcribed later); N is the number of known metabolic

pathways encoded in the organism; fi represents the acti-
vation frequency of the ith pathway, estimated from the
gene expression data in M3D using the method given in
(24); ti is the number of predicted folding domains that
have genes encoding the ith pathway and OF2 approxi-
mates the unfolding energy ‘wasted’ on unfolding the
folded domains under the current condition (here we
assume that (i) the effort (or energy) in unfolding a
folding domain is proportional to the number of
operons it contains; and (ii) the energy wasted is propor-
tional to the number of operons contained in the domain
but not involved in the pathway being activated under the
current condition). For the jth domain (j 2 ½1,M�) contain-
ing sj operons, sij is the number of operons in the
jth domain and in the ith pathway; !ij =0 if sij =0, other-
wise !ij ¼ sj � sij; � is a scaling factor whose value can be
adjusted with its default value set at 1.
We noted that the pathway information alone does not

constrain the domain prediction problem to a satisfactory
level, making the problem a highly under-constrained op-
timization problem with a large number of solutions;
hence, we included co-expression data as an additional
constraint to further constrain the prediction problem.
Intuitively we expect that genes in the same folding
domain should be co-expressed more frequently than
genes not in the same domain. We therefore developed
the following objective term OFexpression over domain
boundaries (xj, yjÞ, with xj and yj being two adjacent
genes separated by an inter-operonic region, representing
the last and the first gene of the to-be-identified jth and
(j+1)th folding domains under the current growth condi-
tion, respectively:

OFexpression ¼
XM
j¼1

L xj, yj
� � ð4Þ

where L() is designed to measure the overall co-expres-
sion level among gene pairs across each domain boundary
xj, yj
� �

, which can be determined as to find a set of M gene
pairs xj, yj

� �
as potential domain boundaries soPM

j¼1 L xj, yj
� �

is minimized,

L x, yð Þ ¼
XX,Yð Þ are coexpressed

dX � dx, dY � dy
dY � dX � 20K

nX,Y � SðpX, pYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdx � dX+1Þ � ðdY � dy+1Þp
 !

ð5Þ
whereM> 0 is to be determined through solving this mini-
mization problem; dx represents the genomic location
of gene x; X,Yð Þ denotes all the gene pairs across the
inter-genic region between genes x and y with distance
�20 kb; pX and pY are vectors of expression levels of
X and Y under the current growth condition; nX,Y is the
number of MGCs under which X and Y are co-expressed;
and SðÞ is the Spearman rank correlation coefficient (39).
Now our enhanced formulation of the domain identifi-

cation problem is defined as ‘to find a partition of the
given circular genome to minimize the following’

AOF S,Eð Þ ¼ OF1+�OF2+�OFexpression ð6Þ
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where S and E represent the first and the last inter-
operonic regions of the genome, respectively.
This optimization problem can be solved using a

dynamic programming approach. Specifically, we have
the following recursive relationship, which can be proved
without a substantial effort:

AOF S, ið Þ ¼ min
j2½i�U, i�L�

½AOF S, jð Þ+AOF j, ið Þ� ð7Þ

which gives rise to a straightforward dynamic programm-
ing algorithm for solving this optimization problem, and
further gives rise to the predicted domain boundaries
under the specified growth conditions.

Measuring distance between two sets of predicted
folding domains

To assess the prediction performance of the above algo-
rithm, we need a capability to estimate the distance
between two different sets of predicted folding domains
(i.e. the distance between two different genomic parti-
tions). Consider two sets of predicted domain boundaries
(each represented as a set of inter-operonic regions), B1

and B2, of the same (circular) genome. Let I ¼ B1 \B2 and

U ¼ B1 [B2 represent the intersection and union of B1

and B2, respectively. Note that the distance between B1

and B2 should be 0 if I and U are identical. The larger the
difference between I and U is, the larger the distance
between B1 and B2 should be. In defining the distance,
we consider that the distance between B1 and B2 is
larger when boundaries in U� I are more spread out
across the genome when jU� Ij is fixed. Let fxig1�i�jIj
and fyjg1�j�jUj denote the sets of predicted boundaries of

I and U, respectively, ordered clockwise along the circular
genome starting at the origin of replication, and x0ðy0Þ and
x Ij j+1ðy Uj j+1Þ be the origin of replication. For any two con-
secutive boundaries in I, xi and xi+1, the number of
boundaries in U� I between xi and xi+1 is denoted as

dðxi, xi+1Þ so the average value is � ¼
PjIj

i¼0
dðxi, xi+1Þ
Ij j+1 ¼ jU�Ij

Ij j+1 .

