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Abstract Exoglucanases are key enzymes required

for the efficient hydrolysis of crystalline cellulose. It

has been proposed that exoglucanases hydrolyze

cellulose chains in a processive manner to produce

primarily cellobiose. Usually, two functional modules

are involved in the processive mechanism: a catalytic

module and a carbohydrate-binding module (CBM). In

this report, single molecule tracking techniques were

used to analyze the molecular motion of CBMs labeled

with quantum dots (QDs) and bound to cellulose

crystals. By tracking the single QD, we observed that

the family 2 CBM from Acidothermus cellulolyticus

(AcCBM2) exhibited linear motion along the long axis

of the cellulose fiber. This apparent movement was

observed consistently when different concentrations

(25 lM to 25 nM) of AcCBM2 were used. Although

the mechanism of AcCBM2 motion remains unknown,

single-molecule spectroscopy has been demonstrated

to be a promising tool for acquiring new fundamental

understanding of cellulase action.

Keywords Cellulose � Carbohydrate-binding

module (CBM) � Single molecule spectroscopy

Introduction

Cellulose is a water insoluble polymer of b-1,4-linked

cellobiose. In the cell walls of higher plants, it often

forms a long bundle or fibrillar structure embedded into

a matrix of other polysaccharides and lignin. Degra-

dation of cellulose is a slow process that requires at

least three types of enzymatic activities, the endoglu-

canase, which randomly breaks the internal b-1,4-

glucosidic bonds and creates broken chain ends, and

the exoglucanase, which cleaves the polymer from the

ends to produce cellobiose. Finally, the beta-glucosi-

dase hydrolyzes cellobiose to glucose, one of the most

fermentable sugars obtainable from cell walls. It has

been proposed that exoglucanases cleave the cellulose

chain in a processive manner, which is believed to be

critical for hydrolyzing crystalline cellulose effi-

ciently. Biochemical studies have revealed that two

functional modules are often required for an exoglu-

canse to function ‘‘processively.’’ The catalytic mod-

ules (CM) of these enzymes always form an active

tunnel in which the cellulose chain is precisely

positioned, permitting hydrolysis of the glycosidic

bond and release of cellobiose. The carbohydrate-

binding module (CBM) functions as a binding unit to

allow the enzyme to associate with the cellulose

Y.-S. Liu � Y. Zeng � Y. Luo � Q. Xu �
M. E. Himmel � S.-Y. Ding (&)

Chemical and Biosciences Center, National Renewable

Energy Laboratory, Golden, CO 80401, USA

e-mail: shi.you.ding@nrel.gov

S. J. Smith

Department of Electrical Engineering and Physics, South

Dakota School of Mines, Rapid City, SD 57701, USA

123

Cellulose (2009) 16:587–597

DOI 10.1007/s10570-009-9306-0



surface. The CM and CBM are found to be linked

directly with a linker polypeptide (e.g., the glycoside

hydrolase family 7 cellobiohydrolase), or indirectly

and associated with another proteins (e.g., scaffoldin of

the cellulosome in some bacteria). Nevertheless, based

on the hypothesis of the processive activity of exoglu-

canases, it appears that the CBM must be capable of

translational movement along the cellulose surface to

permit repeated hydrolysis cycles to occur. Prelimin-

ary results based on computer simulation have also

suggested that the CBM is capable of movement along

the cellulose surface (Bu et al. unpublished data). We

report here an experimental study of the behavior of

CBMs bound to crystalline cellulose surface using

single molecule spectroscopy.

Ideal methodologies for analyzing biological

systems dictate that the preparation and subsequent

imaging change little or nothing about the molecular

structure or chemistry of the specimen. Such meth-

odologies exclude most high resolution microscopy

techniques, yet are completely amenable to atomic

force microscopy (AFM), nonlinear optics, and

single molecule spectroscopy (SMS) (Ding et al.

2008, 2006). SMS refers to a set of spectroscopic

approaches capable of investigating the dynamics

and kinetics of each individual molecule. The

common approach to SMS involves analyzing the

electronic spectrum (fluorescence) or vibrational

spectrum (infrared or Raman) under the manipula-

tion of a specific key molecule that resides in the

sample (Cornish and Ha 2007; Moerner 2007).

