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Abstract ���

    A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered ���

through a cellulase cell-surface display system in E. coli.  The presence of cell-surface anchoring, ���

a cellulose binding module, or His-tag greatly influenced the activities of wild-type and mutant ���

enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase ���

engineering.  The best mutant had 92%, 36% and 46% longer half-lives at 60°C on ���

carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively. ���

______________________________________________________________ �	�

 �
�

    The production of biofuels from non-food cellulosic biomass would benefit the economy, ���

environment, and national energy security (17, 32).  The largest technological and economical ���

obstacle is release of soluble fermentable sugars at prices competitive with those from sugarcane ���

or corn kernels (17, 31).  One of the approaches is discovering new cellulases from cellulolytic ���

microorganisms followed by cellulase engineering for enhanced performance on pretreated solid ���

substrates.  But cellulase engineering remains challenging because enzymatic cellulose ���

hydrolysis is complicated, involving heterogeneous substrates (33, 37),  different action-mode ���

cellulase components (18),  synergy and/or competition among cellulase components (36, 37), ���

and declining substrate reactivity over the course of conversion (11, 26).  Directed enzyme �	�

evolution, independent of knowledge of the protein structure and the enzyme-substrate �
�

interactions (6, 34), has been conducted to generate endoglucanase mutants, such as enhanced ���

activities on soluble substrates (14, 16, 22), prolonged thermostability (20), changed optimum ���

pH (24, 28), or improved expression levels (21).  Here we cloned and characterized a family 5 ���
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glycoside hydrolase (Cel5A) from a cellulolytic bacterium Clostridium phytofermentans ISDg ���

(ATCC 700394) (29, 30) and engineered it for enhanced thermostability. ���

    Characterization of Cel5A. The DNA fragment encoding the mature form of Cel5A ���

(ABX41541) was cloned into vector pET-20b(+) to give plasmid pET20b-Cel5A (Fig. 1).  ���

Recombinant Cel5A by E. coli BL21 Star (DE3) was highly soluble and purified by Bio-Rad ���

Profinity IMAC Ni-Resins precharged with Ni2+ (Hercules, CA).  The purified enzyme had an �	�

apparent molecular mass of about 45 kDa, and its optimal pH and temperature were 7.0 and 55ºC �
�

on carboxymethyl cellulose (CMC), respectively.  The recombinant Cel5A drastically decreased ���

the viscosity of a 1% (w/v) CMC solution, suggesting that it is an endoglucanase (35).  At pH 7.0, ���

Cel5A had activities of 18.1 ± 0.8,  1.70 ± 0.04 and 0.24 ± 0.06 U/mg on CMC, regenerated ���

amorphous cellulose (RAC) (33), and Avicel but had no detectable activity on bacterial ���

microcrystalline cellulose and xylan at 50ºC. ���

    Improve the thermostability of Cel5A by directed evolution. For potential cellulase ���

recycling (38), Cel5A was engineered for better thermostability.  A random cel5A mutant library ���

generated by error-prone PCR (4) was expressed by plasmid pGF101-Cel5A (Fig. 1) so that ���

Cel5A was displayed on the cell surface of E. coli by fusing with an outer-membrane protein ice �	�

nucleation protein (INP) (12).  After overnight incubation at 37oC, the colonies on the agar plates �
�

without isopropyl-beta-D-thiogalactopyranoside (IPTG) were duplicated onto fresh LB plates ���

containing 50 μM IPTG.  The duplicate plates were incubated at room temperature for about 40 ���

hours and then heated at 70oC for 20 min.  The plates were subsequently overlaid with soft agar ���

containing 0.5% CMC and incubated at 37oC overnight.  After Congo-red staining and washing, ���

the size of the yellow halo zone around a colony reflected endoglucanase activity on CMC (35).    ���

Approximately 20 colonies with halo zones larger than the wild-type after the heat treatment ���
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were identified from ca. 20,000 colonies (Fig. 2).  The selected colonies were retrieved from the ���

original plates and their thermostabilities were further confirmed.  After DNA sequencing, five ���

mutants with two or three amino acid substitutions (Table S1) were selected for further �	�

characterization. �
�

    CBM addition of Cel5A mutants. The five selected mutants that had potentially improved ���

thermostability were evaluated as fusion proteins each with a family 3 cellulose binding module 	��

(CBM3) from the C. thermocellum scaffoldin (10, 19) added to the N-terminus (Fig. 1), because 	��

(i) CBM3 is well-known to enhance hydrolysis of endoglucanase on insoluble cellulosic 	��

substrates (2, 7) and (ii) CBM3 helps heterologous protein expression in E. coli (10, 19). We first 	��

added a family 3 cellulose binding module (CBM3) to the N-terminus (Fig. 1) of each selected 	��

mutants and found that only two (m1 and m18) were more thermostable than the wild-type 	��

Cel5A.  Substrate pre-binding experiments suggested that cellulase thermostability was greatly 	��

affected by whether the enzyme was immobilized or free with the substrates (Table S2).  We also 		�

evaluated the wild-type Cel5A with a His-tag at the C-terminus (WT-His) or a CBM3 at the N-	
�

terminus (CBM3-WT) (Fig. 3A).  The specific activities of WT-His Cel5A on RAC and Avicel 	��

were 66% and 11% of that on CMC, respectively, due to a decreasing cellulose accessibility to 
��

cellulase order of CMC, RAC and Avicel (11, 37).  Adding an N-terminal CBM3 to Cel5A did 
��

not influence its activity on soluble substrate CMC, but decreased its activity on insoluble 
��

substrates RAC and Avicel (Fig. 3A).  This surprising result does not agree with previous reports 
��

that addition of CBM3 enhanced endoglucanase activities on solid cellulosic substrates (2) and 
��

removal of CBM3 greatly decreased the enzyme activity on solid substrates (7).   We speculated 
��

that this negative CBM-addition effect could be attributed to a short linker length (8 AA) 
��

between CBM3 and Cel5A.  Therefore, we constructed plasmid pET20b-Cel5A-Ig-CBM2 (Fig. 
	�
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1) for expressing a Cel5A fusion protein (WT-Ig-CBM2) that has a C-terminal sequence 