Clearly the larger the jxi ¼ argfd xi, xi+1ð Þ � �gj value is,
the more spread out across the genome the boundaries
in U� I are. We define the distance between B1 and B2 as

S ¼ 1� jIj
Uj j

� �
�jxi ¼ argfd xi, xi+1ð Þ � �gj

jIj ði ¼ 0, 1, . . . , Ij jÞ

ð8Þ
We can see that the more similar two genomic partitions

are, the smaller the distance will be.

RESULTS

Generation of MGC groups

Knowing that the E. coli chromosome folds into different
structures during exponential growth and stationary
growth (1), we identified the subset of the 466 growth
conditions in M3D associated with each of these two
growth phases. Specifically, we used the expression levels

of 54 ribosomal protein genes to define the two corres-
ponding MGC groups: conditions under which most of
these ribosomal proteins are highly expressed and condi-
tions under which ribosomal proteins are overall lowly
expressed, respectively (see ‘Materials and Methods’
section). These two MGC sets are referred to as two
groups of growth conditions. We further hypothesize
that other classes of growth conditions may also give
rise to distinctly folded chromosomal structures.
Specifically, we have considered the following five widely
studied classes of growth conditions associated with
anaerobiosis, oxidative stress, heat shock, nitrogen limita-
tion and SOS response, and derived corresponding MGCs
for each of them using marker genes known to be
upregulated under each such condition (31–38). Table 1
lists the marker genes for each of these seven classes of
growth conditions along with the associated information
(for more details, see Supplementary Tables S1 and S2).
Overall, seven MGC groups are identified covering 325
out of the 466 growth conditions in M3D, for each of
which we made the prediction of the folding domain
boundaries of the E. coli genome.

Prediction of folding domains of E. coli under a specified
class of growth conditions

We predicted the folding-domain boundaries of the
E. coli genome under each of the seven classes of growth
conditions shown in Table 2. One hundrerd forty-six
folding domains are predicted for the exponential
growth, 84 for the stationary growth, 116 for heat shock,
95 for nitrogen limitation, 94 for oxidative stress, 102 for
anaerobiosis and 114 for SOS response. Figure 1a shows
the predicted domains under stationary growth along
the E. coli K12 genome. Figure 1b is an expanded view
of the genomic region (0–1.2 M) in Figure 1a. From
Figure 1b, we can see that the predicted folding domains
indeed show higher levels of co-expression than gene
pairs across the domain boundaries as desired, with
the detailed data shown in Figure 1c. An example of

Table 1. Information of the seven classes of growth conditions with

the marker genes used for identifying the growth condition classes in

M3D listed in the second column (with the gene number following in

the brackets) and the number of MGC sets for each growth condi-

tion class shown in the third column

Growth conditions Marker genes (number of genes) Number
of MGC
datasets

Exponential growth Ribosomal proteins (54) 45
Stationary growth Ribosomal proteins (54) 131
Heat shock Heat shock proteins (14) 54
Oxidative stress OxyR and SoxRS regulons (61) 30
Anaerobiosis Partial Fnr regulons (53) 55
SOS response LexA regulon (56) 57
Nitrogen limitation NtrC and Nac regulon (65) 34
Random N/A 100

