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Bioethanol production would benefit from a rapid screening method to determine the ability of feed-
stock to be processed into fermentable sugars. The aim of this study was to relate near infrared
(NIR) spectra of straw to the release of sugars for ethanol production from cultivars of winter wheat,
and to establish a calibration model to quickly determine the content of structural carbohydrates,
lignin, and ash. We applied a high-throughput pretreatment and enzymatic hydrolysis (HTPPH)
assay, involving hydrothermal pretreatment (180 �C for 17.6 min) and enzymatic hydrolysis, to estab-
lish the release of glucose and xylose from 20 cultivars grown in two replicates at two sites; in total
79 samples were measured. The NIR spectra could explain 56% of the variance in sugar release
with a root mean square error of cross-validation (RMSECV) of 0.014 g g−1 dm. NIR calibrations pre-
dicting content of structural carbohydrates and lignin could explain only about 25% of total variance,
whereas calibrations predicting ash content could explain 94% of total variance. The relatively low
percentage of explained variance of sugar release was due mainly to uniformity of samples, which
rendered the uncertainty of HTPPH method to be large compared with variance between samples.
NIR spectroscopy, therefore, has potential to assess sugar release of wheat straw. Improved pre-
diction of carbohydrates and lignin require better compositional analysis for homogeneous material.
Despite successful prediction of ash content, site-specific cross-validation indicated that there might
be problems with model transferability from site to site.
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1. INTRODUCTION

In recent years it has been increasingly apparent that an

important step in making second generation bioethanol pro-

duction a commercial reality, is to obtain a better under-

standing of how feedstock affects production.1 Varying

capacity of the feedstock to be processed into fermentable

sugars after pretreatment could be related to variability in

chemical composition and differences in recalcitrance of

the feedstock. High-throughput pretreatment and enzymatic
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hydrolysis (HTPPH) methods have been developed in order

to analyze a large number of feedstock samples for sugar

production following pretreatment.2�3 Although HTPPH

methods dramatically reduce processing times compared to

prior approaches, they still take time for grinding biomass,

accurately weighing materials, and conducting the pretreat-

ment and hydrolysis steps.

Near Infrared Spectroscopy (NIR) has been suggested

as a rapid and non-destructive method to replace ref-

erence methods for determination of chemical composi-

tion of feedstock and capacity for bioethanol production.4

Spectroscopy holds an advantage over HTPPH methods in
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that samples can be analysed much faster and require less

preparation. Few feasibility studies on sugar or ethanol

yield following pretreatment have been published to date,

although spectroscopy has previously been used in cali-

bration models for analytical parameters during hydrolysis

and fermentation5�6 and for assessing chemical composi-

tion of maize stover.7–10 Isci et al.11 proved NIR spec-

troscopy to be able to satisfactorily predict ethanol yield

from maize stover after pretreatment with aqueous ammo-

nia and simultaneous saccharification and fermentation.

For wheat straw, Lomborg et al.12 found good NIR predic-

tion accuracy for glucan and xylan content in 44 samples

of straw. No attempts, however, to develop NIR calibra-

tions for sugar release after pretreatment and enzymatic

hydrolysis of wheat straw have been published.

The aim of this study was to establish a validated cal-

ibration model between release of fermentable sugars in

pretreatment and enzymatic hydrolysis as determined in

a HTPPH system and the content of structural carbohy-

drates, lignin, ash, and NIR spectra of wheat straw.

2. MATERIALS AND METHODS

2.1. Wheat Cultivars, Collection and Fractionation

Winter wheat straw was sampled from two sites in

Denmark, where field experiments comparing cultivars

were conducted. Approximately 80 g of straw from 20

cultivars of mature winter wheat was collected in 2007

from two blocks at each of two sites near the towns

of Sejet (55�49′12.43′′ N and 9�55′21.82′′ E) and Abed

(54�49′40.05′′ N and 11�19′30.62′′ E). Collecting straw

was done at the same day at the two sites just after normal

grain harvest. Growing conditions (fertilizers etc.) were

kept the same at the two sites, thus straws represented the

natural variation (in climate, soil type etc.) in the biomass

feedstock for a Danish ethanol plant. Cultivars were North-

ern European breeds: Abika, Ambition, Audi, Dinosor,

Flair, Florett, Glasgow, Hattrick, Inspiration, Jenga, Oak-

ley, Opus, Penso, Potenzial, Robigus, Samyl, Skalmeje,

Smuggler, Tommi, Tuscan. One sample was lost during

harvest and the total set was therefore 79 air-dried samples.