�

(containing a 41-AA linker, an Ig-like module and a CBM2) from another C. phytofermentans 
��

family 5 glycoside hydrolase (Cel5B, Genbank accession number YP_001560295).  WT-Ig-���

CBM2 did not show any significant improvement of activities on insoluble substrates compared ���

to CBM3-WT (Fig. 3A), implying that the addition of CBM might not always enhance ���

endoglucanase activity on solid substrates.  We further investigated the effects of His-tag on ���

Cel5A activities on various substrates (Fig. 3B).  The wild-type Cel5A without His-tag was ���

expressed and purified from plasmid pCIG-Cel5A (Fig. 1).  Removing the His-tag increased ���

Cel5A specific activities on RAC and Avicel by 48% and 22%, respectively, but had no ���

significant effect on its activity on CMC (Fig. 3B), suggesting that His-tag effects on the Cel5A �	�

activities were substrate dependant.  �
�

    Because of the negative effects of CBMs and His-tag on Cel5A activities, we expressed the ���

tag-free wild-type Cel5A based on plasmid pCIG-Cel5A (Fig. 1) for producing mutants m1 ����

(N144I/N291K), m18 (E158V/V245G), and their combination mutant m1-18 ����

(N144I/N291K/E158V) by site-directed mutagenesis.  Table 1 showed that m1, m18, and m1-18 ����

had similar activities to wild-type Cel5A on both soluble and insoluble substrates.  On CMC, ����

m1-18 presented a nearly doubled half-life (14.8 min) compared to the wild-type (7.7 min); on ����

RAC and Avicel, m1-18 exhibited increased half-lives by 36% and 46% on RAC and Avicel, ����

respectively.  ����

    The complexity of cellulase engineering. Removal of the CBMs from natural cellulases ��	�

drastically decreased their activities on solid substrates (1, 3, 5, 8, 13, 15, 23), and addition of the ��
�

C. thermocellum CBM to C. thermocellum endoglucanase CelD significantly improved its ����

activity on solid cellulosic materials (2).  However, our research showed that addition of the C. ����
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thermocellum CBM3 or Ig-CBM2 fragment of C. phytofermentans Cel5B to C. phytofermentans ����

Cel5A did not enhance its activities on solid substrates (Fig. 3A).  One possible reason was that ����

Cel5A might not interact efficiently with the CBM for generating a proper conformation for ����

enhanced activity on insoluble substrates (25, 27).      Some of the putative thermostable mutants ����

that were displayed on the cell surface were found to be non-thermostable when purified in a free ����

form (Fig. 2 and Table S2), suggesting that the cell-surface display technology may be more ����

suitable for screening enzyme mutants for whole cell catalysis.  ��	�

    Previous directed evolution studies successfully enhanced endoglucanase catalytic efficiency ��
�

(14, 16, 22) based on the assays on soluble cellulose derivatives.  Because there is no clear ����

relationship between the endoglucanase activities on soluble substrates and on solid cellulose ����

substrates (9, 34),  the development of high-throughput cellulase assays on solid cellulosic ����

substrates is urgently needed.   ����

 ����
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Figure Legends ����

 ����

FIG. 1.  Schematic representation of the expression plasmids. ����

FIG. 2.  Congo-red staining of E. coli JM 109 colonies surface displaying engineered C. ����

phytofermentans endoglucanase mutants on LB-Amp-IPTG agar plates overlaid with a CMC soft ����

agar layer.  (A) The colonies selected from a library of putatively positive mutants without heat ��	�

treatment and (B) the same colonies were pretreated at 70ºC for 20 min. ��
�

FIG. 3.  Effects of the CBM tags (A) and His-tag (B) on the molar specific activities of wild-����

type Cel5A on CMC, RAC, and Avicel. ����









TABLE 1.  Reducing end (RE) release and half- life times (t1/2) at 60oC of wild-type Cel5A and mutants m1, m18 and m1-18. 

 CMC  RAC  Avicel 

 
RE releasea         

(μmol/mg protein) 
t1/2         

(min) 

 
RE releasea         

(μmol/mg protein) 
t1/2       

(min) 
 

RE releasea         
(μmol/mg protein) 

 t1/2        
(min) 

WT   95 ± 2   7.7 ± 1.1  95.9 ± 0.5 3.6 ± 0.1  12.8 ± 0.1 4.8 ± 0.3 

m1 (N144I/N291K)   97 ± 4   9.1 ± 0.7  84.7 ± 0.1 4.6 ± 0.2  13.2 ± 0.3 6.6 ± 0.4 

m18 (E158V/V425G) 101 ± 2   7.9 ± 0.7  95.1 ± 4.6 3.2 ± 0.2  13.8 ± 0.4 4.5 ± 0.3 

m1-18 
(N144I/N291K/E158V) 

  95 ± 2 14.8 ± 1.7 
 84.7 ± 0.7 4.9 ± 0.3  12.7 ± 1.6 7.0 ± 0.7 

    a in 30-min reaction. 

�


