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Abstract

We present here an integrated analysis of structures and functions of genome-scale metabolic networks of 17 microorgan-
isms. Our structural analyses of these networks revealed that the node degree of each network, represented as a (simplified)
reaction network, follows a power-law distribution, and the clustering coefficient of each network has a positive correlation
with the corresponding node degree. Together, these properties imply that each network has exactly one large and densely
connected subnetwork or core. Further analyses revealed that each network consists of three functionally distinct subnet-
works: (i) a core, consisting of a large number of directed reaction cycles of enzymes for interconversions among inter-
mediate metabolites; (ii) a catabolic module, with a largely layered structure consisting of mostly catabolic enzymes;
(iii) an anabolic module with a similar structure consisting of virtually all anabolic genes; and (iv) the three subnetworks
cover on average �56, �31 and �13% of a network’s nodes across the 17 networks, respectively. Functional analyses suggest:
(1) cellular metabolic fluxes generally go from the catabolic module to the core for substantial interconversions, then the
flux directions to anabolic module appear to be determined by input nutrient levels as well as a set of precursors needed
for macromolecule syntheses; and (2) enzymes in each subnetwork have characteristic ranges of kinetic parameters,
suggesting optimized metabolic and regulatory relationships among the three subnetworks.

Key words: metabolic network; network organizing principle; scale-free network; clustering coefficient distribution; flux
balance analysis; functional modularity

Introduction

Metabolism refers to operation of chemical reaction chains es-
sential to sustaining life of a living organism, specifically for
converting nutrients to energy and biomolecules needed for cel-
lular housekeeping, stress response, proliferation and waste
processing [1, 2]. Each metabolic reaction is typically catalyzed

by one or several enzymes. Under different conditions, distinct
components of a metabolic system may be activated in re-
sponse to the perceived changes in intracellular or extracellular
environment [3, 4]. Currently, our understanding of the entire
metabolic system of a cell, even for the simplest bacterial cell,
remains largely at the level of individual metabolic pathways
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and coordinated activities among different pathways. We are
yet to understand how these pathways are functionally con-
nected to work as a system in a condition-dependent manner,
e.g. how different components of a metabolic system comple-
ment and compensate for each other under varying nutrient or
stress conditions.

Because of high intrinsic complexities of metabolic net-
works, genome-scale metabolic studies are generally conducted
through mathematical or computational analyses, by first rep-
resenting a complex reaction system as a metabolic network [5,
6], followed by topological analyses of such a network [7–10]
and/or flux analyses of the network via elementary flux mode
analysis [11, 12] coupled with flux balance analyses (FBAs) [13,
14] or more sophisticated analyses that use kinetic and/or
thermodynamic information as flux constraints [15, 16]. Three
approaches have been widely used to represent a metabolic net-
work: (a) metabolite networks that represent the metabolites as
nodes and reactions as edges [7, 8, 10]; (b) reaction networks
with reactions represented as nodes and metabolites as edges
[8, 9, 17]; and (c) bipartite networks, where both metabolites and
reactions are modeled as nodes and an edge connects a reaction
with a metabolite if the reaction involves the metabolite [18].

Various properties of the represented networks have been
studied. Two parameters, namely, node degree and clustering
coefficient [19, 20], have been often used to analyze the topo-
logical properties of such networks, just like other networks
such as social networks, Internet and electric power grids.
Previous studies have demonstrated that metabolite networks
generally have a hierarchical architecture; and their node de-
gree and clustering coefficient follow power-law distributions
[7]. It was noteworthy that some properties may not be easily
observable when a metabolic system is represented in other for-
mats [21, 22]. A challenging issue is: What information should
be represented in a metabolic network, which is essential to elu-
cidating the fundamental properties of metabolic systems, such
as the principles of their organization and operation? For ex-
ample, it has been noted that it may considerably alter the ‘basic’
properties of a network when currency metabolites such as ATP or
NAD/NADH, which are widely used in enzymatic reactions, are
treated as regular metabolites in a reaction network. Such altered
properties include, for example, whether the node degrees and
clustering coefficient of a network follows a power-law distribution
[22–24], whether a metabolic network forms one, two or more large
and densely connected subnetworks [9, 25, 26]. It is noteworthy
that such topological studies of metabolic networks start to offer
useful information to functional studies of microbial metabolism.
For example, metabolic fluxes derived using traditional FBAs tend
to suffer from low-accuracy issues, and the prediction accuracy
can be improved when constrained with growth condition-specific
network topology information [27, 28]. Specifically, it has been
demonstrated that an improved network topology design can im-
prove the yield of desired bio-product [29, 30].

In this article, we present a computational analysis of micro-
bial metabolic networks, aiming to better understand the organ-
izing and operating principles of microbial metabolism.
Specifically, we address the following issues: (i) representation
of a metabolic network as a simplified reaction network (SRN)
to reveal the fundamental structures of a metabolic network to
enable reliable flux analyses; (ii) derivation of key topological
properties of the reaction networks; and (iii) inference of how
such topological properties, coupled with empirical kinetic par-
ameters of enzymes in distinct subnetworks for optimal

functions of microbial metabolism. We anticipate that the in-
sights gained here will inform studies of microbial metabolism.

Results

Genome-scale metabolic networks of 17 microbial organisms:
15 bacterial, 1 archaeal and 1 single-cell eukaryotic organisms,
are selected and analyzed here (see ‘Materials and methods’
section) to derive key topological properties and apply the prop-
erties to functional analyses.

Elucidation of the organizing principles of
microbial metabolic networks
Network properties without considering currency
metabolites

In any metabolic system, some enzymes require currency me-
tabolites such as ATP, NADPH or Fe2þ, to be activated from their
inactive states. These currency metabolites are each involved in
large fractions of all the enzymatic reactions, hence making sig-
nificant contributions to the structure and the complexity of a
reaction network. Previous studies have suggested that inclu-
sion of currency metabolites in network topology analyses may
not be justified because of their ubiquitous nature in contribu-
ting to enzymatic reactions [31]. Based on this consideration, we
have removed 28 currency metabolites (see ‘Materials and
methods’ section, and Supplementary Figure S1A) from our net-
work representation. We refer to the resulting networks as cur-
rency metabolites-free networks.