The ‘Random’ growth conditions (the last line in Table 1) correspond
to 100 randomly selected MGCs from all the available MGC in the
M3D database.
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Figure 1. (a) Circos plots of predicted folding domains along the genome of E. coli K12 during the stationary growth phase. The alternating black
and white bands in the outermost ring represent the partition of the E. coli genome into folding domains. (b) An expanded view of the genomic
region (0–1.2 M). From the inside out, the six rings are labeled with numbers: (1) Each pair of genes involved in the same EcoCyc pathway are
connected using gray lines; (2) the red histogram shows the number of pathways in which the target gene is involved; (3) the orange histogram shows
the number of the coexpressed gene pairs; (4) each blue bar represents the presence of a highly expressed gene; (5) each green bar represents the
presence of a known NAP-binding site, which should fall in domain boundary regions; and (6) predicted folding domains represented as alternating
black-and-white bands in the seventh ring. Two thick bars are used to distinguish the adjacent folding domains as the boundaries are not visible at
genome scale. (c) A comparison between the numbers of coexpressed gene pairs in the flanks of the predicted domains (orange box) and a set of
randomly picked intergenic regions (gray box).

Table 2. Properties of the folding-domain boundaries predicted for each MGC group

MGC groups Number of folding-
domain boundaries

ALD (kb) ALB (bp) ALNB (bp) #HEG #NAP #Transcription
factories

#Fis

Exponential growth 146 31.4 402 271 13 43 6 33
Stationary growth 84 54.9 351 276 10 24 3 16
Heat shock 116 39.6 424 193 13 31 6 19
Oxidative stress 94 48.9 344 276 3 31 2 15
Anaerobiosis 102 45 424 272 13 33 8 21
SOS response 114 40.2 471 269 6 34 1 20
Nitrogen limitation 95 48.5 344 276 4 26 1 18

ALD, average length of the predicted folding domains; ALB, average length of the inter-operonic regions containing folding-domain boundaries;
ALNB, average length of the remaining inter-operonic regions. #HEG is the number of highly expressed genes encoded in the predicted
folding-domain boundary regions. #NAP is the number of NAP binding sites in the inter-operonic regions containing a predicted folding-domain
boundary. #Transcription factories is the number of superstructures near predicted folding-domain boundaries formed by NAPs associated
with the ribosomal RNA operons. #Fis is for the number of Fis binding sites in the inter-operonic regions containing a predicted folding-
domain boundary.
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the predicted domains and associated co-expression
data can be found in Supplementary Example S1 and
Supplementary Table S3.
Overall, 409 out of 2367 inter-operonic regions in the

E. coli genome (40) serve as a boundary of at least one pre-
dicted domain (B), while the remaining 1958 do not (NB).
We also noted that 45.3% of the predicted boundaries are
shared by at least two MGC groups and 23.5% by at least
three MGC groups. The detailed boundary information
of the predicted domains, along with other related infor-
mation is given in Supplementary Table S4.

Stability of the predicted folding-domain boundaries

As there are no large-scale experimental data collected on
the folded E. coli chromosomal structures to valid our
prediction, we have to assess the reliability of the predicted
folding domains mostly computationally. Specifically, we
have assessed the stability of each predicted set of domains
by perturbing the gene expression dataset used to make
the prediction. The approach was to replace a fraction
of the used MGC set by the same number of unrelated
conditions randomly selected from the remaining growth
conditions out of the 466 in M3D. We would expect that
a correctly predicted set of folding domains should be
highly consistent and reproducible, whereas randomly or
incorrectly predicted domains should not.
We used the following procedure, along with the

distance measure defined in ‘Materials and Methods’
section, to assess the prediction stability. Let C be the
condition set used to predict a set of folding domains.
We randomly selected 50% of the conditions from C,
denoted it as S1 and let S2 contain 25% of conditions
randomly selected from C and the same number of con-
ditions randomly selected from the remaining portion of
the 466 conditions after removing C. We then predicted
the set of folding domains under conditions C, S1 and S2,
denoting the three sets of predicted domains as P, P1 and

P2, respectively. We performed such predictions 1000
times for each C corresponding each condition class
given in Table 2 and calculated the distance distributions
between P and P1 and between P and P2. Figure 2 shows
the box plots of the two distributions for each of the seven
classes of conditions, plus a randomly selected condition
set C out of 466, with the same number of conditions to
that of the above. We can clearly see that the distance
between P and P1 is significantly smaller than that
between P and P2 (all achieving Wilcoxon test P< 2.2e-
9, shown in Figure 2) for all the seven condition sets, and
there is virtually no difference for the random set. Hence,
we can conclude that each predicted folding-domain
set based on any of the seven classes of conditions is
highly statistically significant compared with domains
predicted based on randomly selected conditions, hence
suggesting the strong biological significance of the pre-
dicted domains.