Samples were fractionated into anatomical components of

ears (flower spike free of grain), leaves (leaves without the

leaf sheath), and stem (remaining part). After weighing,

anatomical parts were mixed together, milled to <1 mm on

a cyclone mill (President, Holbæk, Denmark), and stored

at ambient temperature until analysis. A subsample of the

milled straw was used for analysis of chemical composi-

tion and another subsample for NIR.

2.2. Chemical Composition

Chemical compositions of the wheat samples were deter-

mined by two-step acid hydrolysis of the carbohydrates,

according to the procedure published by NREL.13 Analyses

were done on air-dried samples containing on average 7.9%

weight by weight (w/w) water (standard deviation 0.9%).

Dry matter content was determined on a Sartorius MA30

dry weight balance. No extractions have been preformed

prior to the acid hydrolysis in order to maintain the original

composition of the biomass with most resemblance to the

biomass used for NIR spectra recording. First, 3 mL 72%

(w/w) H2SO4 was added to 300 mg air-dried milled wheat

sample and incubated at 30 �C for 1 h. Next, the samples

were diluted with 84 mL Millipore water and autoclaved at

121 �C for 1 h (Tuttnauer, 2540 EL). Finally, hydrolyzates

were filtered, neutralized with CaCO3 and diluted with elu-

ent before monomeric sugar concentrations were quantified

on a Dionex Summit high performance liquid chromatog-

raphy (HPLC) system. The separation was performed in

a Phenomenex Rezex ROA column at 80 �C with 5 mM

H2SO4 as the eluent, running at a flow rate of 0.6 mLmin−1

with a Shimadzu RI-detector. Hemicellulose was calculated

as the sum of xylose and arabinose concentrations. Klason

lignin content was determined as the weight of the dried

filter cake (dried over night at 105 �C) minus the ash con-

tent (dried 3 h at 550 �C). All measurements were done

in triplicates and results are presented as percentage of dry

matter.

2.3. Sugar Released from Wheat Straw

To measure sugar release from straw, we utilized the

relatively new HTPPH 96-well-plate screening system,

developed by Studer et al.3 The conditions chosen for the

experiment were determined by testing different pretreat-

ment conditions and enzyme loadings on a wheat straw

cultivar chosen from the data set as a standard. Briefly, all

79 samples were subjected to pretreatment and hydrolysis

in the metal well-plate in triplicates. Hydrothermal pre-

treatment was performed at 1% (w/w) solid loading with

indirect steam heating for 17.6 minutes at 180 �C, cor-
responding to a log severity of 3.6.14 This was done by

loading 2.5 mg dry matter (dm) milled straw to each well

and soaking for four hours in de-ionized water (total reac-

tion mass of 250 mg) before heating the well-plate with

steam. Following pretreatment, hydrolysis was performed

on the entire pretreated slurry by applying a fixed enzyme

loading to all wells using a 5:1 (w/w) enzyme mix of cel-

lulase (Celluclast, Novozymes) and cellobiase (Novozyme

188, Novozymes). Enzyme loading for individual culti-

vars thus ranged from 57.9 to 72.1 FPUg−1 glucan+
xylan in the raw material (standard deviation 3.1 FPUg−1

glucan+xylan). The well-plate was then placed vertically

in an incubation shaker (Multitron InFors, ATR Biotech,

MD) at 50 �C and 150 rpm. After 72 hours of hydrolysis,

content of each well was transferred to 2 mL centrifuge

tubes and centrifuged for 10 minutes at 18,200 g-forces

(5415 D, Eppendorf, Hamburg, Germany). Sugar concen-

trations in the supernatant were analyzed using HPLC

2 J. Biobased Mater. Bioenergy 4, 1–6, 2010
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with an Alliance 2695 system (Waters, Milford, MA), an

Aminex HPX-87H column (BioRad, Hercules, CA) heated

to 65 �C and using 5 mM H2SO4 as eluent in an isocratic

mode. Detection was done by a refractive index detector

(2414, Waters). Sugar release of each cultivar was calcu-

lated as release of glucose (Glu), xylose (Xyl) and glucose

plus xylose (total sugar, TS) in gram per gram dry matter

of raw biomass (g g−1 dm).