We found the node degree x in each of the 17 currency
metabolites-free networks follows a power-law distribution y ¼ a
x�c with an average exponent c ¼1.623 (Figure 1A–E and
Supplementary Figure S2), which is lower than 2 < c < 3 for a
typical scale-free network [19, 32] and higher than the average
value 1.42 of less complete networks [8, 9, 17], with a being a posi-
tive constant. In addition, the average clustering coefficient across
the 17 networks is 0:166 (paired t-test, P< 1.14E-19), compared
with 0.348 of the original metabolic networks (without the
removal of currency metabolites, which are not scale-free)
(Figure 1F); and the average shortest path length within each net-
work is 7.18 (paired t-test, P< 1.26E-19), compared with 2.63 of the
original networks (Supplementary Tables S1 and S2). It is note-
worthy that the effect of removing currency metabolites on net-
work topology has been assessed previously [17], but their results
may not be accurate, as the networks used in the analyses tend to
be substantially less complete compared with the ones used here.

While the currency metabolite removal has given rise to re-
action networks with node degrees following power-law distri-
butions, similar to those of well-studied scale-free networks
such as the World Wide Web or protein–protein interaction net-
works [19, 32]; the exponent c values of scale-free networks are
considerably lower than the c values in the reaction networks.
This, coupled with the observation that the clustering
coefficient of each currency metabolites-free network under
consideration does not follow a power-law distribution and is
larger than those of Barabási–Albert (BA) scale-free networks
(Figure 1G), indicates that reaction networks have more densely
connected hub nodes than the previously studied scale-free
networks. Our further analysis revealed that the 17 networks each
consists of two large densely connected subnetworks as shown in
Figure 2 and Supplementary Figure S3, and the similar results were
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also observed according Chen et al. [25]. Our question is: What gives
rise to this characteristic of these currency metabolites-free
networks?

Further simplification of networks by collapsing parallel
reactions into one

Nam et al. [33] classified enzymes into generalists and special-
ists based on the number of reactions that an enzyme catalyzes.
Our analyses revealed that monomeric enzymes encoded in a
genome tend to catalyze more (distinct) reactions, specifically
10.81 reactions per monomeric enzyme compared to 4.25 reac-
tions per multimeric enzyme, which has two or more compo-
nent proteins on average (paired t-test, P< 1.12E-7) (Figure 2A–D
and Supplementary Figure S4 and Supplementary Table S4).
This observation suggests that reactions sharing similar sub-
strates and products have high probabilities being catalyzed by
monomeric enzymes than multimeric ones (Supplementary
Data S1). Such reactions are referred to as parallel reactions.
Interestingly, one of the two large, densely connected subnet-
works mentioned above predominantly consists of such parallel
reactions (Figure 2E–H and Supplementary Figure S3). By iden-
tifying all sets of parallel reactions and collapsing each into one
reaction (see ‘Materials and methods’ section), the complexity
of each of the 17 reaction networks is substantially reduced,
and the second largest densely connected subnetwork dis-
appears in all networks.

We have further observed that redundant edges will be
introduced when representing two consecutive reversible reac-
tions with one using the products of the other one as the sub-
strates in a reaction network. By identifying and removing
such redundant edges (see ‘Materials and methods’ section), we
have further reduced the complexity of the reaction networks.

Specifically, each reaction network now consists of only one large,
densely connected subnetwork (Figure 2I–L), named a SRN. The
average exponent c value of the node degree distribution increases
to 1.88 from 1.62 (paired t-test; P< 4.37E-5) for the currency
metabolites-free networks, and the average clustering coefficient
decreases to 0.109 from 0.166 (paired t-test; P< 9.31E-6), along with
the average shortest path having 7.33 nodes, increased from 7.18
as given in Figure 1A–F (and Supplementary Tables S2 and S4).

Network incompleteness and implications

It is noteworthy that the 17 metabolic networks studied here
are incomplete because of the limitation in current knowledge
of microbial metabolism. We have estimated the level of incom-
pleteness of each of the 17 networks and demonstrated how the
level of incompleteness may have affected the estimated par-
ameters above. Specifically, two ratios are used to estimate the
level of a network’s incompleteness: the ratio between the
number of metabolites and the number of reactions, repre-
sented as Rm

r , and the ratio between the number of identified
metabolic genes and the total number of genes encoded in each
genome, denoted as Rmg

tg . Note that the lower the Rm
r value,

the more complete a network is, and similarly, the higher
the Rmg

tg value, the more complete a network is (see ‘Materials
and methods’ section). Figure 3 shows the detailed relationship
between each ratio and the clustering coefficient as well as the
exponent c value in the corresponding power-law distribution
of the node degrees.

A lasso regression was conducted on c against the estimated
levels of incompleteness using the two ratios, across the 17 net-
works, to derive a quantitative estimate of how the level of a
network’s incompleteness affects the above estimated param-
eters of a network. A similar analysis was carried on clustering

Figure 1. Node degree and clustering coefficient statistics. (A–D) Power-law distribution of the currency metabolites-free reaction network (CFF) (red line) and the SRN

(blue line) of E. coli K-12, Klebsiella pneumoniae, Salmonella enterica serovar and Yersinia pestis, respectively. In each panel, the x-axis represents the log-transformed values

of node degrees, and the y-axis denotes the frequencies of each x-value. (E) Comparison between the exponent values in the power-law distributions of node degrees

in CFF versus SRN networks of the 17 species (n¼32; two-tailed Student’s t-test, P< 4.37E-5). (F) Comparison among clustering coefficients of the original reaction net-

works, CFFs and SRNs of the 17 species (n¼32; two-tailed Student’s t-test, *P<1.14E-19, **P<9.31E-6). (G) The clustering coefficient distribution of the E. coli K12 network

is considerably different from those of the BA scale-free networks (n¼3605; two-tailed Student’s t-test, *P<2.38E-7) [19], which have the same node degree distribution

with those of the SRN networks.
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coefficients against the estimated levels of network incomplete-
ness. The two models have R2¼ 0.695 (F test, P< 1.0E-4) and
R2¼ 0.628 (F test, P< 6.0E-4), respectively, where R2 is the squared
Pearson correlation coefficient. Based on the derived relation-
ships between c and the estimated level of incompleteness as
well as between the clustering coefficient and the level of incom-
pleteness, we have reestimated the two topological parameters
for the 17 reaction networks through extrapolating the models to
the corresponding complete networks; and obtained an average c

value 2.006 and an average clustering coefficient 0.085 across the
17 networks if they were complete (Table 1). Figure 3 shows that
the observed correlation between the level of a network’s com-
pleteness and the estimated topological parameters is because of
the intrinsic properties of the metabolic networks instead of the
simplification in our representations of the networks.