Functional inference of genes located close to the
predicted folding-domain boundaries

We have examined the predicted domains to check if genes
located close to the domain boundaries may have distinct
characteristics compared with other genes. We noted that
such genes tend to have higher GC content and higher ex-
pression levels than the other genes. Specifically, we have
calculated the P-value of the Wilcoxon test with the null
hypothesis that such genes having no higher GC content
and expression values than the other genes, which gives rise
to P< 0.05 for the test. See Supplementary Figure S1 for
the detailed information. Interestingly, previous studies
have shown that there is a positive correlation between
the expression value and GC content (41), providing an
indirect evidence supporting our observation.

We have also performed a gene ontology ‘biological
process’ (42) enrichment analysis on genes flanking the
predicted folding-domain boundaries using DAVID (43).

Figure 2. Boxplots showing stabilities of the predicted folding domains (exponential growth and heat shock) based on the selected MGC set versus a
randomly selected MGC set as defined in the main text. The comparison among the other five pairs of predicted domain sets is shown in the left
upper corner. Each box with lighter gray level represents the distance distribution between the domains predicted using the selected MGCs and
domains predicted using half of the selected MGCs, and each box with darker gray level is defined similarly but against domains predicted based on
randomly selected MGCs, where the y-axis is the distance axis. The Wilcoxon test P-values for each pair of distributions are shown in the top of
boxes of each corresponding set of predicted folding domains.
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Our result indicates that some genes involved in nitrogen
and sulfur metabolisms are enriched for five of the seven
classes of conditions (except for anaerobiosis and oxida-
tive stress). For instance, 76 out of the 494 genes flanking
the domain boundaries during the exponential growth are
involved in nitrogen, purine and amino acid metabolisms.
In particular, this set of genes contains those encoding
biosynthesis pathways of spermidine from glutamate,
arginine degradation, nitrogen and sulfur assimilation,
as well as proline and purine biosynthesis. The enrichment
of these genes suggests that these genes are actively
transcribed, which is consistent with our observation

made in Supplementary Figure S1b that genes flanking
the domain boundaries tend to express at higher levels
than the other genes.

Comparisons among the seven sets of predicted domains

We have compared the seven sets of predicted folding
domains based on seven sets of distinct MGCs defined
earlier, using the following two measures: (i) the degree
of overlap in growth conditions between two different
MGC groups, and (ii) the distance between each pair of
predicted domain sets. The ‘degree of overlap’ is defined

as A\Bj j
jA[Bj, where A and B represent two MGC groups.

Figure 3. (a) Degrees of overlap between each pair of MGC groups. The node size represents the size of a MGC group, and the edge width
represents the number of overlapping MGCs between the two corresponding nodes. The label of each edge has two values: the first being the degree
of overlap between the two corresponding MGC groups and the second being the distance between two predicted folding-domain sets, and
(b) relationship between the degree of overlap among MGC groups and the distance between the corresponding folding-domain sets.
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First, we noted that>90% (19 out ofC7
2 ¼ 21) of theMGC

group pairs have the degree of overlap scores <0.1,
indicating that the seven classes of MGCs are largely inde-
pendent of each other. As expected, a higher level of
overlaps between two classes of MGCs tends to give rise
to smaller distances between their predicted folding-
domain sets, as shown in Figure 3b. For instance, the
two classes of MGCs, stationary growth and nitrogen limi-
tation, have the highest degree of overlap at 0.17 as shown
in Figure 3a and also have the smallest distance, 0.401,
between their predicted folding-domain sets among all
the pairwise comparisons. This is not unexpected because
in stationary phase, cells stop multiplying exponentially in
part owing to limitation of some essential nutrients.
Another two sets of domains with a small distance, 0.43,
are under anaerobiosis and heat shock. Their correspond-
ing MGC groups have the second largest degree of overlap
0.11. There are no overlapping MGCs between the classes
of stationary growth and SOS response at all, and they
have a relatively large distance at 0.787.

