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a b s t r a c t

Recalcitrance of lignocellulosic biomass to sugar release is a central issue in the production of biofuel as
an economically viable energy source. Among all contributing factors, variations in lignin content and its
syringyl–guaiacyl monomer composition have been directly linked with the yield of fermentable sugars.
While recent advances in genomics and metabolite profiling have significantly broadened our under-
standing of lignin biosynthesis, its regulation at the pathway level is yet poorly understood. During the
past decade, computational and mathematical methods of systems biology have become effective tools
for deciphering the structure and regulation of complex metabolic networks. As increasing amounts of
data from various organizational levels are being published, the application of these methods to studying
lignin biosynthesis appears to be very beneficial for the future development of genetically engineered
crops with reduced recalcitrance. Here, we use techniques from flux balance analysis and nonlinear
dynamic modeling to construct a mathematical model of monolignol biosynthesis in Populus xylem. Var-
ious types of experimental data from the literature are used to identify the statistically most significant
parameters and to estimate their values through an ensemble approach. The thus generated ensemble of
models yields results that are quantitatively consistent with several transgenic experiments, including
two experiments not used in the model construction. Additional model results not only reveal probable
substrate saturation at steps leading to the synthesis of sinapyl alcohol, but also suggest that the ratio of
syringyl to guaiacyl monomers might not be affected by genetic modulations prior to the reactions
involving coniferaldehyde. This latter model prediction is directly supported by data from transgenic
experiments. Finally, we demonstrate the applicability of the model in metabolic engineering, where
the pathway is to be optimized toward a higher yield of xylose through modification of the relative
amounts of the two major monolignols. The results generated by our preliminary model of in vivo lignin
biosynthesis are encouraging and demonstrate that mathematical modeling is poised to become an effec-
tive and predictive complement to traditional biotechnological and transgenic approaches, not just in
microorganisms but also in plants.

� 2010 Elsevier Inc. All rights reserved.

1. Background

One of the great obstacles to propelling the cellulosic biofuel
industry forward is the natural resistance of plant cell walls to
enzymatic and chemical degradation. Overcoming this ‘‘recalci-
trance” is essential for breaking down cellulose and hemicellulose
into fermentable sugars that are readily converted into ethanol,
butanol or other biofuels [1]. The plant’s recalcitrance is mainly
due to the entanglement of cellulosic microfibrils with other com-
plex cell wall compounds, such as lignin, that inherently serve as
the supporting materials of plant structure. While cellulose and lig-
nin play a critical role in providing structural rigidity and defense
against pathogen attacks, they are at the same time the major rea-

son for the low efficiency of current methods of biomass conver-
sion, which require the loosening of cellulosic microfibrils before
they can be enzymatically catalyzed. This loosening is currently
accomplished with an expensive heat and acid pretreatment in
the earliest stage of biofuel production [2,3]. Because of the central
role of lignin in this process, much attention has been focused on
understanding lignin biosynthesis in situ and on exploring the po-
tential of introducing transgenic plants with minimal lignin con-
tent, which would greatly reduce or even obviate the need for
acid pretreatment [4].

Extensive and sustained biochemical and physiological research
efforts and, especially, numerous insights from investigations of
relevant plant genomes, have shed light on the specific roles of
most genes involved in the monolignol biosynthetic pathway,
which generates the building blocks of lignin. Importantly, com-
plete genome sequences for two of the prominent model organ-
isms, Arabidopsis thaliana [5] and the black cottonwood Populus
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trichocarpa [6], are available, and many of the relevant genes have
been functionally annotated (e.g., [7]). This genome-based infor-
mation is very valuable but by itself insufficient for explaining or
predicting how the monolignol biosynthetic pathway would re-
spond to untested changes in enzyme activities or gene expression,
because at least some of the pathway regulation occurs at the met-
abolic level in a rather complex fashion.