2.4. NIR Spectroscopy

Two NIR spectra were recorded for milled straw samples:

One for air-dried sample and one for oven-dried sample

(80 �C). NIR spectra were recorded on a NIR system

6500 (FOSS Tecator, Copenhagen, Denmark) spectrome-

ter running in reflectance mode with a spectral range from

400 nm to 2500 nm at 2 nm intervals. The samples are

not physically the same samples as used in the biochem-

ical composition analyses. Approximately 1 g of milled

straw material was scanned in a 36 mm Ø spinning cup,

where 16 spectra from different sections of the cup were

averaged. With R being the ratio of the reflectance of the

sample to a reference standard absorbance was calculated

by the equation: A= log10 (R−1�.

2.5. NIR Calibration

Partial Least Square (PLS) regressions were per-

formed in LatentiX 2.00 (Latent5, Denmark, http://www.

latentix.com) predicting the sugar release, chemical and

anatomical composition from the NIR spectra. The data

set on sugar release and chemical composition going into

the regressions are the average values of triplicate mea-

surements. Different methods for transforming NIR spec-

tra were tested including multiplicative signal correction,15

standard normal variate,16 and second order Savitzky-

Golay derivatives.17 Transforming with finite differences

(employing a smoothing window in a second-order poly-

nomial of five segments and a gap of three) was found

to give the highest percentage of explained variances in

most calibrations and was chosen as the preferred trans-

formation. All PLS models were validated using two

different cross-validation schemes: repeated random cross-

validation (RRCV) using five segments and 20 drawings,

and site-segmented cross-validation (SSCV) using two

segments defined by the two growing sites. RRCV thus

used the data set four times with 20 random samples left

out at a time and SSCV used the data of one site to predict

the data of the other site. Validation was used to deter-

mine the optimal number of components to be included

in the PLS calibration. The advantage of RRCV is that

the dataset is used extensively to achieve relatively precise

estimates of the performance of the calibrations. Devel-

oped calibrations, however, may be prone to problems with

transferability and SSCV was therefore applied to test that

the developed model could be transferred from one site

to another. The performance of PLS calibrations in the

cross-validations are reported as percentage of explained

variance of the validated Y matrix (R2) and the root mean

square error of cross-validation (RMSECV) is defined as:

R2 = 1−
∑

�Yi−Yi�pred��
2∑

�Yi−�Y �2 ∗100%

RMSECV =
√

1

n

n∑
i=1

�Yi�pred�−Yi�
2

where i is the individual sample and i(pred) is the indi-

vidual validated predicted sample out of the data set of n
samples (n= 79).

For evaluation of NIR calibrations, RMSECV can be

compared with the standard deviation of the laboratory

method (SDL) based on the laboratory replicates in the

reference method

SDL =
√∑n

i=1

∑m
j=1 �Xij −�Xj�

2

n∗m−1

where i is the individual laboratory replicate out of n repli-

cations (n = 3) and j is the individual sample out of m
samples (m= 79). When the ratio of RMSECV to SDL is

1 it indicates that NIR calibration is as good a predictor

as the actual measurements of the reference method itself,

i.e., that the uncertainty of NIR prediction is equal to the

uncertainty of the reference method.

3. RESULTS AND DISCUSSION

3.1. Calibrations and Predictions of Sugar Release

The raw data for chemical composition, sugar release after

pretreatment and hydrolysis, and anatomical distribution

of 79 wheat samples are listed in Table I.