Comparison between domain boundaries and
experimental data

Using an in vivo protein occupancy experiment, 272 EPODs
of the E. coli chromosome have been identified in (30). The
EPODs are enriched with NAP-binding sites (see details in
Supplementary Table S5) and play an important role in the
folding of the E. coli chromosome. These domains can be
grouped into two classes: the transcriptionally silent class
(tsEPODs) and the highly expressed class (heEPODs). The
151 tsEPODs are located across the genome apparently
randomly and has proved to have bigger influence on the
organizational architecture of the folded E. coli chromo-
some than the heEPODs (30), totaling 121. In addition, we
have also retrieved 537 H-NS binding regions under the
stationary growth condition from (9), knowing that H-
NSs play a key role in the formation of supercoil structures
in the folded E. coli chromosome (16). These H-NS binding
regions can be classified to long H-NS (loH-NSs) and
short H-NS binding regions (shH-NSs), with the longer
H-NSs wrapping around larger segments of the E. coli
chromosome. We have compared the predicted folding-
domain boundaries under the stationary growth condition
[stationary folding domains (sFDs)] with these EPODs and
H-NS binding regions as follows.
Let A denote all the inter-operonic regions in E. coli

genome, and B be the subset of A that has been computa-
tionally predicted by our algorithm;C denotes the subset of
A, which is experimentally identified. We use the following
P-value calculation to assess the statistical significance
of the level of coincidence between B and C. Specifically,
if our prediction B is random, then the probability of B and
C sharing exactly m inter-operonic regions is

pA mjB,Cð Þ ¼
jCj
m

� �
Aj j � jCj
jBj �m

� �
jAj
jBj

� �

where jXj denotes the number of elements in X and
m= jB\Cj. Hence, the P-value in respect to the assump-
tion is pA x � mjB,Cð Þ, denotedasPA B,Cð Þ.

We note that the P-values PA(sFDs, EPODs)
and PA(sFDs,tsEPODs) are both <0.05, but
PA(sFDs,heEPODs) is not. Between sFDs and the H-
NS binding regions, PA(sFDs,H-NSs) and
PA(sFDs,loH-NSs) are <0.05 but PA(sFDs,shH-NSs) is
not (see Table 3). These results indicate that our pre-
dicted folding domains have substantial overlaps with
EPODs and H-NS–binding regions, and they tend to
have higher level of overlap with the tsEPODs and
loH-NSs, which are known to cast bigger influence
on the folded chromosomal structures than heEPODs
and shH-NSs. As a comparison, we have randomly
picked a set of inter-operonic regions as potential
domain boundaries and done the same calculation on
sFDs, the P-values are consistently higher than those
calculated using predicted domain boundaries as shown
in Table 3.

DISCUSSION

Predicted folding domains under
exponential and stationary growth conditions
are generally consistent with the available
experimental data

We have noted from Table 2 that the numbers of folding
domains predicted under the exponential growth and the
stationary growth conditions are generally consistent
with the experimentally observed number of supercoils
using electron microscopy (1). Specifically, the data
indicate that the folded chromosomal structure has sub-
stantially more supercoils during the exponential growth
than those during the stationary growth phase, which is
consistent with our predicted numbers of folding
domains under the two conditions, 146 versus 84. And
some Fis-binding sites are exposed more frequently
during the exponential growth than during the stationary
growth, consistent with our predicted numbers 33 versus
16. In addition, there are more transcription factories
operating during the exponential growth than during
the stationary growth, consistent with the numbers 6
versus 3 based on our prediction, where a ‘transcription
factory’ is defined as a spatially confined aggregation of
RNA polymerase, transcription factors and NAPs in
nucleoid (44). The detailed calculation of these numbers
based on our predictions is given in Table 2.