Recently, metabolite (and specifically phenolic) profiling has
been used in various transgenic studies to monitor the in vivo con-
centrations of intermediate phenylpropanoid species in the path-
way [8,9]. These studies have generated pertinent information
that elucidates the lignin monomer biosynthesis from a different
perspective and augments the genomic information from earlier
studies in a beneficial fashion. Nevertheless, the application of
metabolite profiling, for instance, in the characterization of meta-
bolic phenotypes caused by genetic modification [10], is often lim-
ited because the levels of some lignin precursors are low and thus
difficult to measure.

Concurrent with the advances in genomic and metabolomic
analysis, mathematical and computational techniques from sys-
tems biology have emerged as an effective tool to help explain
the regulation of complex metabolic networks. Examples from
yeast demonstrate that sufficient genome annotation, when aug-
mented with biochemical and physiological information, permits
the mathematical reconstruction of essentially the entire meta-
bolic network with reasonable fidelity [11,12]. This reconstructed
metabolic network can serve as a solid platform from which one
may first infer and investigate the metabolic flux distribution and
subsequently derive quantitative relationships between genotype,
gene expression and phenotype for the pathway of interest.

Two classes of methods are available to achieve these objec-
tives. The first class, including stoichiometric and flux balance
analysis, focuses primarily on the connectivity of the metabolic
network [13–17]. The methods have been shown to be capable of
characterizing possible phenotypes in terms of their steady-state
flux distributions based on the pathway stoichiometry and on
information regarding the capacities of the involved reaction steps.
It has also been shown [18] that stoichiometric models can be con-
verted into linear dynamic models that permit the assessment of
small perturbations around the nominal state of the system.

The second class consists of fully kinetic models, which are typ-
ically based on differential equations. It includes traditional
Michaelis–Menten systems and their generalizations [19] as well
as Biochemical Systems Theory [20–24] and lin-log models
[25,26] that can be seen as extensions of Metabolic Control Analy-
sis [27–29]. In addition to the connectivity and flux distribution,
these models account, at least in principle, for all kinetic, regula-
tory and dynamic aspects of pathway systems. Fully kinetic models
require more extensive amounts of biological information, for in-
stance in the form of metabolite concentrations and enzyme char-
acteristics, or metabolic time series data.

Normally, only one of the two classes is used to model a meta-
bolic network, depending on the questions being asked and infor-
mation available. Given the limited number of concentration
measurements in the monolignol biosynthetic pathway, stoichi-
ometric or flux balance analysis appears to be the model of choice.
However, understanding the regulatory mechanisms that are not
explicitly taken into account by FBA models constitutes an impor-
tant step toward applying metabolic engineering techniques to im-
prove biofuel production and seems mandatory before genetic
alterations are introduced in natural pathways. Thus, in the spirit
of a recent study [30], which proposes a discussion of integrating
divergent modeling approaches, we use here a combination of
FBA and BST models for analyzing the monolignol biosynthetic
pathway at the systems level. This novel combination strategy al-
lows us to harness the regulatory aspects of a kinetic model based

on the metabolic flux distribution obtained from a flux balance
model.

Key features of the new strategy are outlined in the following.
First, we begin with a minimal amount of experimental informa-
tion and construct a stoichiometric flux balance model. In the sec-
ond step, we augment this model using additional biological
information, along with various parameter optimization tech-
niques, and morph the static linear model into a dynamic nonlinear
model. The ultimate goal of this two-step approach is the estab-
lishment of a reliable model that can be used to identify target
genes and devise effective strategies for generating modified crops
with reduced amounts of lignin. So far, we have not reached the
goal of absolute numerical reliability because the currently exist-
ing information is still rather scarce. Nonetheless, the resulting
model structure appears to be qualitatively adequate and has the
capacity to serve as the basis for systematically identifying critical
system components (enzymes) whose alterations could improve
the yield of fermentable sugars by means of genetic engineering.