Understanding the structural organization of metabolic
networks based on clustering coefficients

Previous studies have found that the clustering coefficients
of metabolite networks follow power-law distributions [7].

In comparison, all the 17 reaction networks each display a posi-
tive correlation between the clustering coefficient and the node
degree (Figure 4A–D and Supplementary Figure S5), which is dis-
tinct from both the metabolite networks and the widely studied
BA scale-free networks, whose clustering coefficients are inde-
pendent of node degrees, as shown in Figures 1G and 4M.
Interestingly, similar observation has been made by other au-
thors in the Escherichia coli currency metabolites-free metabolite
network [22].

To understand the implication of this observation, we have
examined the relationship between the degree Dn of each node
Vn and the average degree bDm across all its neighboring nodes
Vm in each of the 17 networks, and derived the following rela-
tionship (see ‘Materials and methods’ section):

bDm � Cn Dn � 1ð Þ þ 1; (1)

where Cn is the clustering coefficient of Vn. Considering the
positive correlation between Cn and Dn, this result implies that
nodes with large degrees tend to have neighboring nodes with
large degrees, which is validated in Figure 4E–H and

Figure 2. Simplified reaction networks. (A–D) The number of reactions catalyzed by specific types of enzymes in E. coli K-12 (n¼1258, two-tailed Student’s t-test,

*P<1.27E-11), K. pneumoniae MGH (n¼1227, two-tailed Student’s t-test,*P<6.92E-5), S. enterica serovar (n¼1269, two-tailed Student’s t-test, *P<4.74E-11) and Y. pestis

(n¼813, two-tailed Student’s t-test, *P<1.19E-6), respectively, where GE is for the set of reactions each catalyzed by exactly one enzyme; MHGE is for reactions each

catalyzed by anyone in a group of homologous enzymes; MSGE for reactions each catalyzed by multiple enzymes; and MHSGE for reactions each catalyzed by any set

of multiple enzymes in a collection of multiple such sets. (E–H) Highlighted parallel reactions in the currency metabolites-free reaction network for each of the four

species. (I–L) SRN containing one large and dense subnetwork for each of the four species.
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Supplementary Figure S6, a property that is fundamentally dif-
ferent from that of BA scale-free networks (Figure 4M) [19, 32]. A
recent study suggests that the similar network property is be-
cause of the high levels of interconnections among the hub
nodes [34].

By integrating the above analyses, we posit that reaction
networks have the following organizing principles: (1) once cur-
rency metabolites, parallel and redundant reactions are simpli-
fied as the above, the resulting reaction networks each follow
a power-law distribution by its node degree, and have its

Figure 3. The exponent c in the node degree distribution and clustering coefficient versus network completeness. In each penal, a blue square is for a currency metabol-

ites-free network of the 17 species, and each red square is for an SRN, respectively. The value R2 is the squared Pearson correlation coefficient. (A) The c value versus

Rm
r . (B) The c value versus Rmg

tg . (C) The clustering coefficient versus Rm
r . (D) The clustering coefficient versus Rmg

tg : Note the x-axis of panels of A and C are ordered from

high to low values.

Table 1. Statistics about network completeness and our regression results for the 17 reaction networks, where c and �C are the exponent of the
power-law distribution and the average clustering coefficient of a reaction network, respectively

Organism Parameters Result

#Metabolites #Reactions Rm
r #Metabolic

genes
#All
genes

Rmg
tg #Predicted metabolic

reactions
c �C

Bacillus subtilis 168 991 1250 0.792 844 4454 0.189 2400 2.019 0.084
Clostridium ljungdahlii DSM 13528 698 785 0.889 637 4283 0.148 2400 2.013 0.084
Escherichia coli K-12 MG1655 1668 2382 0.7 1260 4400 0.286 2400 2.0063 0.084
Geobacter metallireducens GS-15 1109 1285 0.863 987 3260 0.302 2150 1.92 0.087
Helicobacter pylori 26695 485 554 0.875 339 1632 0.207 1000 1.88 0.103
Klebsiella pneumoniae MGH 78578 1658 2262 0.732 1229 5211 0.235 2900 2.19 0.077
Methanosarcina barkeri str. Fusaro 628 690 0.91 692 3679 0.188 2200 1.94 0.087
Pseudomonas putida KT2440 909 1056 0.86 746 5046 0.147 2700 2.12 0.08
Saccharomyces cerevisiae S288c 1226 1577 0.777 905 6275 0.009 3000 2.22 0.075
Salmonella enterica serovar Typhimurium 1802 2545 0.708 1271 4569 0.278 2500 2.049 0.082
Shigella boydii CDC 3083-94 1912 2592 0.737 1147 4244 0.27 2300 1.97 0.085
Shigella dysenteriae Sd197 1890 2540 0.744 1059 4294 0.246 2300 2.001 0.085
Shigella flexneri 2a 2457T 1914 2620 0.73 1180 4491 0.262 2440 2.027 0.083
Shigella flexneri 5 8401 1917 2622 0.731 1184 4491 0.263 2400 2.02 0.084
Staphylococcus aureus N315 665 743 0.89 619 2872 0.215 1600 1.89 0.084
Thermotoga maritima MSB8 570 652 0.874 482 1921 0.25 1040 1.82 0.1
Yersinia pestis CO92 1552 1961 0.791 815 4218 0.193 2400 2.012 0.084
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clustering coefficient positively correlated with the correspond-
ing node degree (log-transformed); and (2) each resulting reac-
tion network has exactly one large, densely connected
subnetwork, which is derived from the clustering coefficient
and shortest path lengths of the hub–nodes (Figure 4I–L and see
‘Materials and methods’ section).

