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Abstract: Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. 
These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites 
(TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regula-
tor half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis 
that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of 
the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional 
activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better 
than full TFBS quality or location.
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Background
The ability of bacteria to adjust gene activity due to 
variations of environmental stimuli is a critical ele-
ment of efficient bacterial adaptation. The binding 
of transcription factors (TFs) to their cognate sites in 
promoters is the most common cellular mechanism for 
regulating gene expression in response to stimuli. This 
regulatory mechanism can induce, using the same TF, 
a variety of transcriptional activity across the genome. 
Many global regulators, including CRP (cAMP 
Receptor Protein), ArcA, and FNR, can simultane-
ously promote or suppress transcriptional activity on 
dozens or hundreds of genes. It is believed that differ-
ent transcriptional activity results from differences in 
promoter characteristics, such as the location of tran-
scription factor binding sites (TFBSs), their orientation, 
or their similarity to TFBS consensus sequences.1–3 
The molecular mechanisms underlying this quantita-
tive effect are not fully understood. Although a variety 
of bioinformatic and empirical approaches to TFBS 
identification and influence, applicable to prokaryotes, 
have been developed,4–9 models do not yet exist that 
quantify the level of gene expression due to character-
istics of a TFBS in a prokaryotic gene promoter.

In lower eukaryotes, progress in large-scale quan-
titative modeling of gene expression level based on 
computationally predicted TFBSs has been made. 
These models take into consideration not simply the 
presence or absence of the TFBS in the gene pro-
moter, but also the number of TFBSs. This modeling 
approach has been applied to establish relationships 
between mRNA expression levels and TFBS map-
pings for over a hundred different conditions and dif-
ferent TFs in the yeast Saccharomyces cerevisiae.10–12 
The approach is based on Jacob and Monod’s model 
of transcriptional regulation, which assumes that the 
log-transformed expression level is the sum of the 
products of the binding strength of each motif and 
the activity of its corresponding TF,13 ie, the effect of 
the TF on gene transcription linearly increases with the 
number of TFBSs. Recent advances in understanding 
of gene regulation in eukaryotes confirms the effect 
of BS copy numbers on the gene transcriptional activ-
ity even at locations distant from the gene promoter.14 
The effect of the number of BSs on gene expression 
has been also reported in bacteria. Evidence in support 
of this effect comes from studies of CRP, a global 
regulator involved in switching between aerobic and 

anaerobic metabolism in Escherichia coli (E. coli). 
CRP can exert a transcriptional effect when binding 
to DNA at positions that are distant from the RNA 
polymerase BS.15 Additionally, the binding of two 
CRP molecules to different BSs in a gene promoter 
increases the level of gene transcription. Specifically, 
transcription initiation by CRP at either a class I or a 
class II promoter can be enhanced by a second CRP 
molecule bound upstream.16 Thus, an additional BS 
in a bacterial gene promoter may increase not only 
the probability of TF binding, but it may also enhance 
transcription initiation at the promoter.

Modeling the effect of the number of BSs on gene 
transcription in prokaryotes is complicated by the 
greater length of bacterial TFBSs relative to eukary-
otic TFBSs. Genome mapping of TFBSs in eukaryotes 
indicates that TFs can bind short stretches of DNA, 
regulatory motifs, in gene promoters to modulate tran-
scription,17 and that one promoter may have several 
BSs for the same TF. An examination of sets of exper-
imentally verified18 and computationally predicted19 
TFBSs in yeast suggests an average size of eight for 
eukaryotic TFBSs. Consensus sequences of bacterial 
TFBSs are comparatively long. The average bind-
ing site in RegulonDB has 17 nucleotides, more than 
twice as many as the average eukaryotic BS. Many 
bacterial transcription factors are dimeric proteins, 
and it is generally believed that their TFBSs must 
be palindromic or symmetrical. For CRP, the most 
studied bacterial TF, the TFBS consensus sequence 
(5 -AAATGTGATCTAGATCACATTT-3 ) is palin-
dromic with the consensus half site 5 -A1 A2 A3T4G5T6 
G7A8T9C10T11. As a rule, however, position weights of 
the half sites are not equal, which suggests a domi-
nating transcriptional effect for the half with greater 
weight and an auxiliary effect for the other half. It is 
also known that the core three or four bases of the half 
BS consensus sequence are usually the most conserved 
and the most important for TF binding. In the case of 
CRP, for example, the protein makes direct contact 
only with base pairs G:C5, G:C7, and A:T8 in the core 
motif T4G5T6G7A8.

20,21 The flanking bases are recog-
nized indirectly. Indeed, all experimentally confirmed 
CRP binding sites in the E. coli genome, listed in either 
RegulonDB22 or in EcoCyc,23 have mismatches when 
compared to the consensus sequence. In fact, a perfect 
match between a TFBS and the consensus sequence 
may not be biologically useful, since it would result 
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in a very strong affinity. In E. coli, for example, CRP 
binds very tightly (with long dissociation time) to 
BSs that closely correspond to the consensus.24 These 
observations suggest that only one monomer of the 
CRP dimers may bind to short sequences that match 
a part of the consensus. Specifically, we suggest that 
a conserved core motif flanked by weak bases, which 
represents half of the TFBS and which we will des-
ignate a Binding Motif (BM) to distinguish it from 
the long symmetrical binding site (BS), can exert a 
biologically relevant effect on gene transcription. We 
further suggest that the number of BMs in a bacte-
rial promoter may provide a molecular mechanism 
for quantitative adjustment of the transcriptional 
effect, and, as in lower eukaryotes, may be used for 
predictive modeling of transcriptional effects of bacte-
rial regulators.