2. Methods

2.1. Metabolic mapping

Our main biological target is Populus xylem, because a rapidly
increasing number of transgenic poplar and aspen varieties within
this genus has significantly contributed to our understanding of
the enzymes driving the monolignol biosynthetic pathway [31].
Focusing on the metabolic processes occurring in the cytoplasm,
we start with the biosynthetic pathway leading to the building
blocks of lignin (Fig. 1; also see Supplementary Method 1 for a de-
tailed discussion of how the pathway structure was determined).
The pathway generates four alcohols, three of which – p-coumaryl,
coniferyl, and sinapyl alcohols – are called monolignols. Once syn-
thesized, the monolignols are transported from the cytoplasm to
the cell wall, where they are oxidized and polymerized to form lig-
nin. When incorporated into the lignin polymer, these monolignols
produce, respectively, p-hydroxyphenol (H), guaiacyl (G), and
syringyl (S) phenylpropanoid units, which are shown at the periph-
ery of the pathway diagram in Fig. 1. The relative amounts of
monolignols, which are affected by a variety of factors [32], deter-
mine many of the features of the resulting lignin, such as its struc-
ture, toughness and chemical recalcitrance. In dicotyledonous
angiosperms, including Populus, lignin consists primarily of G and
S monomers, whereas the amount of H is negligible. The ratios of
lignin monomers and the total lignin content have been closely
monitored in transgenic Populus variants because of their impor-
tant role in lignin extractability, forage digestibility [33] and, most
importantly, sugar release by enzymatic hydrolysis [4].

In addition to the topology of the network of all enzymatic reac-
tions, it was necessary to account for regulatory mechanisms that
are known, alleged, or hypothesized for the monolignol biosyn-
thetic pathway. Correspondingly, we equipped the pathway with
regulatory features found in the literature, paying special emphasis
to Populus (Fig. 1; Table 1). It should be mentioned that several of
the enzymes in the monolignol biosynthetic pathway have multi-
ple isoforms with slightly different kinetics and substrate prefer-
ences, and the genes coding for these isoforms are differentially
expressed during development and under different environmental
cues and stresses. [31]. At this point, this degree of complexity
could not be accounted for, due to missing quantitative measure-
ments of the different isozymes in Populus xylem, and we focused
instead on their collective activity in catalyzing each reaction step.
At the same time, if one isoform is known to have a dominant ef-
fect over other isoforms, such as Pt4CL1 in aspen xylem [39], the
corresponding kinetic constants are assumed to be representative
(cf. Supplementary Table 2).
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Fig. 1. Generic metabolic map of the monolignol biosynthetic pathway. Metabolites in bold are represented by dependent variables Xi, i = 1, . . . ,12, while enzymes are shown
in italics. Solid black arrows represent material flow, whereas dashed arrows represent regulatory signals, with negative signs indicating inhibition. Transport processes of
monolignols into the cell wall are shown as open arrows. Abbreviations: (1) Metabolites: Phe, phenylalanine; CinnA, cinnamic acid; CoumA, p-coumaric acid; CaffA, caffeic
acid; FA, ferulic acid; 5-OH-FA, 5-hydroxyferulic acid; SA, sinapic acid; CoumCoA, p-coumaroyl-CoA; CaffCoA, caffeoyl-CoA; FCoA; feruloyl-CoA; 5-OH-FCoA, 5-
hydroxyferuloyl-CoA; SCoA, sinapoyl-CoA; CoumALD, p-coumaraldehyde; ConifALD, coniferaldehyde; 5-OH-ConifALD, 5-hydroxyconiferaldehyde; SALD, sinapaldehyde;
CoumALC, p-coumaryl alcohol; ConifALC, coniferyl alcohol; 5-OH-ConifALC, 5-hydroxyconiferyl alcohol; SALC, sinapyl alcohol. (2) Enzymes: PAL, phenylalanine ammonia-
lyase; C4H, cinnamate 4-hydroxylase; C3H, p-coumarate 3-hydroxylase; COMT, caffeic acid O-methyltransferase; CAld5H, coniferaldehyde 5-hydroxylase; 4CL, 4-
coumarate:CoA ligase; HCT, hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase; HQT, hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase;
CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase.