Structural and functional characteristics of the
reaction networks

We have conducted a clustering analysis of nodes in each reac-
tion network based on the similarity of their shortest path
lengths (see ‘Materials and methods’ section) and found that
each of the 17 networks indeed has exactly one large densely
connected core, providing evidence to our predicted organizing
principle of reaction networks above.

The core accounts for 54–64% of the nodes in each of the 17 re-
action networks. Removal of the core reactions from each network
results in a sparsely connected subnetwork, referred to as the
peripheral subnetwork. Further analyses revealed that this subnet-
work naturally falls into two parts with one consisting of predom-
inantly nutrient-uptake genes and catabolic enzymes and the
other consisting of virtually all anabolic enzymes. These two mod-
ules are referred to as catabolic and anabolic module, respectively
(Figure 5A). The catabolic and anabolic modules consist of 18–34%
and 8–18% nodes of a network across the 17 networks, respectively
(Supplementary Table S5). Furthermore, each peripheral module
tends to form a largely linear structure with the edges of the cata-
bolic module generally directed toward the core and edges of the
anabolic module largely directed from the core. Figure 5B shows
the detailed information regarding the directions and the struc-
tures of the two peripheral modules of E. coli.

Figure 4. Clustering coefficient distribution revealing that each reaction network has one large, densely connected subnetwork. (A–D) The distribution of the clustering

coefficient of the reaction network versus log-transformed node degree for E. coli K-12, K. pneumoniae MGH, S. enterica serovar and Y. pestis, respectively. (E–H) The degree

Dn of node Vn versus the average degree bDmof its neighbors Vm in the reaction network (red dots) for each of the four species, along with blue dots representing the cor-

responding predicted average degree of the neighbors, where the x-axis represents all the nodes with a specific node degree, and the y-axis is the average node degree

across all the corresponding neighboring nodes. (I–L) The node degree versus the average shortest path length of nodes with a specific degree for the four species. (M) A

schematic illustration of a (simplified) reaction network versus a BA scale-free network.
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Detailed analyses revealed that each core consists of a large
number of directed simple and short cycles, ranging from 0.03
to 11.2 billion across the 17 networks, compared with the sim-
pler structures of the peripheral modules. Specifically, the aver-
age numbers of simple reaction cycles are �2000 in the
peripheral modules versus �1.5 billion in the core, and the aver-
age number of reversible reactions in the core and the periphery
are 142 and 61, respectively (paired t-test, P< 1.67E-17). In add-
ition, among the enzymatic reactions, 24, 12 and 9% are revers-
ible ones in the core, the catabolic and the anabolic modules,
respectively. The enzymes in each core tend to enrich a similar
set of metabolic functions across the 17 networks, for intercon-
version among a large variety of intermediate metabolites. In
addition, the core metabolites tend to have smaller numbers of
carbons than those in the peripheral modules, 17.45 versus
25.49 carbons per carbon-containing chain (paired t-test,
P< 4.32E-10) (Supplementary Table S6), which is consistent with
the functional roles of the three module types.

Metabolic fluxes in reaction networks

Here, we study how insights gained above can guide metabolic
flux analyses. We focus our study on E. coli K12, as it has the
most complete metabolic network and a large number of gene
expression datasets collected under a variety of conditions.

Kinetic parameters of enzymes in the three
subnetworks

We have examined the distributions of two important kinetic
parameters: KM (Michaelis–Menten constant) and Kcat (turnover
number) of enzymes plus Kcat/KM (enzyme efficiency) (see
‘Materials and methods’ section) in each of the three subnet-
works. The average Kcat values are 522, 494 and 298 s�1 for the
core, the catabolic and the anabolic modules [one-way analysis

of variance (ANOVA), P< 0.023; n¼ 455], respectively, and the
average KM values are 90, 100 and 114 mM�1 (one-way ANOVA,
P< 0.014; n¼ 263), respectively. We also found that Kcat/KM values
are considerably higher in the core than those in the peripheral
modules (Supplementary Table S7), indicating that the reaction
efficiency tends to be higher in the core than those in the periph-
eral modules, 1.5 and 3 times higher on average, respectively.

Characteristics of gene expression patterns in the three
subnetworks

We have analyzed the gene expression data of E. coli K12 col-
lected under 94 nutrient conditions, which are grouped into
three nutrition levels: poor (M9 medium), medium (MOPS me-
dium) and rich [Luria-Bertani (LB) broth] [35] (Supplementary
Data S2), to examine how the gene expression profile of each
subnetwork changes treated with the three nutrition levels.

For each nutrient level, we profiled the expression levels of
genes in each subnetwork and analyzed the expression profiles
of the core versus the peripherals using information entropy
[36]. Specifically, the expression values of each sample within
each module-specific gene set are considered as a distribution
to estimate its information entropy (see ‘Materials and meth-
ods’ section). Hence, each of the three modules has an entropy
value for each nutrient condition, and each data point in the
three-dimension space of Figure 6A and B shows the three
entropies of the three submodules for the E. coli metabolic net-
work under each growth (nutrient) condition. The entropy val-
ues for the core form three distinct clusters corresponding to
the three nutrient levels, while neither of the peripherals shows
such specificity across three nutrient levels (Figure 6A and B
and Supplementary Table S8). These results suggest that, on a
global scale, the expression profiles of the core genes have iden-
tifiable states in response to nutrient changes, while the
peripherial genes do not have this property.