Single-molecule fluorescence measurements have

been used widely in the biological field to examine

problems including: protein/RNA folding (Schuler

et al. 2002; Zhuang and Rief 2003), diffusion

analysis (Vrljic et al. 2005), DNA processing (Ha

et al. 2002), DNA sequencing (Braslavsky et al.

2003), and cellular entry (Lakadamyali et al. 2003).

Tracking the movement of a single molecule by

fluorescence has also been used to investigate a

variety of proteins or complexes, such as motor

proteins (myosin V (Yildiz et al. 2003; Warshaw

et al. 2005), myosin VI (Yildiz et al. 2004; Okten

et al. 2004), kinesin (Yildiz et al. 2004; Nan et al.

2005), dynein (Nan et al. 2005)) and base-excision

DNA-repair protein (human oxoguanine DNA gly-

cosylase 1 (Blainey et al. 2006)). However, the use

of SMS techniques to investigate cellulose degrading

enzymes has not been reported.

CBMs are noncatalytic protein modules found in

many carbohydrate-hydrolyzing enzymes, such as the

cellulases and hemicellulases. They are thought to

function as recognition modules that convey the

catalytic modules of these enzymes to the target

substrate, such as cellulose (Levy and Shoseyov

2002). Therefore, understanding the interaction

between the CBM and the cellulose surface is critical

for understanding overall cellulase action. Although

the binding of the CBM with the cellulose surface has

been shown by experiment to be essentially irrevers-

ible (the CBM is not lost to solution), logic dictates

that one likely mode for catalysis requires that this

domain translate on this surface. Jervis and cowork-

ers demonstrated that Fluorescence Recovery after

Photobleaching (FRAP) techniques could be used to

suggest that cellulose binding domain of exoglycan-

ase (CBDcex) was capable of translation on the

surface of crystalline cellulose 1b (Jervis et al. 1997).

They further proposed that this movement was

possible for CBDcex both in an isolated form and as

a module linked to a xylanase.

In order to evaluate SMS approaches for studying

the binding and hydrolysis activities of cellulolytic

enzymes, we have previously developed a system

capable of self-assembly at the single molecule scale

(Ding et al. 2006). In this system, CBMs were

permitted to bind initially to Valonia cellulose

crystals, followed by bio-conjugation with semicon-

ductor QDs. These bio-assembles were then subjected

to Total Internal Reflection Fluorescence (TIRF)

microscopy and the concentrations of CBM and QD

optimized to achieve single molecule resolution.

Materials and methods

Cloning and expression of CBMs

Two CBMs were used in this study, AcCBM2 is a

family 2 CBM from Acidothermus cellulolyticus, and

CtCBM3 is a family 3 CBM from Clostridium

thermocellum. The detailed protocol for CBM clon-

ing, expression, and purification was described in

previous reports (Ding et al. 2006; Xu et al. 2009).

Briefly, genomic DNAs of A. cellulolyticus and

C. thermocellum were used as templates, and poly-

merase chain reaction (PCR) was used to amplify the

588 Cellulose (2009) 16:587–597

123



DNA fragments of CBMs. The primers used for PCR

are 50 GATATACATATGGGTGTGGCGTGCCGGG

CGA 30 and 50 AGAGAGCTCGAGGCTGGCTGT

GCAGCTGAGCGT 30 for AcCBM2; 50 GATATAC

ATATGGGCAATTTGAAGGTTGAAT 30 and 50

AGAGAGCTCGAGACCGGGTTCTTTACCCCA 30

for CtCBM3. All CBMs were cloned in pET28b(?)

vector (Novagen, Madison, WI, USA) using restric-

tion enzymes NdeI and XhoI to generate the expres-

sion plasmid pET-CBM that produces fusion protein

with dual hexa-histidine-tag at its N- and C- termini.

The CBMs were then over-expressed in E. coli strain

of BL21 (DE3) (Stratagene, La Jolla, CA). Fusion

proteins were purified using the QIAexpress Ni-NTA

protein purification system (Qiagen, Valencia, CA).

The CBM concentration was measured by NanoDrop

1000 (Thermo Scientific, Wilmington, DE, USA) and

subsequently diluted with Tris buffer (50 mM Tris,

pH 8.0) to optimize the resolution for single molecule

detection.