Table 1
Documented regulatory signals within the monolignol biosynthetic pathway in Populus.

Enzymes Substrate Regulator Kinetics (lM) Reference

PAL Phenylalanine Cinnamic acid N/Ac [72]
4CL p-coumaric acid Caffeic acida KI = 4.37 [39]

Ferulic acid KI = 4.17
CCR Feruloyl-CoA Caffeoyl-CoAa KI = 15.3 [73]
COMT Caffeic acid 5-hydroxyconiferaldehydea KI = 2.1 [37]

5-hydroxyferulic acid KI = 0.26
CAld5H Ferulic acid Coniferaldehydeb KI = 0.59d [35,37]

Abbreviations: PAL, phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA ligase; CCR, cinnamoyl-CoA reductase; COMT, caffeic acid O-methyltransferase; CAld5H, conif-
eraldehyde 5-hydroxylase.

a Competitive inhibitor.
b Non-competitive inhibitor.
c No direct evidence has yet been found in Populus for this otherwise well-known feedback regulation at the entrance of the pathway.
d Although this regulation has been experimentally demonstrated in aspen, no quantitative details are known, and the kinetic parameter presented here was measured in

the lignifying tissues of sweetgum.
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Since theregulatorysignalsaffect several locationswithinthepath-
way, their overall effects are difficult to predict and may even be the
cause for counterintuitive observations in transgenic plants. For in-
stance, Fang et al. [40] recently found lignin monomer compositions
that cannot be explained solely by the pathway topology in transgenic
alfalfa lineswith reduced activities of either cinnamate 4-hydroxylase
(C4H) or caffeoyl-CoA O-methyltransferase (CCoAOMT).

In conclusion, the complexity and multitude of regulatory fea-
tures that characterize the monolignol biosynthetic pathway ren-
der intuitive assessments problematic and highlight the need for
mathematical models capable of explaining the functionality of
the pathway system.

2.2. Experimental data

The data supporting ourmodeling effort come in different forms.
First, we collected kinetic information and metabolite concentra-
tions from the literature (Supplementary Tables 1 and 2). Secondly,
we found pertinent information in five studies of transgenic poplars
or aspens, each of which investigated the responses of the pathway
to modified protein levels. The investigated proteins were COMT,
cinnamyl alcohol dehydrogenase (CAD) [41], 4-coumarate:CoA li-
gase (4CL), coniferaldehyde 5-hydroxylase (CAld5H) [42], and
CCoAOMT [43] (Table 2). Among these transgenic experiments,
three reported an explicit change in the relative proportion of S to
G monomers (the so-called S/G ratio), as determined by thioacidol-
ysis. Because lignin content [4] and the S/G ratio [44] are related to
the degree of recalcitrance,wewill use this ratio as a target indicator
of the system’s response to genetic manipulations.

Several cautionary notes are in order when we interpret the S/G
ratio. First, one should bear in mind that only the fraction of mono-
mers connected by b-O-4 linkages, which accounts for only 20–40%
of the lignin by weight, can be extracted by thioacidolysis. Sec-
ondly, many of the intervening events, for example, during the
transport process or dehydrogenative polymerization, may also
contribute to the differences in the observed S/G ratios, but mech-
anistic details are currently unclear [45]. Third, the composition of
lignin monomers is significantly different between two major cell
types of xylem tissue, with vessel elements enriched in G mono-
mers and fibers in S monomers [46]. Lastly, genes coding for en-
zymes like CCoAOMT are expressed in developing vessels but not
in fibers, suggesting that different routes to monolignol biosynthe-
sis might be favored in different types of cells1 [47].