Figure 5. The structure of the reaction network for E. coli K12. (A) The reaction network for E. coli K-12 MG1655 consists of three subnetworks: the core, the catabolic and

the anabolic modules, where the edges are color-coded according to the direction of each reaction linking two neighboring modules, and the nodes are also color-coded

according to the reaction type, i.e. catabolic or anabolic reaction. (B) A layout of the peripheral module showing a layered structure from top down, where each simple

reaction cycle is collapsed into one yellow node.
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Metabolic flux patterns with different nutrients

We have also examined how the metabolic fluxes, calculated
using FBA to maximize the growth rate, change across different
nutrition levels in the three subnetworks (see ‘Materials and
methods’ section). Nonzero flux reactions are identified using
FBA (the COBRA Toolbox [37]), which maximize the growth rate.
As shown in Figure 6C–E, the total number of nonzero flux reac-
tions in the core goes down as the nutrition level goes up. In
contrast, the number of nonzero flux reactions in each periph-
eral module goes up with the increasing level of nutrition
(Supplementary Table S9).

These observations suggest: there may exist a relatively sta-
ble pool of precursors for macromolecular syntheses and cell
division. Specifically, the number of precursors needed to be
synthesized in the core goes down as the nutrition level goes
up, namely, the nutrient contains more precursor molecules. In
comparison, the activities in the catabolic module go up as the
composition of the richer nutrient becomes more complex. For
the anabolic module, its increased activity level with the
increasing nutrition level reflects the increased overall activity
of the host cells, including metabolic activities enabled by the
increased supplies of the basic building blocks and energy.

Further support for the above proposition comes from metab-
olites present in the three subnetworks across the three condi-
tions. We noted that all the 272 metabolites synthesized in the
core under the rich nutrient are a subset of all the 354 metabol-
ites synthesized under the poor nutrient, which are derived
based on the nonzero flux reactions. Out of the synthesized

metabolites under the poor nutrient, 12 are condition-specific
precursor metabolites directly used by the anabolic module for
macromolecular syntheses (Supplementary Table S10).

Based on the above analyses, we conclude: the peripheral mod-
ules can sense and respond to changes in the environment by
altering their gene expression patterns and metabolic fluxes, while
the core seems to play a buffering role to maintain their overall ex-
pression levels stable and adjust their reactions to compensate for
what the nutrient does not provide in support of cell growth and
housekeeping. Overall, metabolic fluxes go from one end of the
catabolic module to the other, and then enter the core where sub-
stantial synthesis activities will take place to produce precursors
needed for macromolecular synthesis in the anabolic module.

Materials and methods
Metabolic networks

Genome-scale microbial metabolic networks were obtained
from the BIGG database [38]. The following criteria are used in
our selection: for each species in BIGG, we selected one most
complete metabolic network, which gives rise to 17 metabolic
networks of 17 species. Table 2 gives the list of the names of the
organisms along with the relevant information of each network.

Construction of a reaction network

For each retrieved metabolic network, we constructed a reaction
network using a well-established procedure [9]. Specifically,

Figure 6. FBA and entropy of gene expression profiles. (A and B) Entropy distribution for gene expression profiles of the three subnetworks when treated with three

types of nutrients. (A)The front view shows the nutrient-specific entropy distribution of genes in the core; the side view gives nutrient-specific entropy distribution of

genes in the catabolic module; and the top view displays the nutrient-specific entropy distribution of genes in the anabolic module. (B) The three views are defined

similarly but with catabolic genes in the front, core genes on the side and anabolic genes in the top. (C–E) Boxplots of the numbers of the activated reactions for the

catabolic module (n¼41, one-way ANOVA, P<9.18E-3; multiple comparison using Tukey’s post hoc test, *P¼0.59 no significant, **P<0.01 and ***P<0.04), core (n¼41,

one-way ANOVA, P<6.52E-13; multiple comparison using Tukey’s post hoc test, *P¼0.041, **P< 2.51E-5 and ***P<1.7E-3) and anabolic module(n¼41, one-way ANOVA,

P<8.74E-10; multiple comparison using Tukey’s post hoc test, *P¼0.012, **P<0.01 and ***P<1.3E-5), when treated with three different types of nutrient.
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each reaction in the target metabolic network is represented as
a node and each metabolite as an edge. Each edge connects two
reaction-representing nodes with its direction going from a
metabolite-producing reaction to a metabolite-consuming
reaction.

Simplification of metabolic networks

In total, 28 such molecular species, for the simplicity of discus-
sion, all referred to as currency metabolites, are removed from
our structural analysis: ACP, ADP, ATP, AMP, cMP, CO2, COA,
CTP, FADH2, Fe2þ, GMP, GDP, GTP, Hþ, H2O, MQN8, MQL8, NAD,
NADH, NADP, NADPH, O2, Pi, PPI, Q8, Q8H2, UDP and UMP.

Network parameters

The following network parameters are calculated and used in
our analysis. The average length of the shortest path and the
average clustering coefficient in each reaction network were
calculated using the methods given in [39]. Specifically, the
average shortest path length is calculated as:

bl ¼PN
i¼1 li
N

; (2)

where li is the length of the shortest directed path starting from
node Vi calculated using Dijkstra’s algorithm, and N is the num-
ber of nodes in the network. The clustering coefficient of node
Vi is defined as:

Ci ¼
Ei

ki ki � 1ð Þ=2
; (3)

where ki is the degree of node Vi, and Ei is the number of edges
connecting the immediate neighbors of Vi. Then, the avervage
clustering coefficient bC of the network is:

bC ¼ 1
N

XN

i¼1

Ci: (4)

A scale-free network is a network whose node degree k fol-
lows a power-law distribution [32]:

p kð Þ � ak�c; (5)

with c being a positive value and a is a constant. To assess if p kð Þ
may follow a power-law distribution, we fit the data to the fol-
lowing log-transformed equation using a linear regression:
log p kð Þð Þ ¼ �clog kð Þ þ log að Þ.