Solubilization of QDs

The method used to solubilize QDs in water followed

our previous report (Ai et al. 2007) using a mixture of

N-acetyl-cysteine (NAC) and histidine (Sigma–

Aldrich, St. Louis, MO). In brief, 100 lL of the

TOP/TOPO (trioctylphosphine/trioctylphosphine

oxide) capped (CdSe)ZnS core-shell QDs in toluene

(Evident Technologies, Troy, NY) was added to

1.5 mL methanol and the mixture was centrifuged at

20,0009g for 15 min. The supernatant was discarded

and the QD-containing pellet was washed with

methanol three times and vacuum-dried. A 1.5 mL

solution containing 62.5 mM each of histidine and

NAC (Sigma–Aldrich, St. Louis, MO) (pH 8.1)

was added to re-suspend the QD pellet with mild

sonication. The NAC/histidine suspended QDs were

centrifuged at 20,0009g for 15 min to remove

un-reacted solid material. The approximate size of the

TOP/TOPO QDs was 5.2 nm in diameter (Evident

Technologies, Troy, NY) and the corresponding

emission peak was 614 nm in toluene. The concen-

tration of prepared NAC/histidine-capped QDs stock

solution is estimated to be 200 nM according to the

reported method (Yu et al. 2003), and it was

subsequently diluted with the same NAC/histidine

solution to optimize the resolution for single mole-

cule detection.

Assembling CBMs, QDs, and cellulose crystals

The cellulose crystals used for this study were

isolated from the green alga, Valonia ventricosa

(Imai et al. 2003). Twenty micrograms of CBM

(AcCBM2 or CtCBM3) protein in solution were

incubated with 100 lg of Valonia cellulose crystals

in 1 mL of Tris buffer (50 mM Tris, pH 8.0) by

gentle mixing for 30 min; then followed by centri-

fugation (10,0009g for 3 min). These pellets were

washed three times to remove unbound CBMs in the

solution. The resulting CBM-bound-cellulose com-

plexes were suspended in 500 lL Tris buffer. Ten

microliters of the NAC/histidine-solubilized QDs

solution were added to the cellulose/CBM suspen-

sions. The QDs were then allowed to bind to the

cellulose/CBM complexes by gently mixing.

Unbound QDs were removed by repeated centrifu-

gation and washing steps (using Tris pH 8.0). The

final cellulose/CBM/QD conjugates were suspended

in 50 lL Tris buffer. For single molecule detection,

the concentrations of AcCBM2 and QD were opti-

mized to achieve single molecule resolution.

Förster resonance energy transfer (FRET)

FRET was used to further confirm the composition of

the cellulose/CtCBM3/QD constructs. QDs having an

emission peak at 614 nm were used as the donor

molecules and the Alexa 647 fluorescent dye (having

an absorption peak at 647 nm and an emission peak

at 668 nm) was used as the acceptor molecule. The

anti-His tag antibody conjugate of the Alexa 647

fluorphore (Qiagen, Valencia, CA) was used to detect

the histidine-tag of the CtCBM3 protein. The anti-

body was then added to cellulose/CtCBM3/QD

suspensions (see above), and gently mixed for 1 hour

in the dark and at room temperature. Unbound

antibody was removed by repeated centrifugation

and washing steps (using Tris pH 8.0). The final

cellulose/CtCBM3/QD/antibody conjugates were sus-

pended in 50 lL Tris buffer for TIRF imaging.

Spectra were recorded using a Fluorolog-3 spectro-

fluorometer (Horiba Jobin Yvon, Edison, NJ, USA)

as previously reported (Ai et al. 2007).
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Microscopic observation