2.3. Mathematical models

We pursued a two-step approach, using complementary meth-
odologies from flux balance and dynamic-kinetic analysis. An over-
view of the strategy is shown in Fig. 2. First, we converted the
pathway (Fig. 1) into a stoichiometric model and used flux balance
analysis (FBA) to study phenotypes under different types of con-
straints [48]. The central concept of FBA is the balanced flux distri-
bution at steady state, which translates mathematically into the
equation N�v = 0, where N is the stoichiometric matrix of the path-
way and v is a (column) vector of the values of the metabolic fluxes
in the network. Normally, there is no unique solution to this prob-
lem because one metabolite may be the substrate for more than
one reaction, suggesting that the number of fluxes (variables) typ-
ically exceeds that of the flux balance constraints at steady state.
To determine one best solution, it is customary to apply physico-
chemical constraints, as well as an optimization objective like
maximal growth. Fast population growth is a reasonable objective
for microbial populations, but it is not pertinent here and must be
supplanted with different constraints.

Two types of constraints were used here. First, the capacity of
each flux vi must lie within its physiological range ai 6 vi 6 bi,
where we allow ai = 0, and where bi may be defined as the corre-
sponding steady-state flux in a conventional rate law like the
Michaelis–Menten function. Here, all fluxes are assumed to be un-
bounded (i.e., bi is defined as +1), except for the three steps cata-
lyzed by COMT, which are the only reactions for which kinetic
constants (KM and Vmax) have been characterized for Populus pro-
tein. While the bounds narrow the range of admissible solutions,
they are not stringent enough to identify the optimal solution.

The second constraint is based on the assumption that lignified
tissue like xylem has evolved to maximize lignin production in a
species- and cell type-specific ratio of monolignols. This assump-
tion is at least partially supported by the observation in poplar xy-
lem that two of the three phenolic glucosides – the storage or
detoxification products of hydroxycinnamic acids along the meta-
bolic route to the synthesis of sinapic acid – are barely detectable
[43]. This finding suggests that the physiological objective of this
pathway is to produce its other end products, namely monolignols.
However, this piece of evidence must be handled with caution be-
cause the same phenolic glucosides, along with other phenolic
compounds like flavonoid and chlorogenic acid, can be abundant
in leaves or developing stem tissues [49]. If available, measure-
ments such as the relative amounts of phenolic compounds de-
rived from the pathway are essential for defining the
physiological objective within a different context.

The mathematical representation of the physiological objective
of monolignol maximization leads to an objective function of the
form

P
j2Cv j, where C is the set of fluxes representing the produc-

tion of the three pertinent monolignols – p-coumaryl alcohol,
coniferyl alcohol, and sinapyl alcohol. These three fluxes are fur-
ther constrained by equality constraints such that the correspond-
ing lignin monomer composition reflects the thioacidolysis yields
from poplar stem ([50]: Table 3). Mathematically, this modeling
approach results in a specific formulation that can be solved with
methods of linear programming for which a large number of com-
putational routines exist. In the end, this FBA approach reveals an
optimal flux distribution at steady state, and the only inputs
needed are the pathway stoichiometry, enzyme capacity measure-
ments, and a predetermined lignin monomer composition.

Various regulatory signals have been identified within the
monolignol biosynthetic pathway (Table 1). The mechanisms
introduce nonlinearities in the system for which steady-state mod-
els like FBA are not sufficient. In the second step of our two-step
approach, we therefore use Generalized Mass Action (GMA) mod-
els within the framework of Biochemical Systems Theory (BST) to

Table 2
Pertinent details of transgenic experiments in Populus.

Enzyme Enzyme activity
(in relation to wild-
type) (%)

Lignin composition
(S/G; in relation to wild-
type) (%)

Species

COMTa 32 25 Poplar
CADa 15 100 Poplar
4CLb 10 100 Aspen
CAld5Hb 280 250 Aspen
CCoAOMTc 10d 111 Poplar

The relative proportion of S to G monomers (S/G) was measured by thioacidolysis,
which releases the monomers by selectively cleaving the b-O-4 bonds.

a [41].
b [42].
c [43].
d This particular quantity refers to 10% of wild-type protein amounts.