Merging parallel reactions

Enzymes are classified into four groups based on the numbers
of homologs and component proteins (monomeric or multi-
meric enzyme) that an enzyme has encoded in the host gen-
ome: (1) monomeric enzymes without homologs, denoted as
GE; (2) monomeric enzymes with at least one homolog, termed
MHGE; (3) multimeric enzymes without homolog, marked as
MSGE; and (4) multimeric enzymes with at least one homolog,
named MHSGE. We noted that each GE or MHGE enzyme cata-
lyzes more reactions than each MSGE or MHSGE enzyme on
average (Figure 2A–D and Supplementary Figure S4; and
Supplementary Table S3), where the GE and MHGE enzymes are
identified based on [33], and the reactions catalyzed by such en-
zymes tend to have similar substrates or products, called paral-
lel reactions. To remove redundant information because of
parallel reactions, each group of parallel reactions is collapsed
into one reaction by combining the substrates on one side of the
reaction and the products on the other side (Supplementary
Figure S1B).

Eliminating redundant edges

Consider any two consecutive reversible reactions with one
using the products of the other one as the substrates, which
may result in redundant edges when constructing a reaction
network, namely: if the product of a reaction is the substrate of
another reaction, then an edge directing from the first reaction
to the second will be included in the reaction network. An ex-
ample of such a case is shown in Supplementary Figure S1C,
along with how such redundant edges are removed.

Table 2. Information of 17 metabolic networks used in this study

Organism BIGG ID #Metabolites #Reactions #Genes

Bacillus subtilis 168 iYO844 991 1250 844
Clostridium ljungdahlii DSM 13528 iHN637 698 785 637
Escherichia coli K-12 MG1655 iAF1260 1688 2382 1261
Geobacter metallireducens GS-15 iAF987 1109 1285 987
Helicobacter pylori 26695 iIT341 485 554 339
Klebsiella pneumoniae MGH 78578 iYL1228 1658 2262 1229
Methanosarcina barkeri Fusaro iAF692 628 690 692
Pseudomonas putida KT2440 iJN746 909 1056 746
Saccharomyces cerevisiae S288c iMM904 1226 1577 905
Salmonella enterica serovar Typhimurium STM_v1_0 1800 2545 1271
Shigella boydii CDC 3083-94 iSbBS512_1146 1912 2592 1147
Shigella dysenteriae Sd197 iSDY_1059 1890 2540 1059
Shigella flexneri 2a 2457T iS_1188 1914 2620 1188
Shigella flexneri 5 8401 iSFV_1184 1917 2622 1184
Staphylococcus aureus N315 iSB619 655 743 619
Thermotoga maritima MSB8 iLJ478 570 652 482
Yersinia pestis CO92 iPC815 1552 1961 815
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Estimating the level of network completeness and
implication to topological parameter estimation

We have assessed the level of completeness of each given
metabolic network using four parameters of the network: the
numbers of metabolites, reactions, metabolic genes and
all genes encoded in the host genome. We have observed that
(i) the smaller the ratio Rm

r between the number of metabol-
ites Nm and the number of reactions Nr, the more complete
the network, the higher the exponent c value in the power-
law distribution of the network’s node degrees and the
smaller the clustering coefficient will be; and (ii) the
same holds for the three above properties with the increase
of the ratio Rmg

tg between the number of metabolic genes
Nmg and the total number of genes Ntg encoded in the
genome.

To ensure that the above observation is statistically sound,
we conducted a sampling analysis of the E. coli K12 network (E.
coli iAF1260), one of the most complete metabolic network
among all known such networks, to examine if the above obser-
vations are indeed correct, when some portions of the network
are randomly removed. Specifically, our sampling process aims
to mimic the following insight gained through increasingly
complete models of E. coli. A few distinct metabolic subsystems
have been identified and integrated into E. coli metabolic models
at different times, namely, the e_coli_core, iJR904, iAF1260 and
iJO1366 models, each of them being more complete than the
preceding one(s), according to the identified complementary
subsystems, i.e. the central metabolism, the biosynthesis re-
actions (amino acid metabolism and nucleotide metabolism),
exchange reactions and species-specific reactions [40–42],
respectively.

We have conducted a simulation analysis by randomly
removing reactions from the network but with different proba-
bilities for reactions in the different subsystems defined above.
Specifically, the exchange reactions and biosynthesis reactions
were given higher probabilities than the reactions in the central
metabolism. A roulette-wheel method was used to select reac-
tions for removal [43]. Supplementary Figure S7 shows the de-
tailed information of the sampled networks of the E. coli iAF1260
model and the associated predictions of the two topological par-
ameters. From the figure, we can see that our observation is
correct.

A regression analysis was conducted by regressing the c

value against the Rm
r and Rmg

tg values for the 17 metabolic net-
works. Specifically, a lasso regression analysis was conducted
to optimize the following:

min c�
X4

i¼1

bixi

 !2

þ kjjbjj1 (6)

where x1 is Nr, x2 is Rm
r , x3 is Ntg and x4 is Rmg

tg , and kjjbjj1 is an L1
regularizer. This optimization problem is solved using the ma-
chine learning toolbox in MATLAB 2014a. The following empir-
ical information is used when estimating the xi values: �30% of
the genes in a microbial genome encode metabolic enzymes,
and the number of enzyme-catalyzed reactions should be larger
than the number of distinct metabolites [38].

To exclude possible correlations among the input variables,
we have used the Bayesian information criterion (BIC) [44]
to select independent variables from the four inputs by
repeatedly setting the k values and estimating the BIC for each
k. The k value with the minimal BIC is selected. Supplementary

Table S11 shows the variables Nr, Rm
r and Rmg

tg for the selected
model. The detailed regression model is as follows:

c ¼ 0:35x1 þ 1:92x2 � 0:48x4: (7)

A similar regression analysis is conducted on the clustering
coefficient C with Supplementary Table S12 giving the selected
variables and the following being the regression model:

C ¼ �0:013x1 þ 0:163x2: (8)

The first model achieves an average R2¼ 0.695 (F statistic 19.21
and P< 1.0E-4), and the second model achieves an average
R2 ¼ 0.628 (F statistic 18.35 and P< 6.0E-4) across the 17 networks.