TIRF microscopy (TIRF-M) was performed on an

Olympus IX71 inverted microscope equipped with

QuantEM: 512SC and CoolSNAP HQ2 (Roper Sci-

entific, Trenton, NJ, USA) cameras. Mercury lamp

and a linearly polarized 488 nm argon laser (Melles

Griot, Albuquerque, NM, USA) were used as the

excitation sources. Several fluorescence filter sets

were used for different purposes. For general fluo-

rescence imaging, the Ex = 545–580 nm and Em =

610 LP nm filters were used for QDs. For single

molecule detection, the Ex = 488/10X nm and

Em = 650/50 M nm filters were used for QDs; in

this case a band-pass filter (617/73) was placed before

the camera to further suppress noise. For the FRET

assay, the Ex = 488/10X nm and Em = 617/73 nm

filters were used for QDs (donor); whereas the

Ex = 488/10X nm and Em = 660 LP filters were

used for the Alexa 647 dye (acceptor). Two objective

lenses were used for these observations, the 150X

lens (UApo, oil immersion and N.A. = 1.45) and the

100X lens (PlanApo, oil immersion and N.A. =

1.45). Freshly prepared samples (2-lL volume) were

placed between two glass cover slips. After the

sample spreads out by capillary effect, the cover slips

were pressed together hard to minimize optical depth

of the sample and to obtain a thin and even

distribution of cellulose substrate fibers, maintained

in an aqueous environment.

Single molecule tracking and data analysis

TIRF images were recorded as a sequence for later

tracking analysis. Each sequence of images was

analyzed by DIATRACK software (Semasopht, North

Epping, Australia). All the spots on an image in the

sequence were analyzed. Particular intensity thresh-

olds were applied to exclude spots that were too bright

(obvious aggregates containing multiple fluorphores).

Each spot, which in most cases represents one single

molecule, was fitted with a two-dimensional Gaussian

function (Thompson et al. 2002). The centroid of a spot

in one image was determined as the peak of the fitting

Gaussian function. The centroid of the same spot

throughout the sequence of images were determined

from one frame to the next and finally reconstructed as

a spatial trajectory recording the movement of the spot.

The accuracy of determining a centroid was primarily

limited by the number of photons collected from the

particular spot. The extracted data was processed with

custom MATLAB (MathWorks, Natick, MA, USA)

script.

Results and discussions

Cellulose/CBM/QD constructs

In our previous work (Ding et al. 2006; Xu et al.

2009), we developed a method to use QDs to label the

CBM that specifically binds to the planar face of

crystalline cellulose. The Type-A surface-binding

CBMs (CtCBM3 and AcCBM2) that have high

affinity for crystalline cellulose (Tormo et al. 1996;

Morag et al. 1995) were used in this study. QDs were

conjugated to CBMs using dual histidine-tags intro-

duced genetically to the N- and C-termini of the CBM

molecule (Fig. 1). Although the QDs and CBMs are

of about the same size (5 nm in diameter), simply

labeling one CBM with one QD initially and then

applying this assembly to cellulose would generate

large QD-CBM aggregates. This approach would also

make it more difficult to arrange the QD-CBM

aggregates on the cellulose (data not shown). In

practice then, the CBMs were deposited onto cellu-

lose first and then subsequently labeled with the QDs

in a two-step procedure (Ding et al. 2005). Typical

fluorescence images of the cellulose/CtCBM3/QD

conjugates are shown in Fig. 2a. All QDs were found

to be specifically aligned on the cellulose crystals.

After labeling the cellulose/CtCBM3 with QDs, we

Fig. 1 Cartoon showing the cellulose/AcCBM2/QD system.

The AcCBM2 facilitates binding to the cellulose substrate. QDs

are anchored to the AcCBM2 protein by the dual histidine-tags

(His-tag) and fused at N- and C-termini
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further used monoclonal antibody (anti-His tag

antibody) conjugated with Alexa 647 fluorphore to

detect histidine-tagged CtCBM3 protein. FRET

imaging was then used to confirm the assembly of

the cellulose/CtCBM3/QD constructs. In this system,

the QD 614 (donor) has broad excitation spectra and

a narrow emission peak at 614 nm. The Alexa 647

(acceptor) has an absorption peak at 647 nm and

emission peak at 668 nm. A 488 nm laser was used to

excite the QDs and two band-pass filter sets (660 LP

and 617/73) were used to detect the emissions of

Alexa 647 and QD 614, respectively. Figure 2b

shows the FRET images of these two channels.

Indeed, only emission from Alexa 647 could be

detected when the 488 nm laser was used to excite

the QD, which indicated high FRET efficiency from

the QD to the Alexa fluorphore. FRET imaging

provided direct evidence that QD-CBM conjugation

was facilitated by the interaction between the dual

histidine tags of the engineering CBM and the zinc

(II) atoms on the QD surface (Goldman et al. 2005;

Slocik et al. 2002). In our previous work (Xu et al.