In this study we examine the relationship between 
BM counts and transcription level using a variety of 
experimental data from four previously published 
microarray experiments designed to identify regula-
tory networks of two global bacterial regulators, CRP 
and ArcA, in two organisms, Shewanella oneidenses 
MR-1 (MR-1) and E. coli. The experiments com-
pared the level of gene expression in the wild type 
strain and in the regulator negative mutant strain. 
Both strains were grown in conditions where tran-
scriptional effects of the regulators are crucial for 
bacterial adaptation, namely, a shift from aerobic to 
anaerobic respiration and stress imposed by addi-
tion of isobutanol.2,25–27 A gene was considered regu-
lated (directly or indirectly) by ArcA or CRP in the 
studies if its level of expression was significantly 
different between the wild type strain and the regula-
tor knockout. We propose that the inferred level of 
change in gene expression is proportional to the tran-
scriptional effect of the studied TF on gene activity. 
We will refer to these experimentally defined changes 
in gene expression as Transcription Factor Induced 
Gene Activity or TF IGA. We use TF IGA as the 
metric to examine whether the transcriptional activ-
ity of a gene correlates with number of short BMs of 
the TF in the gene promoter and with other known 
modulators, including the quality of the BS and the 
BS location relative to transcription start. We find 
that the number of CRP or ArcA BMs in gene pro-
moters has a statistically significant effect on CRP 
or ArcA dependent transcriptional activity of genes. 

This effect of BM counts is nonlinear in the case of 
CRP and correlates with CRP IGA better than either 
symmetrical BS quality or BS location. Using step-wise 
regression, we consider the synergetic effects of CRP, 
IHF (Integration Host Factor), and ArcA BM counts 
on CRP IGA. We find a negative effect of ArcA BM 
counts on CRP IGA, independent of CRP BM counts, 
and a positive, synergetic effect of IHF BM counts 
and CRP BM counts. To explain these results, we pro-
pose a model that involves control of gene expression 
through DNA bending by CRP and IHF.

Results
Counts of CRP or ArcA BMs in gene  
promoters have a nonlinear effect  
on CRP or ArcA dependent  
transcriptional activity of genes in MR-1
The effect of the number of TF BMs on TF IGA was 
evaluated using four different datasets as described in 
the Methods section. The largest microarray dataset was 
from a study of a crp  mutant of MR-1 and its wild-type 
strain, available in the Shewanella Knowledgebase.28 
CRP plays a major role in the regulation of anaerobic 
respiration in MR-1, in addition to its role in catabolic 
repression and in utilization of carbon sources. It 
activates hundreds of genes involved in anaerobic 
metabolism.28,29 In this study of the transition from 
aerobic growth with lactate to anaerobic growth with 
lactate and fumarate, CRP IGA was calculated for 
various time points: 0, 20, 40, 60, 90, 120 min, 4, 8, 
12, 24 h, steady-state. This dataset includes 655 genes 
putatively up-regulated by CRP and 632 genes 
putatively down-regulated by CRP (Supplementary 
Table S1). Analysis of these genes affected directly 
or indirectly by CRP indicated low, but statistically 
significant correlation (Table 2) between BM counts 
in the upstream intergenic region of the gene, which 
for convenience we will call the Gene Promoter, and 
the CRP IGA. Correlation levels for up-regulated 
genes were consistent at each time point and across 
all time spans, including at time zero (R  0.20, 
P  2.55  10–8), during the first hour (first four time 
points) of the experiment (R  0.21, P  4.16  10–9), 
and across all time points (R  0.20, P  1.73  10–8). 
Correlation levels for down-regulated genes were lower 
(R  0.10, P  1.32  10–3 across all time points), but 
similarly consistent. An analysis that considered the 



Leuze et al

96 Gene Regulation and Systems Biology 2012:6

density of BM counts in the gene promoter, that is, the 
BM counts divided by the promoter length, found no 
significant correlation (R  0.06, P  0.077) with CRP 
IGA in up-regulated genes.

The effect of ArcA BM counts on IGA in MR-1 
was examined using data from a comparative study of 
an MR-1 arcA  mutant and its wild type strain grown 
aerobically and anaerobically. We compared correla-
tions between BM counts in the promoters and ArcA 
IGA in aerobic and anaerobic growth conditions. 
Characteristics of the dataset and correlation coef-
ficients are given in Table 2. Although the analysis 
produced results similar to those from the CRP study, 
the relationships inferred were not as significant. As 
was the case with CRP, the transcriptional activation 
effect of ArcA was more dependent on BM counts 
than the transcriptional suppression effect of ArcA.