The visible range of the NIR spectra from 400 nm to

1100 nm appeared noisy and using the full NIR spec-

tra resulted in negative values of explained variance with

SSCV validations. Thus the spectral range from 1100 nm

to 2498 nm was used for all calibrations. During the devel-

opment of the PLS regressions, six samples which were

extremes in cellulose content (four samples above 41%

cellulose and two samples below 34% cellulose), resulted

in calibrations of small or negative value in explained vari-

ance of predicted cellulose for both validations. As omit-

ting these six samples slightly improved the outcome of

other calibrations as well, we chose to remove them from

the final calibration set. The NIR calibrations predicting

the sugar release, chemical components and anatomical

fractions are shown in Table II. One calibration model

using the chemical components and anatomical distribu-

tions to predict the total sugar release was included.

Predictions of total sugar release from air-dried spectra

explained 56% of the variance when validated by RRCV

J. Biobased Mater. Bioenergy 4, 1–6, 2010 3
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Table I. Average chemical composition, average release of total sugar, and average anatomical distribution of 20 wheat straw cultivars grown at two

sites in duplicates. Stdev= Standard deviations (n= 40 for Abed site and n= 39 for Sejet site). Minimum and maximum values for the averages of the

cultivars are given. Cell= Cellulose, Hemi= Hemicellulose, TS g g−1 dm= release of total sugar (glucose plus xylose) in gram per gram dry matter

biomass.

Cell % Hemi % Lignin % Ash % TS g g−1 dm Leaves % Ears % Stem %

Abed Average 36�6 25�6 19�5 6�6 0�39 10�5 6�9 82�6

Stdev 1�6 1�3 0�6 0�9 0�02 2�4 2�3 3�7

Min 34�2 23�2 18�2 5�4 0�36 6�0 2�2 77�2

Max 40�8 28�6 20�4 8�8 0�43 13�3 10�7 89�6

Sejet Average 37�0 25�4 19�1 6�3 0�40 8�4 4�6 87�1

Stdev 1�4 0�9 0�5 0�7 0�02 1�6 1�8 2�5

Min 34�6 23�6 18�2 5�1 0�36 4�6 2�2 83�2

Max 38�8 26�7 20�9 7�6 0�42 11�5 7�5 92�9

and 46% of the variance when validated by SSCV, using

three PLS components models (Table II). When sugar

release was predicted from the oven-dried sample spectra,

the calibration resulting from the RRCV was more com-

plex (six PLS components), but with an ability to explain

62% of the variance. Oven-drying the samples was done,

because we suspected that variation in moisture content

of native samples would result in variations in NIR spec-

tra, which would be unrelated to sugar release and thus

lower the prediction capacity. The SSCV on oven-dried

samples, however, only had an ability to explain 40% of

the variance in sugar release with a three-component cali-

bration. Such a change in prediction capacity when using

site-segmented validation suggest that the six-component

model developed with RRCV was over-fitted and therefore

not very robust or transferable to other sites.

The calibration selected as the best for sugar release

was therefore the RRCV version predicting 56% of vari-

ance in sugar release from air-dried samples (Fig. 1).

The RMSECV of this model is 0.014 g g−1 dm, which

Table II. Calibration models using NIR spectra to predict total sugar release (TS), glucose release (Glu), xylose release (Xyl), chemical components

and anatomical fractions. One model uses chemical components and anatomical fractions to predict total sugar release. Models are presented with

number of optimal principal components (PC), root mean square error of cross-validation (RMSECV), percentage of explained Y variance (R2� for

spectra recorded on air-dried or oven-dried (80 �C) samples and validated with either repeated random cross validation (RRCV) or site segmented

cross validation (SSCV). All calibrations were done with 73 samples. In RRCV calibration set consist of 20 random samples repeated 5 times, while

SSCV has a calibration set of the samples from first Abed site (n= 40) then Sejet site (n= 39). Negative percentage of explained variance is a result

of unstable calibrations.