The average degree of neighboring nodes derived from
the clustering coefficients

Given a node, Vn, with node degree Dn and clustering coefficient
Cn, the average degree bDm of its neighboring nodes Vm can be
estimated as follows:

bDm �
2En þ Dn

Dn
¼ CnDn Dn � 1ð Þ þ Dn

Dn
¼ Cn Dn � 1ð Þ þ 1; (9)

where En is the number of edges among the neighboring nodes
of Vn. An example is used to illustrate how this inequality is
derived (Supplementary Figure S8).

Inference of a unique large and dense subnetwork

Here, we demonstrated that there is only one large, densely con-
nected substructure, also called the giant component [20, 39], in
a reaction network of N nodes satisfying the properties of node
degree and clustering coefficient discussed above. Considering a
node Vn with node degree Dn, the neighboring node Vm of
Vn with an average degree bDm has the following property:

bDm � Cn Dn � 1ð Þ þ 1: (10)

We assume, without loss of generality, that there are two in-
dependent giant components, which have the same topology and
size in this reaction network; hence, the largest hub node Vmax

n in
each giant component has Dmax

n neighboring nodes with an aver-

age node degree bDmax
m . This result means that there are 2Dmax

n

nodes with an average degree bDmax
m or larger for the given reaction

network including two independent giant components, in other

words, the average degree bDtop
2Dmax

n
of the top 2Dmax

n largest-degree

nodes should be larger than bDmax
m for this reaction network, which

is the necessary condition to form two independent giant compo-
nents, and we know the number of nodes with an average node

degree bDa ¼ b is monotonously exponential decreased along with
the increment of b in a scale-free network, so the question of
whether existing two independent giant components in a reac-
tion network is converted as whether the average node degreebDtop

2Dmax
n

of the top 2Dmax
n largest-degree nodes is larger than the ex-

pected node degree bDmax
m to form two independent giant compo-

nents. Systematic examination of all the 17 reaction networks be
given in Supplementary Table 13 and revealed that almost of re-

action networks are satisfied the inequation of bDtop
2Dmax

n
� bDmax

m .

Furthermore, we noted that the shortest-path length for in-
dividual nodes tends to decrease rapidly with the increase of
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the node degrees across all 17 networks, and the distance
(the number of edges) between any hub–node and any of its leaf
node is most 4. Under the assumption that all hub–nodes are
reachable by directed pathways (Figure 4I–L and Supplementary
Figure S9), we can show that each network has one large (cover-
ing at least 25%) dense subnetwork. Supplementary Figure S10
provides additional information in support of this assumption.

Identifying metabolic network modules

We conducted a hierarchical clustering analysis of nodes in
each of 17 reaction networks based on the similarity derived
from the shortest-path lengths [45], as we have inferred there is
a unique large and dense subnetwork in each metabolic net-
work in the last section. We found that that hub–nodes tend to
connect with each other, and the short path lengths between
the hub–nodes are small (<4 for most metabolic networks)
(Supplementary Figure S9). So, the core module of metabolic
network can be identified as follows: the similarity measures
for the clustering analysis are considered as the shortest-path
lengths, and the distance criterion for splitting the hierarchical
clustering tree was set to 4. Then, removal of the core structure
from each reaction network leads to two substantially con-
nected substructures, as most of the upstream nodes of the re-
maining subnetwork are catabolic reactions, and almost all
downstream nodes are anabolic reactions based on the topo-
logical order of the remaining subnetwork. Therefore, we have
three subnetworks, which correspond to the three well-known
modules of metabolic networks.

Kinetic parameters of E. coli K12 enzymes

Kinetic rate constants KM and Kcat for each enzyme in E. coli K12
are collected from the Brenda database under the normal
growth condition [46], i.e. no mutation, pH 7.0 and 37�C. Missing
data are further collected from the EcoCyc database [47].
Overall, 1049 enzymes have KM values and 638 have Kcat values
(Supplementary Data S3).

Gene expression data for E. coli K12

Gene expression data for E. coli K12 are retrieved from the M3D
database [35]. Specifically, data were collected on E. coli K12 in
exponential growth with pH 7.0, 37�C and aerobically in three
nutrients: M9, MOPS and LB, totaling 27, 27 and 40 samples for
the three nutrient types, respectively.

Entropy-based state analysis

Gene expression data collected on E. coli K12 when treated with
the three nutrient types were represented as a matrix with rows
for genes and columns for samples. In addition, the matrix is
organized in such a way that genes in each of the three subnet-
works (core, catabolic and anabolic modules) are grouped together,
so the matrix falls naturally into three submatrices. Consider a
sample (a column of the matrix) and one specific subnetwork with
n genes having m identified expression values. We define a prob-
ability distribution p(x) with x being the variable over the m expres-
sion values of the n genes. The entropy of p(x) is defined as:

H xð Þ ¼
Xm
i¼1

p xið Þlog
1

p xið Þ

� �
; (11)

where pðxiÞ is the probability of x having the expression value xi.
It is noteworthy that a uniform distribution tends to have a

large entropy, and a unimodal profile tends to have a small
entropy.

FBA under a given condition

In FBAs, each metabolic network is represented as a stoichio-
metric matrix with rows representing metabolites and columns
for reactions. Specifically, the condition-specific stoichiometric
matrix is constructed by extracting the active reactions from
the given stoichiometric matrix for each growth condition,
where an active reaction refers to a reaction catalyzed by an en-
zyme whose gene expression level is above a specified thresh-
old [37]. We seek to find steady-state fluxes in the network that
maximizes the growth rate.

max cv

s:t: Sv ¼ 0; v � 0
; (12)

where S is the stoichiometric matrix; v is the flux value of each
reaction; and c is a binary vector with 1 representing reactions
that give rise to the maximum objective function, and 0 for the
other reactions. This linear programming problem is solved
using an existing LP solver of Cobra Toolbox [37].

Statistical analyses

Statistical analysis was carried out using Matlab R2014a.
ANOVA was used to identify significant variance of data set
with multiple samples. P-value � 0.05 was used as the cutoff in
selecting a statistical significant test.