There may be several reasons for the low correlations 
between BM counts and IGA inferred from the CRP 
and ArcA studies in MR-1. The most obvious reason is 
the complexity of the regulatory network involved in 
the transcriptional adjustment of the organisms to the 
conditions studied. The transcriptional effect of global 
regulators is very often indirect, and the experimental 
datasets most likely include genes regulated by 
other transcription factors. These regulators may 
be activated by CRP and ArcA or they may modulate 
gene transcription as independent co-regulators. 

Many CRP-activated promoters in E. coli, for example, 
are repressed by other transcription factors, like CytR7 
or LacI,30 but such co-regulators are not known in MR-1. 
Low correlation may also result from a secondary role 
of the regulator under the studied conditions, ie, a 
different regulator, rather than the one that is knocked 
out, may play the major role in transcriptional 
reprogramming of genes under the condition. Finally, 
other characteristics of the binding sites, such as 
their quality or position in the promoter, may also 
be responsible for the low correlation. In our further 
analysis we have attempted to estimate the effects of 
these other factors on IGA by selecting MR-1 genes for 
which there is strong evidence of direct regulation by 
CRP and by examining additional microarray datasets 
from studies of CRP and ArcA in E. coli.

Correlation of BM counts with CRP  
IGA is higher for genes presumed  
to be directly regulated by CRP
To examine the potential reasons for low correla-
tion in the CRP dataset, we analyzed genes with high 
BM counts but with low levels of CRP IGA. We 
observed that although these genes did not have a 
high level of expression, many showed high variabil-
ity in the level of transcription across experimental 
time points, some exhibiting both significant up- and 
down-regulation (Fig. 1). Such variability in gene 
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Figure 1. Time dependent CRP-induced gene activity (IGA) of five MR-1 genes with high BM counts and low average CRP IGA.
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expression likely results from co-regulation of the 
gene by a different regulator and reduces the correla-
tion inferred from the dataset. To limit our analysis 
to genes that are more likely to be directly regulated 
by CRP, we selected only those genes predicted by 
TractorDB31 as up- or down-regulated by CRP in 
MR-1. TractorDB predictions are made using a com-
parative genomic approach. A selected MR-1 gene 
has a known CRP-regulated ortholog in E. coli and a 
site for which a statistical model of the CRP binding 
site gives a high score. The orthologous relationship 
in combination with a predicted BS is assumed to 
indicate a conserved direct regulatory effect of CRP 
on gene transcription. This approach results in 121 
CRP genes presumed to be down-regulated and 142 
CRP genes presumed to be up-regulated. In these 
sets of genes, we find a higher correlation between 
BM counts and IGA in both up- and down-regulated 
genes (Table 2). Among CRP up-regulated genes, 
the correlation coefficient is 0.35 (P  2.85  10 5), 
which means that about 13% of the variability in 
IGA may be attributed to the number of BMs in the 
gene promoter. For down-regulated genes about 17% 
(R  0.42, P  1.84  10 6) of variability in the CRP 
IGA may be attributed to the number of BMs in the 
gene promoter. Random selections of the same num-
ber of down-regulated genes give an average corre-
lation of 0.09 with a standard deviation of 0.12. 
Thus, limiting a dataset to conserved genes that are 
more likely to be directly regulated by CRP, we find 
a better correlation between the number of CRP BMs 
in the gene promoter and the IGA.

Even better support for a qualitative relationship 
between CRP BM counts and IGA was found using 
a study of the regulator in E. coli. In this study, a set 
of genes regulated by CRP was determined experi-
mentally7 using a microarray-based technique called 
run-off transcription/microarray analysis (ROMA). 
This technique was applied in vitro, ie, without 
interference from other regulators, as contrasted 
with in vivo studies. The ROMA approach identi-
fied 176 operons activated by CRP. As a measure 
of CRP IGA, we use average ratios of the num-
ber of RNA transcripts in the wild type CRP run-
off transcription reactions to the control reactions 
(Supplementary Table S2). The CRP IGA for this 
set of genes experimentally verified to be regulated 
by CRP correlates well (R  0.60, P  1.27  10–3) 

with the number of CRP BMs in the gene promoters 
(Fig. 2A and Table 2).

Correlation of BM counts with ArcA  
IGA is higher when the activities  
are measured under conditions  
regulated primarily by ArcA
The role of ArcA in E. coli suggests that the low cor-
relation between ArcA BM counts and IGA in MR-1 
may result from a secondary regulatory role of ArcA. 
The ArcA protein in E. coli is a typical response reg-
ulator that represses aerobic enzymes under anoxic 
growth conditions.32 ArcA is regulated by an associ-
ated sensor kinase, ArcB, which responds to an oxida-
tive state of the cell. Although the ArcA binding motif 
is highly conserved between E. coli and MR-1, the 
physiological functions of ArcA in MR-1 are substan-
tially different and not well understood.2 It is likely 
that ArcA in MR-1 is not a master regulator of the 
shift from aerobic to anaerobic growth. Thus, changes 
in IGA in the arcA  MR-1 strain shifting from aero-
bic to anaerobic growth do not correlate highly with 
ArcA BM counts because these changes are likely not 
strongly dependent on ArcA.