2009), we observed that the arrangement of

AcCBM2/QD binding to cellulose appeared more

regularly than that of CtCBM3/QD. Preliminary

microscopic tracking also exhibited more compli-

cated modes of motion of CtCBM3/QD bound to

cellulose (data not shown). Therefore, in this report,

we focused on AcCBM2/QD for all 2-D tracking

experiments.

Optimization of QD concentration

In order to track the molecule behavior of the CBMs

on cellulose surfaces, the first challenge was to ensure

Fig. 2 Photomicrographic images of fluorescently tagged

CtCBM3 on Valonia cellulose. a QDs are anchored on

CtCBM3 proteins by the histidine-tags fused at both N- and

C-termini. Bright field image on the top showing cellulose, and

fluorescence image in the bottom panel; b images obtained

from the microscope channels transmitting only QD (top) and

Alexa (bottom) fluorescence, respectively. The excitation laser

wavelength 488 nm can only excite QD but not Alexa. The

absence of QD fluorescence in the top image and the presence

of Alexa fluorescence in the bottom show that QD (donor,

emission peak at 614 nm) energy has transferred to Alexa dye

(acceptor, absorption peak at 647 nm). Anti-His tag antibody

conjugate Alexa fluorphore detects histidine-tagged CtCBM3

protein indicating QD bind to cellulose directed by CBM; c
absorption and emission spectra of QD614 (orange line) and

Alexa fluorphore (red line)
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that sample preparation achieved single molecule

dispersion. Here, the concentration of target mole-

cules plays a vital role (Gopich 2008; Steinmeyer

et al. 2005). We found that the target molecules must

be diluted sufficiently to achieve single molecule

dispersion. However, it is likely that using very low

concentrations could increase signals generated by

impurities (background signals), thus reducing the

accuracy of the centroidal determination.

In this study, concentrated AcCBM2 (25 lM) was

used initially to ensure saturated binding of the

protein to cellulose. This minimizes potential non-

specific binding between QD and cellulose. Solutions

of QDs in concentrations ranging from 200 nM to

1 pM were then added to the AcCBM2-bound

cellulose to obtain the appropriate QD concentration

range (determined earlier to be ideal for observing

single QD particles). As shown in Fig. 3, the intensity

of overall QD fluorescence decreases with decreasing

QD concentration. In Fig. 3a, QDs were excited using

the 488 laser that illuminated the entire cellulose

crystal. The single molecule level of detection was

achieved by diluting QDs to 100 pM (Fig. 3b) and

even to 50 pM (Fig. 3c); however, further dilution of

the QDs to 1 pM (Fig. 3d) did not yield detectable

fluorescence signal even with strong excitation. Thus,

QD concentrations in the picomole range appeared to

be suitable for single molecule imaging of the

cellulose/AcCBM2/QD614 system.

The accuracy in the centroid determination is

calculated by the following formula (Thompson et al.

2002):

Fig. 3 Total internal reflection fluorescence micrographs of

cellulose crystals labeled by AcCBM2 and QD614 with various

QD concentrations. QDs appear as white spots. AcCBM2

concentration was fixed at 25 lM with QD concentration at (a)

200 nM (b)100 pM (c)50 pM (d)1 pM. Individual dots can be

resolved in the images with 100 pM and 50 pM QD

concentration. (e) A single image of QD (100 pM) tagged

AcCBM2 (25 lM) on cellulose from a 120-frame sequence

acquired at 2 Hz frame rate. Four QDs lined up on the

cellulose. The circled molecule was selected for tracking study.

Scale bar 500 nm. (f) A typical trajectory demonstrated

AcCBM2 moving along the direction of the cellulose crystal.

The color coded bar represents time scale of 60 s
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where s is the width of diffraction limited spot

(212 nm), a is the pixel size (104 nm without

binning), and N is the number of photons detected.