Data availability

The Matlab codes used to conduct all the analyses in this study,
along with all the data used and generated are available at:
https://github.com/lgyzngc/metabolic-network-analysis.

Discussion

While substantial amount of work has been conducted in both
structural and functional analyses of metabolic networks, there
is a clear disconnection between the two [48–50]. Consequently,
different and sometimes conflicting results have been derived
regarding the fundamental properties of metabolic networks,
depending on specific representation schemes [22, 24, 25].

Our discovery that microbial reaction networks, after simpli-
fication of certain nonessential elements, follow a power-law
distribution by their node degree and have positive correlation
between their clustering coefficient and the corresponding node
degree (after log-transformation) in the same network has led
to an important realization: (microbial) reaction networks each
consist of one large, densely connected core plus two peripheral
modules: one responsible for breaking down nutrients to basic
metabolites and one for macromolecular syntheses from a set
of possibly predefined precursors. This is derived through an
application of the topological properties of metabolic networks,
which confirms the previously observed bow tie structure of
metabolic networks [26, 51]. It should be noted that the bow tie
structure of metabolic networks was proposed only as a prelim-
inary concept to explain the functional modules of metabolic
network. All the implementation was derived from manual yet
small- or local-scale precise annotation of metabolic system
or functional analysis of metabolic pathways, rather than using
the topological properties of metabolic network. To our
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knowledge, this is the first genome-scale functional compatibil-
ity model of structure decomposition of microbial metabolic
networks by inferring the topological organizing principles.

Functional analyses of the three subnetworks led to the dis-
covery that both peripheral modules have simple, layered struc-
tures with a clear flux directionality, while for the core, the flux
directionality is nutrient-dependent, as many of the reactions
in the core are reversible and/or form reaction cycles. Based on
our results, we posit that (i) the core synthesizes a set of precur-
sors used for macromolecule synthesis by the anabolic module;
and (ii) it is the insufficient precursors needed for cell division,
in the nutrient that determine the directionalities of many of
the reversible reactions in the core [52], i.e. the core is driven to
synthesize all the insufficient precursors needed for cell growth
and division.

Our model is consistent with a number of recent large-scale
metabolomic studies of E. coli. In a study that has reported
3800þmutants of E. coli each having one deletion of a distinct
gene and intracellular concentrations of 7000þmetabolites in
each mutant, the authors reported that concentrations of most
metabolites produced by the core subnetwork (consisting of the
pentose phosphate pathway, TCA cycle, nucleotide salvage
pathway, oxidative phosphorylation, nitrogen metabolism
among a few other essential pathways) are stable against the
gene deletions of the corresponding pathway, while the concen-
trations of metabolites in the amino acid metabolism, which
fall into the anabolic subnetwork in our analyses, tend to
change with deletion of the genes of the relevant pathway [53].
This is clearly consistent with our model and prediction. A
study recently reported that during the growing phase, the
intracellular concentrations of �67% of metabolites in E. coli are
equal to or larger than the Km values of the relevant enzymes
[54], and the enzyme expression levels of the carbohydrate me-
tabolism (as part of our core) decrease with the increase of the
growth rate, while enzyme expression levels in the amino acid
biosynthesis (anabolic module) have the opposite behavior [55].
Those observations are consistent with our prediction.

The above analyses may explain two puzzling issues: (1)
why the number of elementary flux modes is so large to be prac-
tically solvable for any sizeable metabolic networks [12]; and (2)
why FBAs generally do not produce accurate estimates of the
actual fluxes in a metabolic system, as such analyses generally
do not take into consideration the nonlinear topology of core
constituents of the reaction cycles and reversible reactions and
the gap between what the nutrients offer and what are needed
for cell growth and division. For example, the tricarboxylic acid
(TCA) cycle, which provides electrons to the respiratory chain
for energy production and precursor metabolites for macromol-
ecule biosynthesis, is a self-balancing reaction cycle in terms of
its substrates. Hence, its reactions should have large flux.
However, maximizing the growth rates of an organism may
tend to assign zero-fluxes to some TCA reactions by FBA if it
does not constrain the amount and types of the substrates into
the TCA cycle, as such metabolites can be supplied from the
extracellular environment or other pathways [56].

The new insights gained in this study can not only explain
puzzling issues as shown above but also provide useful guiding
information for strain optimization needed for bioengineering.
For example, in a recent study, four metabolic reactions for the
synthesis of cytosolic acetyl-coA in Saccharomyces cerevisiae
were integrated by inserting the genes into the genome, so that
they become part of the central carbon metabolism [30].

We anticipate that this study will lead to new types of struc-
tural and functional analyses of metabolic networks through

considering both structure and function of a metabolic network
at the same time, hence possibly leading to more reliable and
more useful network topology-related analyses. It is noteworthy
that the predicted metabolic network models may be still po-
tentially incomplete, as the complete metabolic pathways have
not been fully elucidated experimentally, so the experimental
validation for the inferred network parameters is a further im-
provement of this work.

Key Points

• The inconsistencies regarding properties of the reaction
networks as reported by different authors are largely
because of improper representations of different com-
ponents of a network as well as because of the incom-
pleteness of the reaction networks studied.

• Our analyses revealed that each of the reaction net-
works studied here can be naturally decomposed into
three subnetworks each with specific biological func-
tions and structural characteristics: a core covering ma-
jority of the enzymatic reactions encoded in the host
genome and having highly interconnected edges, which
provide robustness of the core, and two sparsely con-
nected subnetworks, one mainly responsible for cata-
bolic reactions and the other for anabolic reactions.

• Metabolic fluxes generally go from the catabolic subnet-
work to the core where substantial interconversions
occur with the flux directions determined by nutrients,
and then to the anabolic subnetwork.

• Each subnetwork has a distinct set of enzyme kinetic par-
ameters highly consistent with its designed functions.

• Our structural and functional predictions of metabolic
networks are supported by gene expression data
under growth conditions of E. coli. Such models can in-
form pathogenic metabolomics and systems biological
studies.

Supplementary data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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