To validate the importance of proper experimen-
tal conditions for probing ArcA IGA, we analyzed a 
dataset from a study of the isobutanol response net-
work in E. coli.27 It has been shown that ArcA is a 
major regulator of this response since isobutanol 
disrupts the cell membrane, leading to malfunction 
of the aerobic respiratory chain. This malfunction 
changes the oxidative state of the cell and necessi-
tates the suppression of aerobic enzymes in the cell, 
which is regulated by ArcA. The isobutanol response 
study provided expression ratios (treated/untreated) 
for ArcA regulon members in the wild type and the 
arcA  strains. We used these ratios to calculate the 
ArcA IGA and to compare it with the number of ArcA 
BMs in the gene promoter and in the body of the gene 
(Supplementary Table S3). Correlation for this pre-
selected set of up-regulated genes in E. coli is three 
times greater than the ArcA correlation found in the 
MR-1 study (Fig. 2B and Table 2). The best correla-
tion (R  0.60, P  1.04  10–3) was obtained with the 
total number of ArcA BMs in the gene promoter and 
in the gene body. This is consistent with the known 
role of ArcA as a suppressor.32 Reexamining the CRP 
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datasets, we found that the correlation of CRP IGA 
with BM counts in the gene body was significantly 
less than with BM counts in the promoter.

Quantity of the BMs in a gene promoter 
gives a better prediction of the CRP IGA 
than symmetrical BS quality
In the TractorDB collection, genes that are potentially 
regulated by CRP have associated symmetrical BSs,  

in which up to eight mismatches from the consensus 
CRP binding site are allowed.31 For these predicted 
symmetrical BSs, we compared the effect of their qual-
ity and the effect of BM counts in the promoter on CRP 
IGA of up- and down-regulated genes in MR-1. BS 
quality was characterized by a PWM (position weight 
matrix) model score (Supplementary Table S4), as 
described in the Methods section. We found that the 
quality scores of symmetrical BSs were not correlated 

Figure 2. (A) Effect of total CRP BM counts in a gene promoter on CRP induced gene activity (IGA). (B) Effect of total ArcA BM counts in a gene promoter 
and gene body on ArcA induced gene activity (IGA).
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with transcriptional activity of either up- or down-
regulated genes. However, in both up- and down-
regulated genes, CRP IGA correlated significantly 
with promoter BM counts. BM counts accounted for 
13% of the variability (R  0.36, P  2.85  10–5) in 
transcriptional activation of up-regulated genes and 
17% of the variability (R  0.42, P  1.84  10–6) in 
transcriptional suppression of down-regulated genes. 
Thus, CRP induced changes in transcriptional activ-
ity of a gene in MR-1 is more dependent on the num-
ber of promoter BM counts than on the quality of the 
symmetrical BS.

We further examined the effect of BM counts 
on CRP IGA in E. coli using the E. coli ROMA 
study (Supplementary Table S5). For E. coli, as 
for MR-1, BS quality was characterized by a PWM 
score (see Methods section for details). Both qual-
ity of the long symmetrical BS and quantity of the 
short BMs correlated with CRP IGA ( Supplemental 
Table S5), but correlation was greater with BM 
counts (R  0.37, P  1.08  10–8) than with BS 
quality (R  0.32, P  4.56  10–7). Differences 
were more pronounced when only those CPR oper-
ons experimentally verified to be activated by CRP 
were considered.  Correlation between BM counts 
and CRP IGA (R  0.55, P  1.02  10–3) was sig-
nificantly greater, but no significant correlation 
(R  0.16, P  0.37) between BS quality and CRP 
IGA was found. The results of the E. coli in vitro 
study are consistent with the results from the MR-1 
in vivo studies and suggest that BM quantity has a 
greater modulating effect on CRP IGA than does 
symmetrical BS quality.

Distribution of BMs in gene promoters 
and effects of BM locations on CRP IGA 
in E. coli and MR-1
In addition to quality of TF BSs, the location of BSs 
in gene promoters is another known factor that modu-
lates transcriptional activity of genes. We compared 
the distribution of BMs in the promoters of E. coli 
and MR-1 genes that are potentially regulated by 
CRP. All E. coli genes identified by the ROMA study 
as members of the CRP regulon and all MR-1 genes 
identified as activated by CRP in the TractorDB data-
base were examined. For each organism, total pro-
moter BM counts in 10-nucleotide bins were summed 
across all identified genes (Supplementary Table S6) 

as described in the Methods section. Figure 3A shows 
the distribution of BM counts as a function of distance 
from the transcription start codon (ATG distance) 
and illustrates that these organisms have a similar 
distribution of BM counts in promoters of known 
CRP-regulated genes. There is a significantly high 
correlation (R  0.71, P  8.60  10–7) between E. coli 
and MR-1 promoter BM counts in 10-nucleotide bins. 
This correlation suggests that E. coli and MR-1 genes 
regulated by CRP share similarity in both coding 
regions and promoter structure. It raises the question 
of whether those bins with high BM counts might 
contain BMs with a stronger modulating effect on 
CRP IGA.