NIR air-dried NIR 80 �C

RRCV SSCV RRCV SSCV

X Y PC RMSECV R2 % PC RMSECV R2 % PC RMSECV R2 % PC RMSECV R2 %

NIR TS g g−1 dm 3 0.014 56 3 0.016 46 6 0.012 62 3 0.017 40

Chemistry + TS g g−1 dm 1 0.018 23 2 0.019 21 1 0.018 25 2 0.019 21

anatomy

NIR Glu g g−1 dm 3 0.010 38 1 0.013 −1 5 0.009 44 2 0.011 25

NIR Xyl g g−1 dm 4 0.005 68 3 0.006 73 5 0.005 69 5 0.005 76

NIR %cell 1 1.247 18 1 1.332 32 1 1.246 19 1 1.262 38

NIR %ash 9 0.230 94 2 0.559 71 12 0.171 96 1 1.262 −21

NIR %lignin 2 0.742 16 1 0.753 27 1 0.776 2 1 0.808 17

NIR %hemi 3 0.852 24 1 0.898 17 5 0.826 23 1 0.890 19

NIR %Leaves 4 1.755 61 6 2.747 34 5 1.775 52 3 1.950 65

NIR %Ears 3 2.811 20 1 4.276 −11 3 2.886 16 1 3.896 −2

NIR %Stem 4 3.413 40 1 6.399 −2 3 3.602 28 3 3.928 56

has to be compared with the SDL of the HTPPH assay

of 0.0129 g g−1 dm. Uncertainty of the NIR estimates

(RMSECV) were thus 1.09 times greater than the refer-

ence method and better predictions cannot be expected.

Range of sugar releases in this study was rather narrow

(averages of triplicates ranged from 0.36 to 0.43 g g−1 dm,

with a mean value of 0.39 g g−1 dm and a mean standard

deviation of 0.02 g g−1 dm, Table I) with small differences

to detect using the HTPPH assay, which has previously

been demonstrated to detect differences in yield of over

5%.3 As illustrated in Figure 1 the standard deviations for

the mean measured sugar releases, analyzed in triplicates

with HTPPH method, was large compared with the dif-

ferences between samples. The relatively low fraction of

explained variation in sugar release by the NIR calibra-

tion is therefore likely to be caused by a large uncertainty

in the HTPPH assay compared with the small differences

between samples. As analyses of sugar release, NIR spec-

tra and biochemical composition are not preformed on the

exact same sample, sampling issues could be important.

4 J. Biobased Mater. Bioenergy 4, 1–6, 2010
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Fig. 1. Plot of average measured total sugar release (n = 3, error bars

are standard deviations) in grams glucose plus xylose per gram dry mat-

ter biomass from 79 wheat samples versus total sugar release predicted

(cross-validated) for each sample by NIR calibration.

When performing triplicate measurements of each anal-

ysis, however, we do not see alarming data variations

to indicate sampling problems within our milled straw

samples. Isci et al.11 reported a standard error of cross-

validation of 2.0% theoretical maximum ethanol yield and

a standard error of laboratory results of 2.2% theoretical

maximum ethanol yield. Calibration thus had lower uncer-

tainty of NIR estimates than the uncertainty of laboratory

results, suggesting an over-fitted model. Although predic-

tion capacity for ethanol yield was high (correlation coef-

ficient between measured and predicted values was 0.96),

calibration was only preformed on 24 samples.11

With our data set we also had the opportunity to study

if measurements of chemical composition and anatomi-

cal fractions together would be able to predict the release

of total sugar. A model with chemical and anatomical

data as the X matrix and total sugar release as the Y
matrix explained up to 25% variance with a RMSECV

of 0.018 g g−1 dm (Table II). Results were only slightly

affected by validation method, indicating good transfer-

ability of the calibrations. Chemical and anatomical com-

position thus seems to be important for sugar release of

the samples (predicting 25% variance), but is a poorer pre-

dictor of total sugar release than NIR spectra (predicting

56% variance). NIR was a better predictor of the release

of xylose than the release of glucose (Table II), and cali-

brations for xylose were more robust in terms of transfer-

ability and oven-drying the samples.