In this study, two concentrations of QDs (100 pM and

50 pM) were used to test the accuracy of above

calculation. We noted that QD concentrations of

50 pM required more photoactivation (e.g., *1 min)

before being observable as reported previously (Sun

et al. 2006; Silver and Ou 2005). We therefore

defined 100 pM as our optimal QD condition for

tracking potential movement. Because, we used a

back-illumination CCD camera with on-chip gain

capability, N is determined from the image as:

N ¼ I � g

G

where I is the spot intensity measured by defining a

spot with an 11 9 11 pixel region after subtracting

background, g is the conversion gain that indicates

the number of photoelectrons per analogue-digital

converter unit (ADU) and G is the on-chip gain

factor. We used values of g = 6 e-/ADU and

G = 200. Using a typical excitation power of

3 mW (after objective) and 500–2,000 ms of expo-

sure time, we usually obtained about 1,500–3,000

photons from each spot. The error in the centroid

determination was then calculated as about 4–5.5 nm.

Observation of single AcCBM2 molecules

on cellulose

A QD concentration of 100 pM was used to analyze

the trajectory of QDs in the cellulose/AcCBM2/QD

system. Based on our FRET imaging, it appeared that

all QDs were bound tightly to the CBM. By

visualizing the movement of the QDs, we could

observe indirectly AcCBM2 behavior on cellulose.

Figure 3e shows a representative image from a

sequence movie (corresponding to 120 frames with

2 Hz frame rate) of a cellulose crystal on which four

single QDs/AcCBM2 were observed. The circled QD

in Fig. 3e was used for tracking molecular move-

ment, and its tracking result was shown as Fig. 3f.

The trajectory indicated that these QDs appeared to

be moving directionally along the cellulose long axis.

In this case, the motion was almost linear and was

confined in 1-dimension during the 60 s observation.

The observed movement of the CBM may be the

combination of Brownian motion and translational

motion along the cellulose surface. We speculate that

in short time scale, i.e., few seconds, CBM molecules

move randomly primarily due to Brownian motion,

the translational motion may or may not be captured,

or may be difficult to differentiate from Brownian

motion. However, in tens of seconds or longer time

scale, the observed movement of CBM molecules

should be predominated by translational motion,

which showed in Fig. 3f.

Control experiments were conducted to further

confirm that these apparent motions indeed resulted

from the movement of AcCBM2. An important

question was whether or not the apparent motion

observed was affected by the concentration of the

AcCBM2. The number of the CBM molecules bound

on the cellulose surface could affect the intervals

between CBMs and hence affect the apparent

distance traveled by the CBMs. A dense arrangement

of CBMs (i.e., concentrated CBMs) along the cellu-

lose crystal might limit the available space and

constrain CBM movement. Using the optimal QD

concentration determined earlier, 100 pM, the

AcCBM2 solution was diluted from 25 lM (Fig. 3b)

to 25 nM (Fig. 4a) and 250 pM (Fig. 4b) to generate

the cellulose/AcCBM2/QDs system. In Fig. 4a, QDs

in this system can be observed on individual cellulose

crystals where they ‘‘line up’’ in the long axis

dimension of the crystal. In Fig. 4b, few QDs can be

seen on single cellulose crystals; most of them show

up on cellulose bundles. The tracking of diluted

AcCBM2 movement was conducted using solutions

of 25 nM AcCBM2 and 100 pM QDs (same as the

condition in Fig. 4a). The trajectory determined (see

Fig. 4c) demonstrated the QDs displayed very similar

patterns of motion, which was linear and directional

along the long axis of the cellulose crystal during the

60 sec observation.

Another important question was whether or not the

nonspecific binding of QDs on cellulose could result in

directional movement. In order to answer this question,

we further performed a control experiment in which the

QDs were mixed with the cellulose crystals directly

without adding AcCBM2, all other conditions were the

same as above. In this case, very few QDs could be

found on the single cellulose crystals, although there
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were still some QDs nonspecifically bound to cellulose