To address this question, we used CRP IGA values 
from the ROMA experiment in E. coli and from the 
CRP aerobic to anaerobic transition study in MR-1 
to examine the effect of BM location. We charac-
terized the modulating effect of BM counts in each 
individual 10-nucleotide bin on CRP IGA by the cor-
relation of BM counts to CRP IGA across all selected 
genes (Supplementary Table S6), as illustrated in 
Figure 3B. Correlation was significant for three 
E. coli bins, particularly the bin from 170 to 161 
(R  0.39, P  4.43  10–7). For MR-1 the correlation 
was relatively low across all bins. Although promot-
ers of CRP-activated genes in MR-1 are enriched with 
BMs at locations similar to E. coli, the BMs at these 
locations are not necessary involved in the transcrip-
tional activation under the experimental conditions of 
the study. In the MR-1 dataset, the correlation of CRP 
IGA with BM counts in any individual bin was not 
as strong as the correlation with the total BM counts 
in the gene promoter. The modulating effect of BM 
location on CRP IGA was confirmed only in E. coli 
using data from the ROMA in vitro study.

Synergetic effect of CRP, IHF, and ArcA 
binding motif counts on CRP IGA
Interaction between different regulators is another 
known factor modulating gene transcription. Although 
CRP has a dominant role in catabolite repression in E. 
coli, several other regulators using different mecha-
nisms are known to be involved at different stages.33 In 
MR-1, CRP is involved in transcriptional reprogram-
ming of both carbon source utilization and respira-
tion.29 Sophisticated crosstalk and regulatory coupling 
exist between transcriptional regulators involved 
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in both processes.34 ArcA is a known regulator of 
oxygen response and respiration in MR-1,2,35,36 and is, 
therefore, a plausible co-regulator with CRP in gene 
transcription. Recent studies also suggest that epige-
netic factors involving histone-like proteins, such as 
FIS, HNS, and IHF, are involved in transcriptional 
control by CRP.37–39 These observations led us to 
examine the co-regulatory effects of ArcA and IHF 
on CPR IGA. For CRP up-regulated genes, we cal-
culated correlations between BM counts for each of 
the three regulators and CRP IGA (see Methods sec-
tion for details). The correlation coefficients for ArcA 
and IHF BM counts are low, R  0.09 and R  0.13, 
respectively, but statistically significant (P  0.01), 

suggesting that ArcA and IHF BM counts may have a 
small positive effect on CPR IGA. These correlation 
coefficients are about half the size of the correlation 
coefficient for CRP BM counts with CRP IGA. To 
evaluate the synergetic effect of CRP, ArcA, and IHF 
BM counts on CRP IGA we used a step-wise multiple 
regression analysis that compared linear, non-linear, 
and interaction effects of the transcription factors on 
IGA (see Methods section for details). We found that 
of the nine initial variables representing these effects, 
only three variables were significant, namely, the 
positive 2nd degree polynomial effect of CRP BM 
counts, the positive interaction effect of CRP and IHF 
BM counts, and the negative linear effect of ArcA 
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BM counts. The analysis produced the following fit-
ting line, with correlation R  0.25, for CRP IGA:

IGA  0.0014  BM2
CRP 0.0033  BMArcA  0.00035  

     BMCRP  BMIHF

where IGA is the CRP IGA given as log2 ratio of gene 
expression in crp  to crp  strains; BMArcA, BMCRP, and 
BMIHF are binding motif counts for regulators ArcA, 
CRP, and IHF, respectively. This regression model 
confirms a strong non-linear effect of CRP on gene 
transcription under the conditions of the experimental 
studies. It also indicates that the histone like protein 
IHF likely affects CRP-induced transcription of some 
genes through interaction with CRP, and does not exert 
an independent transcriptional effect. The transcrip-
tional effect of the global regulator ArcA is likely inde-
pendent and opposite the effect of CRP for the same 
genes. The regression model’s correlation coefficient 
(R  0.25) indicates that it explains only a portion of 
CRP IGA. To develop a more robust model, there are 
other regulatory mechanisms that must be considered.

Explanation of the results in terms of the 
model of CRP transcriptional regulation
Results of this study indicate that the total number 
of BMs for various bacterial global regulators, such 
as CRP and ArcA, are important characteristics 
of the gene promoter. These numbers predicted 
levels of CRP IGA better than quality or location of 
symmetrical BSs, indicating that even BMs that are 
rather distant from the transcription initiation site 
may produce a regulatory effect and facilitate gene 
activity. The study considered two different bacterial 
organisms, two different experimental technologies, 
and three different transcription factors. The results 
in combination with recent reports on biochemical 
mechanisms of CRP transcriptional activation25 
support a regulatory model that involves DNA 
bending in transcriptional activation. They indicate 
that specific sets of BMs in the promoter may encode 
information affecting not only the affinity of CRP 
binding to DNA, but also the geometry of the CRP/
DNA complex and thus provide additional epigenetic 
control of gene expression. The importance of distant 
BMs for transcriptional activity is consistent with 
observations that flanking sequences can affect the 

energetics of DNA/CRP complex formation and the 
geometry of a CRP-induced bend in DNA.40 DNA 
bending is the most plausible architectural mechanism 
for bringing distantly located BMs into play.