1 Ideally, a comprehensive analysis of the lignin monomer synthesis in xylem
should consist of at least two distinct models, representing the two cell types. The
numerical results for any physiological feature of interest, such as the S/G ratio, could
then be approximated by combining the two estimates in proportion to their
percentage of volume in xylem. While our model could easily be adapted to the two
scenarios, currently available data do not allow us to account for such details, and our
results therefore reflect averages.
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account for the documented regulation of the pathway at the met-
abolic level. Over the past four decades, BST has proven suitable
and sufficiently flexible for the analysis of a wide variety of biolog-
ical phenomena [20–24]. While mostly chosen to model cellular
systems in molecular biology, BST has also been applied to plant
phenomena such as biomass partitioning in growing trees [51,52]
and the so-called 3/2 rule of self-thinning in planted forests [53].

The characteristic feature of BST models is the representation of
metabolic fluxes as products of power functions, cXf1

1 X
f2
2 . . .Xfn

n .
Here, each variable Xi describes a metabolite or enzyme in the
pathway. The two types of parameters include a non-negative rate
constant c that specifies the turn-over rate of the reaction and a set

of exponents f1, f2, . . . , fn, called kinetic orders, that characterize the
influence of the associated variable on the flux. A real-valued ki-
netic order fi is positive (or negative) if an increase in variable Xi

is accompanied by an increase (or decrease) in the magnitude of
the flux, respectively. The kinetic order of a variable without any
effect on the flux is zero, which effectively eliminates the variable
from the flux term. If an enzyme-catalyzed reaction had been
quantified before as a Michaelis–Menten, Hill, or other similar rate
law, it is mathematically easy to convert it into a power-law func-
tion [21] (see also Supplementary Method 2).

2.4. Parameter estimation

For the monolignol biosynthetic pathway, the GMA model con-
sists of 12 dependent variables (X1, . . . ,X12 in Fig. 1) representing
the intermediate metabolites involved in the production of mono-
lignols, and one independent variable as the concentration of
phenylalanine. As indicated earlier, there are two types of param-
eters that need to be estimated: kinetic orders fi,j and rate con-
stants ck. Here, 27 kinetic orders and rate constants are
unknown. In general, estimation tasks with such a large number
of parameters are computationally intensive and time-consuming.
Using the GMA formulation, however, confers two advantages.

Fig. 2. Overview of the two-step modeling approach. The two-step modeling approach is illustrated here generically by a system with two dependent variables (x2 and x3)
and one independent variable (x1). At steady-state, the four fluxes within the system are balanced at two intermediate nodes, resulting in two linear equations with four
unknown variables (fluxes). With additional physico-chemical constraints, flux balance analysis (FBA) yields a steady-state flux distribution that satisfies all imposed
conditions while optimizing an objective function. Alternately, the same system can be translated into a nonlinear Generalized Mass Action (GMA) model that is characterized
by two types of parameters: kinetic orders and rate constants. Collectively, all data, including the steady-state flux distribution, metabolite concentrations, and enzyme
kinetic data, are used to estimate the parameters of the ensemble of dynamic models.

Table 3
Minimization of the S/G ratio using the IOM approach (assuming the baseline S/G
ratio is 1.8).

No. of enzymes Modified enzymesa IOM solutionb (S/G)

1 CAld5H (0.76) 1.3886
2 COMT (0.96) CAld5H (0.71) 1.29
3 C4H (4.31) CAD (1.67) CAld5H (1.34) 1.1133

a Numbers in parentheses represent the optimized ratio of change in enzyme
activities related to the wild-type levels.

b Average values of the ensemble of model.
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First, it is relatively easy to derive parameter values of GMA mod-
els, especially for kinetic orders, if information regarding the ki-
netic features of enzymes and metabolite concentrations is
available (cf. Supplementary Method 2). Second, the steady-state
flux distribution estimated per FBA helps us circumvent the prob-
lem of determining rate constants in the absence of specific flux
measurements. As an example, consider a Michaelis–Menten pro-
cess V(X) = VmaxX/(KM + X) where the maximum rate Vmax is un-
known. Given a steady-state substrate concentration S and the
FBA-predicted steady-state flux VFBA, the rate constant c for the
corresponding power-law term can be represented as:

c ¼ VFBAS
�f ;

where

f ¼ KM

KM þ S
;

is the kinetic order with respect to the substrate at the steady state.
Similar derivations can be applied to conventional rate laws
describing competitive or non-competitive inhibition. Details of
these types of estimations have been discussed extensively in the
literature [21,54] and will not be repeated here.