3.2. Calibrations and Predictions of Chemical
Components

Complex models (9 and 12 PCs) could predict 94–96%

of the variance in ash content (Table II). Curiously, for

the ash predictions we observed a large difference in the

calibration performances between the two different valida-

tion methods (Table II). RMSECV is two to seven times

higher for site specific validation than for random valida-

tion, indicating that there are problems with the transfer

of the RRCV based calibration models from site to site

and therefore also outside the calibration set. When using

spectra from air-dried samples the prediction performance

after SSCV is lowered to 71%, whereas the spectra from

oven-dried samples have no prediction value for ash at

all. The fact that the RRCV model had a much better R2

value and used more components than the SSCV signi-

fied that the good performance of the RRCV was only

valid within the sites used for calibration and that the

model is not transferable to other sites. Oven-drying sam-

ples have apparently introduced a site variation in NIR

spectra, rendering spectra unable to predict ash content in

new samples from another site. Problems with transferabil-

ity of models predicting ash content of wheat straw was

also found by Bruun et al.18 Our results indicate that these

problems are accentuated when the samples are dried.

The percentage of explained variance for predictions of

cellulose, lignin, and hemicellulose evaluated by RRCV

and based on the spectra of the air-dried samples was

18%, 16%, and 24% with RMSECV of 1.2, 0.74, and

0.85 using one, two, and three components. Similar results

were obtained for the calibrations based on the oven-dried

samples except for the calibrations of the lignin content

which did not seem to work on dried samples. Compar-

ing RMSECV with the SDL for each component in the

acid-hydrolysis established that the uncertainty of the NIR

estimates were 1.5, 1.1, and 0.42 times that of the uncer-

tainty of the reference method. Predicting a greater per-

centage of variance in cellulose, lignin or hemicellulose

therefore requires better reference methods for samples

like ours with a relatively narrow span in chemical com-

position. As achieving much more accurate results from

the compositional analyses used as reference method is

unlikely, it also appears impossible to achieve a higher

fraction of explained variance when datasets with such a

narrow span in composition is used. The average values

of lignin, ash and carbohydrates measured with the NREL

method sum to approximately 88% of the dry weight of

samples (Table I) and attempting to close the mass bal-

ance further by including extraction would have changed

the composition of preprocessed biomass which we aim to

predict.

Lomborg et al.12 developed calibrations of glucan,

xylan, arabinan and lignin of wheat straw samples and

obtained squared correlation coefficients (r2) between

measured and predicted values of r2 = 0.83, 0.82, 0.77 and

0.72 and root mean square error of prediction, RMSEP,

of 0.60, 0.43, 0.12 and 0.38. It would seem that Lomborg

et al.12 were more successful in developing calibrations

than in the present study. The calibrations of Lomborg

et al.12 are however performed on a small dataset (44 sam-

ples with up to 18% outliers) and validated in a full-cross

validation, which is likely to result in more optimistic

J. Biobased Mater. Bioenergy 4, 1–6, 2010 5
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results than the cross-validations employed in the present

study. We have not been able to calculate the SDL of the

reference method for chemical compositions in Lomborg

et al.12

4. CONCLUSION

NIR could predict 56% of the variance in total sugar

release (glucose and xylose) with a RMSECV of

0.014 g g−1 dm. In terms of monomeric sugar release,

NIR was a better predictor of xylose release (max R2 =
76%) than of glucose release (max R2 = 44%). Percentage

of explained variance for predictions of cellulose, lignin,

hemicellulose, and ash was 18%, 16%, 24%, and 94%.

The relatively low percentage of explained variance in total

sugar release was mainly due to the uniformity between

samples, all consisting of wheat straw, which rendered

uncertainty of replicates in HTPPH assay to be large com-

pared with variance between samples. NIR spectroscopy

is therefore concluded to have potential as a method for

assessing sugar release of wheat straw. Predictions of

sugar release made from NIR calibrations was significantly

better than predictions made from measurements of chem-

ical and anatomical composition, which further accentu-

ates the usefulness of NIR spectroscopy. Predictions of

chemical components made from NIR calibrations were,

however, limited by the reference method on our uniform

sample-set. Despite successful prediction of ash content,

site-specific cross-validation indicated that there might be

problems with model transferability from site to site.
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