The computationally predicted synergetic effect of 
CRP and IHF BMs on CRP IGA in the MR-1 study 
suggests that IHF may cooperate with CRP in tran-
scriptional regulation. A potential mechanism for this 
cooperation may be additional bending of the DNA 
promoter.41 By introducing bending, IHF can affect 
geometry of the DNA/CRP complex, stabilizing, 
weakening, or preventing binding of CRP to DNA. In 
this way IHF may exert an additional level of regula-
tory control on CRP IGA that is similar to epigenetic 
control in eukaryotes. Bending of DNA by CRP and 
IHF may bring distantly bound CRP or other activa-
tors into contact with RNA polymerase and thus initi-
ate transcription, or it may change the accessibility of 
BSs to transcription factors. The synergetic effect of 
ArcA predicted by the regression model is different 
from the effect of IHF. ArcA may work independently 
from CRP under the conditions of the experimental 
studies, perhaps preventing CRP/DNA complex for-
mation at some promoters. Additional experiments 
will be necessary to validate the computational 
predictions.

Conclusions
Transcriptional fine-tuning
Although transcription activation by CRP at the 
simplest CRP-dependent promoters requires only one 
DNA binding site and no co-regulators,42 in general 
gene activation by CRP involves additional molecular 
mechanisms to fine-tune the expression level of each 
individual gene for the same concentration of CRP. 
Our findings indicate that variability in the number 
of BMs in gene promoters and DNA bending by CRP 
and IHF may be important genomic mechanisms for 
this fine-tuning. DNA bending is surprisingly similar 
to that observed in eukaryotes, which have a complex 
dynamic chromatin structure. Through remodeling 
of chromatin structure, eukaryotes change TF 
accessibility to different BSs and, in this way, achieve 
variability in the expression of genes responding to 
the same level of a transcription factor.43 Our results 
suggest that even though bacteria do not have a 
sophisticated nucleosome structure, these organisms 
may utilize bending of DNA by global regulators to 
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change accessibility of BSs and, in this way, adjust 
the level of gene expression to the environmental 
stimulus. Another mechanism for fine-tuning the 
CRP IGA may be binding of cAMP to the TF and 
the concentration of cAMP in the cell. There are 
multiple cAMP binding sites in CRP and occupancy 
of these sites modifies the affinity of CRP for DNA 
binding sites.44 The more diverse the set of CRP BMs 
in the gene promoter, the more intricate the control 
of gene expression implemented by cAMP-related 
mechanisms.

Why the correlation is low
Results of this study suggest that a set of mechanisms 
may modulate the effect of a TF on gene expression, 
and that the influence of each mechanism may vary 
for different transcription factors, different organ-
isms, and different environmental conditions. Even 
for the same conditions, we have observed a strong 
time-dependent effect of CRP at some promoters with 
high BM counts. Microarray measurements made at 
different time points, even under similar conditions, 
may produce opposite results, gene activation or 
suppression. Such time-dependent patterns of gene 
expression are not easily quantified and may intro-
duce significant errors in computational predictions. 
Variation of expression over time may be a reason for 
the low correlation of BM counts with CRP or ArcA 
IGA. Time-dependent patterns may also explain con-
tradictory identification of genes regulated by a TF 
in experimental studies. Different large-scale studies 
to identify TF BSs often find different sets of genes 
regulated by the TF. An example is two studies to 
identify ArcA BSs in E. coli using transcriptional 
profiling of an ArcA mutant strain.45,46 Although 
some discrepancies among studies may result from 
experimental errors, there is a plausible biological 
explanation of this phenomenon. Some differences 
may be attributed to different cellular mechanisms 
of transcription regulation discussed in the previous 
sections. Inevitable variations in experimental con-
ditions may result in different epigenetic states of 
bacterial DNA and may, therefore, produce different 
time-dependent expression patterns for genes regu-
lated by the same level of the TF. In addition to tran-
scriptional regulation by CRP, many genes can be 
regulated post-transcriptionally. For these genes, their 
level of expression may be slightly diminished or even 

unaffected in the crp  mutant strain. Transcription of 
adenylate cyclase CyaA, for example, which syn-
thesizes cAMP from ATP, is only slightly decreased 
in crp  mutants, although the reintroduction of CRP 
increases the transcription four- to five-fold.47 As this 
example demonstrates, the actual effect of a TF on 
gene transcription is not accurately characterized by 
measuring an average ratio of gene expression in wild 
type versus mutant.

Improved computational modeling
Quantification of gene expression in terms of BM 
counts may provide a means to improve computa-
tional modeling of transcriptional regulatory net-
works and to reveal principles of transcriptional 
 regulation. Existing computational algorithms com-
bining microarray data for mRNA expression and 
transcription factor occupancy to identify regulatory 
networks consider only linear effects of BM counts 
on gene transcription.10,11 This study demonstrates that 
for some transcription factors, such as CRP, this effect 
may be nonlinear. Adding nonlinearity may improve 
the predictive capability of the computational model. 
Another potential application of the results may be 
the development of improved algorithms for locating 
TF BSs in prokaryotic promoters using TF BMs to 
supplement direct identification of long BSs.