Once the model is parameterized (in other words, all parame-
ters are assigned values), the first priority is to ensure that no
parameter affects the pathway unreasonably strongly. Using sensi-
tivity analysis, we confirmed that the system is indeed robust at
the steady state we obtain with FBA (data not shown), indicating
that only minor fluctuations in metabolite concentrations and
fluxes result from slight changes in parameter values. While a
favorable outcome, this robustness is no guarantee that the model
is correct. In fact, many parameter values derived from the avail-
able data might not be reliable because roughly half of the inter-
mediate metabolites, including the CoA esters, have rather low
concentrations in vivo (Wout Boerjan, personal communication),
and are thus difficult to measure with precision. Computationally,
we can explore this uncertainty by systematically changing all
parameter values thousands of times and studying how the system
responds to such changes. For validation purposes, the observed
changes in the S/G ratio from transgenic experiments in poplar
or aspen (Table 2) can serve as a quality criterion. To make optimal
use of the transgenic experiments for our parameter estimation
task, we developed a novel approach consisting of two steps,
namely, (1) identification of a subset of significant parameters,
and (2) optimization of their values. The steps are summarized in
Fig. 3A and discussed in the following.

First, we need an objective criterion to answer the fundamental
question of what constitutes a significant parameter. For any trans-
genic experiment, a parameter is deemed significant if a modest
change in its value considerably affects the S/G ratio. To approxi-
mate this degree of influence by statistical measures such as Pear-
son’s correlation coefficient or mutual information, we generated a
large population of GMA models with different parameter settings,
where each parameter (kinetic order) was uniformly sampled from
a physiologically realistic range. Given the FBA-derived steady-
state flux distribution and the randomly generated values for all ki-
netic orders, we adjusted each rate constant so that the power-law
representation of a flux matched the FBA-derived steady-state va-
lue. Typically, the resulting values of kinetic orders are within the
range of 0 and 1, if they are associated with substrates, enzymes,
and activators, whereas inhibitors are often associated with kinetic
orders within the range of �1 and 0 ([21]: Chapter 5). The range of
0 and 1 is also consistent with enzyme-catalyzed reactions follow-
ing a Michaelis–Menten rate law (Fig. 6A).

With a much reduced number of significant parameters, we gain
two important benefits: (1) a reduction– althoughnot total elimina-

tion–of the riskof overfitting;and (2) improvedconvergence in sub-
sequent parameter optimization tasks, because smaller numbers of
parameters are obviously easier to estimate than large numbers. As
mentioned earlier, physiological data of the monolignol biosyn-
thetic pathway are available as one-time measurements of the S/G
ratio in a number of transgenic experiments. Consequently, our sec-
ond step – parameter optimization – consists of finding values for
those significant parameters that minimize the sum of squared er-
rors (SSE) between the measured and the predicted S/G ratios of
all transgenic experiments. Moreover, we characterize an ensemble
of GMA models such that all members have comparable training
errors in terms of SSE. This notion of finding not just a single best
model but an entire class of competent fits is inspired by the
argument that inter-individual differences among organisms are re-
flected in slightly or even moderately different parameter profiles
[55]. The search for classes of solutions has also been supported in
other scientific domains as diverse as simulations of climate change
[56], andmodels of gene regulatory networks [57] and cell signaling
pathways [58].