bundles, as shown in Fig. 5a. The trajectory of a single,

isolated QD is shown in Fig. 5b. Here, the nonspecif-

ically-bound QDs moved randomly. Note that this

motion did not at all compare to the highly vectored,

and progressive AcCBM2-driven QDs shown in

Figs 3e and 4c. This experiment thus confirmed that

the directional motion of QDs was indeed driven by

CBM. However, the apparent distances moved for the

cellulose/AcCBM2/QD and cellulose/QD systems

Fig. 4 Total internal

reflection fluorescence

micrographs of cellulose

crystals labeled by

AcCBM2 and QD614 with

various AcCBM2

concentrations. QD

concentration was fixed at

100 pM with AcCBM2

concentration at (a) 25 nM

(B) 250 pM. QDs appear as

white spots in the bottom
row whereas bright field

images showing the

cellulose crystals are in the

top row. QDs can be seen

on single cellulose crystals

in (a) and in cellulose

bundles in (b). (c) (Left) A

single image of QD

(100 pM) tagged AcCBM2

(25 nM) on cellulose from a

150-frame sequence

acquired at 2.5 Hz frame

rate (same condition as

Fig. 4a). The circled
molecule was selected for

tracking. Scale bar 500 nm.

(Right) The trajectory

demonstrated CBM moving

in 1-D along the cellulose

direction. The color coded

bar represents time scale of

60 s

594 Cellulose (2009) 16:587–597

123



were not significantly different, which may imply that

the overall resolution obtained from the current

instrumental setup (e.g., laser, N.A. of objective lenses,

microscope layout, etc.) was not optimized to quanti-

tatively analyze the actual motion of CBM. Neverthe-

less, the results presented here clearly show that

single QD movement driven by CBM conjugation

display different characteristics than do free QDs

(non-specifically bound to cellulose). We also noted

that the observed AcCBM2 movement was consistent

with a previous report regarding CBDcex bound on

crystal cellulose (Jervis et al. 1997). Preliminary

results of computer simulation also suggest CBM

may move in a repetition of small steps corresponding

to cellobiose units (Bu et al. unpublished data). The

driving force for CBM motion is still unknown and

its underlying mechanism needs more experimental

clarification.

Another possible artifact which may explain this

apparent movement is the intermittency of energy

emission (blinking) from two (or more) QDs lying in

one diffraction-limited spot. Unlike conventional dye

molecules, which have simple on-off emission

patterns, single QDs can exhibit multiple levels of

emission. In other words, the apparent intensity of

QDs luminescence may vary continuously; the blink-

ing phenomenon is thus not a good indicator for

identifying single dots (Kai et al. 2006). We noted that

the one-dimensional trajectory provided an accurate

position of the QD as a function of time, based on the

observations for the case of the QD/AcCBM2/cellu-

lose system (Figs 3, 4). The QD trajectory data shown

here have clearly demonstrated that the motion of

AcCBM2/QD is linear and directional along the long

axis of the cellulose crystal. With the current micro-

scopic setup, it does not allow us to quantitatively

subtract the instrument shift from the tracking of

CBM movement. Compared to the control experiment

that has QD non-specific bound to celluloses showed

random, non-directional movement, we therefore

believe the observed motion is driven by CBM

motion.

Fig. 5 a Total internal

reflection fluorescence

micrograph of cellulose

crystals non-specifically

labeled with QD (100 pM).

Bright field image showed

cellulose crystal bundles

(left). QDs appear as white
spots (right); b (left) a

single image of QD

(100 pM) non-specifically

bound to cellulose from a

150-frame sequence

acquired at 2.5 Hz frame

rate. Scale bar 500 nm.

(Right) The trajectory

demonstrated QD

movement is not as

narrowly confined on the

cellulose crystal. The color

coded bar represents time

scale of 60 s
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Conclusion

The single molecule spectroscopy approach was used

to analyze the bacterial family 2 CBM (AcCBM2)

labeled by QDs and bound to cellulose. By tracking the

QDs single molecules; we have demonstrated that the

AcCBM2 exhibits a linear and directional motion along

the cellulose crystal, which was not observed in the

case of QDs nonspecifically bound to cellulose. Due to

the limited resolution of the current optical microscope

setup used, we were not able to analyze the velocity of

the CBM motion, nor the distance that the CBM is able

to move. Future improvements in instrumental resolu-

tion are required to further describe the mechanism of

AcCBM2 binding to cellulose. We believe that the

single molecule approach used here offers new oppor-

tunities to guide us toward the fundamental under-

standing of cellulase function, specifically the

mechanism of the exoglucanase ‘‘processivity.’’
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