Methods
Estimation of CRP and ArcA induced 
gene activity from microarray 
experiments
Three datasets from microarray experiments were 
analyzed to evaluate the effects of CRP and ArcA 
on transcriptional activity in two bacterial species, 
Shewanella oneidensis MR-1 and E. coli. The number 
of CRP and ArcA binding sites, their quality, and their 
locations within gene promoters were  considered. In 
each dataset, the effect of a regulator (CRP or ArcA) 
on transcriptional activity of a gene was estimated by 
calculating the log2 ratio of expression levels in the 
regulator positive (wild type strain) and the regula-
tor negative (mutant strain) for each time point or 
biological replicate. Overall transcriptional effect 
for each gene was estimated by averaging the log2 
ratios across time points or replicates. This average 
ratio will be referred to as the CRP/ArcA induced 
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gene activity or IGA. The relationships between IGA 
and various computationally derived characteristics 
of gene promoters, including binding site counts, 
quality, and locations were determined by correlation 
and regression analysis. For each operon, only the 
IGA of the first gene was included in the statistical 
analysis, since unequal levels of expression among 
genes of the same operon are common, likely because 
of putative internal promoters or because of alterna-
tive regulatory mechanisms controlling gene expres-
sion within operons.48 In the following sections we 
give a brief description of the experimental studies 
used to characterize CRP/ArcA IGA.

CRP induced gene activity in Shewanella one-
idensis MR-1. This is a study of a time-series tran-
sition from aerobic growth with lactate to anaerobic 
growth with fumarate in a crp  mutant strain of  
S. oneidensis MR-1 and in a wild type strain using 
an Affymetrix microarray. Growth of the strains was 
implemented in a bioreactor in modified M1 minimal 
media in two biological replicates with sampling and 
transcriptional profiling at various time points: 0, 20, 
40, 60, 90, 120 min, 4, 8, 12, 24 h, steady-state.

ArcA induced gene activities in Shewanella one-
idensis MR-1. This study of S. oneidensis MR-1 com-
pares the growth of arcA  and arcA  MR-1 strains 
in aerobic and anaerobic conditions.2 A homemade 
microarray with oligonucleotide probes from 99% of all 
predicted genes in the S. oneidensis genome was used to 
measure gene expression. Probes were printed in dupli-
cate onto Telechem Superamine slides. Genes that were 
significantly up- or down-regulated in the ArcA mutant 
strains were considered putative candidates for activa-
tion or suppression by ArcA, respectively. To decrease 
the rate of false positive candidates for regulation by 
ArcA, only genes with log2 ratios more than 0.2 or less 
than 0.2 were included in the analysis.

CRP induced gene activities in E. coli. In this study,7 
run-off transcription/microarray  analysis (ROMA), 

was used to identify CRP regulated  promoters. This 
technique found 176 operons activated by CRP in 
vitro. Using descriptors from the study, 167 genes, 
each located first in one of the 176 activated operons, 
were identified. To characterize the effect of CRP 
binding on transcriptional activity in vitro, average 
ratios of the number of RNA transcripts in the wild 
type CRP reaction versus the control reaction were 
calculated.

Selection of the binding motif consensus 
for CRP, ArcA, and IHF
Consensus sequences for the binding motifs were 
selected based on the three most conserved nucleotide 
bases in the known BS of the TF. To find this core of 
three base pairs, we used RSAT tools49 to search for 
occurrences of all possible three nucleotide oligomers 
in known BSs and in promoters of the corresponding 
genes listed in RegulonDB.22 Conservation of bases 
in known long symmetrical BSs and representation 
of three nucleotide oligomers in BSs and gene pro-
moters were considered in constructing BM consen-
sus sequences (Table 1). Each BM is comprised of a 
three base pair core and two flanking regions. No sub-
stitutions were allowed in the central core sequence 
and in the weak bases directly adjacent to the core. 
A maximum of two substitutions were allowed in the 
remaining bases. Our rule for BM substitution was 
influenced by recent observations in yeast, namely, 
that substitutions involving Adenine are unlikely 
to change expression patterns, while substitutions 
involving Guanine tend to alter expression patterns.19

Counting the TF binding motifs
Experimental data from the aforementioned studies 
on TF IGA were supplemented with counts of the 
binding motifs (BM counts) in the upstream regions 
of the genes. FastA nucleotide sequences of MR-1 
and E. coli were downloaded from Genbank to use 

Table 1. Known CRP, ArcA, and IHF binding site consensus sequences and their binding motifs in E. coli derived from 
analysis of RegulonDB data.