Table 3. Statistical significance of correlation coefficient between

predicted domain boundaries and EPODs and H-NS binding

regions

EPODs tsEPODs heEPODs H-NSs loH-NSs shH-NSs

sFDs 3.8e-03* 2.6e-02* 6.4e-02 1.1e-02* 4.1e-02* 8.3e-02
Random

set
4.2e-01 2.3e-01 6.1e-01 9.7e-02 9.2e-02 5.4e-01

*P< 0.05.
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Sequence features indicate a strong link between the
predicted folding domains and supercoils in the
folded chromosome

We have noted that the average length of the inter-
operonic regions in B is 414 bp, which is significantly
longer than the average length of NB, 250 bp (see
‘Materials and Methods’ section). This clearly makes
sense as NAPs are expected to bind near the supercoil
boundaries and hence require extra space in the binding-
site containing inter-operonic regions (detailed compari-
sons can be found in Supplementary Figure S2). The
higher expression levels of genes flanking the folding-
domain boundaries (Supplementary Figure S1b) suggest
that these genes are more actively transcribed compared
with those in the internal portions of the folding domains.
Hence, we speculate that the active transcription of genes
flanking the boundaries might be accompanied by pushing
the coiling toward the center of the supercoiled domains,
hence making the middle portions of the supercoils
more tightly coiled than the boundary regions, and
reducing their accessibility by the RNA polymerases and
the transcription levels.

Potential limitations of our predicted MGCs

For each of the seven physiological conditions, its set of
marker genes is manually collected from the published
studies on the seven conditions. While the seven identified
subsets of conditions are biologically meaningful and
statistically significant, the marker genes are not selected
in a systematic manner and hence could have limited the
effectiveness of our method. To examine this issue, we have
carried out a de novo biclustering (45,46) of the expression
data of E. coli in M3D and obtained 17 condition clusters
with high statistical significance (shown in Supplementary
Table S6). Out of these 17 clusters, six have low a degree of
overlap with the seven MGC groups (<0.15), indicating
that these subsets of conditions, not covered by current
seven MGC groups, may correspond to certain physio-
logical conditions that have not been systematically
studied, and hence warrants further studies. We plan to
carry a detailed and systematic analysis of the 17 biclusters
to identify their corresponding physiological conditions as
well as their potentially corresponding folded chromo-
somal structures of E. coli K12.

CONCLUDING REMARK

We have predicted a distinct set of folding domains of
the E. coli K12 chromosome for each of seven sets of
growth conditions based on the gene-expression data in
M3D, the most comprehensive gene-expression dataset on
E. coli, along with pathway information from EcoCyc.
These predicted domains are highly stable with respect
to perturbations to the expression data based on which
the prediction is made. They also show good agreement
with the available E. coli folded chromosomal structure
data, including experimental observation and high-
throughput NAP-binding regions. The results of the com-
putation and analysis provided strong evidence supporting
our main hypothesis that operons encoding E. coli

metabolic pathways are arranged along the genome that
tends to minimize the total effort, measured using the
number of total unfolding of the folded domains, to
make the genes of the needed pathways transcriptionally
accessible. We believe that this study provides a frame-
work for studying the functional constraints cast on the
genomic organization of operons in E. coli and bacteria in
general. We fully expect that the same study can be
applied to other bacterial genomes, for which substantial
amounts of gene-expression data collected under multiple
conditions are available. Such predicted folding-domain
boundaries, when fully validated by and applied in con-
junction with the information derived from the emerging
chromosome conformation capture techniques, could
prove to be essential to understanding the detailed regu-
lation mechanisms of transcription relating to dynamic
supercoiling, as well as the general principles that govern
the genomic locations of operons (24,25).
The program used to generate the data used in this

article was written in ANSI C and tested using GCC
(version 4.1.2) on Linux. The source code is available
at: http://code.google.com/p/supercoil/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–6, Supplementary Figures 1 and 2,
Supplementary Method 1, Supplementary Example 1 and
Supplementary References [1,3,6–8,13–16,47].
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