TF Known consensus Reference Short BS consensus
CRP 5 -AAATGTGATCTAGATCACATTT-3 24 wWCACWwww
ArcA 5 -WGTTAATTAW-3 46 wWAACWwww

5 -GTTAATTAAATGTTA-3 45
IHF 5 -WATCARXXXXTTR-3 41 wWATCWwww
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in determining BM counts. Only the first gene of an 
operon was considered in the analysis. Operons in 
MR-1 were predicted using the algorithm described 
by Dam et al.50 RegulonDB22 was used to define oper-
ons and TF binding sites for E. coli. For each gene, 
BM counts across all selected genes were collected in 
a variety of regions in the promoter (upstream inter-
genic region of the gene), in the coding sequence, 
and in different bins relative to the transcription start 
codon, including 1..30, 370.. 1, and in the 37 bins 
of size 10 from 370.. 361 to 10.. 1.

Characterization of binding site quality
Position weight matrix (PWM) models were used to 
characterize the quality of CRP BSs in both MR-1 
and E. coli. In MR-1, all full, symmetric CRP BSs 

from TractorDB were used to construct the PWM 
model (Supplementary Table S4). For E. coli, CRP 
BS quality scores reported in the Zheng et al study7 
were used. These scores were derived from PWM 
models described by Tan et al.51 For validation, these 
PWM models were compared with a PWM model 
constructed from CRP binding sequences in E. coli 
experimentally verified by ChIP-chip analysis.52

Statistical analysis
Information on BM counts for each gene in MR-1 
and E. coli was supplemented by CRP or ArcA 
IGA calculated from experimental data. Data for 
up- and down-regulated genes in each organism 
and for each TF were analyzed separately.  Pairwise 
Pearson correlations were calculated between the 

Table 2. Statistical characterization of the modulating effects of TF BS or BM counts in the gene promoter on the induced 
changes in gene expression.

TF Org Technology Design and  
conditions

Modulating 
factor

Reg Max  
BS

Num 
genes

R P-value

ArcA MR-1 Homemade  
oligonucleotide  
microarray

arcA  vs. arcA anaerobic  
growth

BM counts in  
gene promoters

� 18 306 0.26 4.05  10 6

ArcA MR-1 � 18 339 0.19 7.32  10 4

ArcA MR-1 arcA  vs. arcA  
aerobic growth

� 18 317 0.16 3.24  10 3

ArcA MR-1 � 16 335 0.16 3.22  10 3

CRP MR-1 Affymetrix  
microarray

crp  vs. crp  transition  
from aerobic growth  
with lactate to anaerobic  
growth with fumarate, 
11 time points

� 20 754 0.20 1.73  10 8

CRP MR-1 � 10 1046 0.10 1.32  10 3

CRP MR-1 BM counts in  
promoters of  
genes predicted  
by TractorDB

� 13 70 0.35 2.85  10 5

CRP MR-1 � 9 85 0.42 1.84  10 6

CRP MR-1 Symmetrical  
BS counts in  
promoters of  
genes predicted  
by TractorDB

� 6 69 0.51 4.07  10 6

CRP MR-1 � 6 85 0.46 6.9  10 6

CRP E. coli ROMA RNA transcripts in wild-type  
CRP reaction vs. control  
reaction; the effect of CRP  
binding to the gene promoter  
on the gene activity in vitro

BM counts in  
gene promoters

� 10 167 0.60 1.27  10 3

CRP E. coli Quality score of  
symmetrical BS

� 122 0.16 0.37
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parameters in each dataset to find their relationship. 
Significance of the correlation was  characterized 
by P-value and by comparison of the calculated 
 coefficient with the coefficient calculated by per-
mutations for the same number of randomly 
selected genes from the dataset. The R statistical 
package was used to sample 1000 sets of genes for 
each dataset in order to calculate the correlation 
between IGA and BM counts. The distribution of 
the resulting 1000 correlation coefficients was com-
pared with a normal distribution characterized by 
the average and the standard deviation of the corre-
lation coefficients. These parameters were then used 
to calculate a t-statistic to estimate the significance 
of the correlation in the selected genes.

The synergetic effects of CRP, ArcA, and IHF 
BM counts (BMCRP, BMArcA, BMIHF) on CRP IGA 
were determined by stepwise multiple regression 
 (Supplementary Table S7) in which BM counts for 
these regulators were independent predictor variables 
and CRP IGA (calculated from the experimental data) 
was a dependent variable. We compared not only lin-
ear effects of the independent variables, but also their 
interactions and non-linear (2nd degree polynomial) 
effects on the dependent variable. Specifically, the 
regression model was

 IGA  a0  a1  BMCRP  a2  BMArcA  a3  BMIHF 
     a4  BM2

CRP  a5  BM2
ArcA  a6  BM2

IHF
 a7  BMCRP  BMArcA  a8  BMCRP

     BMIHF  a9  BMArcA  BMIHF

where a0, a1, …, a9 are fitting coefficients. At each step 
of the analysis, each coefficient of a model term rep-
resenting a linear, non-linear, or interaction effect was 
evaluated by its t-statistic value, the ratio of the coef-
ficient to its standard error, and the dependent variable 
with the minimum input, indicated by the minimum 
t-statistic, was removed from the set of dependent 
variables. Multiple regression analysis was repeated 
until only variables with significant t-statistic values 
were left in the fitting line.
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