For readerswishing to explore themodeling approachfirst-hand,
all simulations with our GMAmodel can be directly performedwith
the freewarePLAS�[59].Onesimplycopiesandpastes the systemfile
(Supplementary Fig. 1) into a blank PLAS file, which is then ready for
explorations of the presented or new scenarios. The software per-
mits a variety of dynamic and steady-state analyses of ordinary dif-
ferential equation models, including sensitivity and gain analysis.
Pertinent details about PLAS and the proposed GMA model for the
simulation of some transgenic experiment are discussed in Supple-
mentary information and more generally in [21].

2.5. Pathway optimization

Our monolignol biosynthesis model has the great advantage
that it integrates diverse pieces of information from varying exper-
imental conditions. It can be used to address questions like which
enzymes should be modified – whether by modulating their
expression levels or by improving their turn-over activities
through directed evolution [60] – to achieve a higher yield of a de-
sired product. Within the context of biofuel production, genetically
engineered crops should of course release significant amounts of
fermentable sugars that can be converted into ethanol or other bio-
fuel chemicals. In a study on Populus, Davison and co-workers [44]
indicated that both lignin content and the S/G ratio have significant
effects on the yield of xylose, and that a small decrease in S/G ratio
alone results in a statistically significant increase in xylose yield.
Using our ensemble of GMA models as a framework, we therefore
focus on identifying enzymes whose expression levels might allow
reductions in the S/G ratio.

GMA models are generally advantageous for modeling the
monolignol biosynthetic pathway, but are not trivially optimized
with respect to yield because their steady states cannot be com-
puted analytically. This limitation may be overcome with an indi-
rect optimization method (IOM) that permits optimization in an
iterative, but much simplified manner [61]. Specifically, IOM al-
lows us to transform the nonlinear problem of minimizing the S/
G ratio (or the ratio of fluxes producing coniferyl and sinapyl alco-
hols), into an iterated linear optimization problem that can be
solved with various standard methods, including linear program-
ming. Pertinent details about this approach can be found in Supple-
mentary Method 6. PLAS does not support optimization routines,
and we used MATLAB for this particular task.

3. Results

The FBA analysis resulted in an optimal flux distribution within
the metabolic pathway system (Fig. 3B) that led to the maximal
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production of three monolignols in the correct composition. Inter-
estingly, this optimal solution shows that several reactions with
relatively high steady-state fluxes dominate the activity of the
pathway, whereas other reactions are seemingly inactive. If we
connect the dominant fluxes whose steady-state values are within
one order of magnitude of the phenylalanine consumption, the
resulting route is almost identical to the currently alleged structure
of the monolignol biosynthetic pathway in angiosperms [37]. Thus,
the purely computational result from the FBA analysis reinforces
the point that metabolic pathways are seldom fully connected
and indeed use sparse connectivity to bring about specific function.
This phenomenon has been widely discussed for microbial meta-
bolic networks [62,63], but our results seem to indicate that the
same may be true in plant secondary metabolism as well.

Next,weused theoptimal steady-statefluxdistribution fromFBA
to construct a dynamic GMA model of the pathway. Converting the
metabolic map (Fig. 1) into a symbolic model in GMA format does
not take much effort; in fact, this can be done automatically with
customized software (e.g., [64]). Themuchmore difficult step, how-

ever, is the numerical identification of parameter values, which is
outlined in Fig. 3A and discussed in detail below.

First, by adapting a grid search method used by Alves and col-
laborators [65], we uniformly sampled every parameter (kinetic or-
der) from a predetermined range of values and generated
thousands of GMA models with the same FBA-derived steady-state
flux distribution. For each instantiation, we checked local stability
(Supplementary Method 4) and discarded unstable parameter pro-
files. Next, we computed the mutual information (Supplementary
Method 5) of each parameter and the output feature of interest,
namely the S/G ratio, to evaluate the relative significance of indi-
vidual parameters (Fig. 3C). Not surprisingly, most parameters
are not statistically significant, indicating that only a few parame-
ters have an appreciable influence on the S/G ratio in each trans-
genic experiment.

Notably, two parameters representing the direct influence of
coniferaldehyde on its own consumption, fCAD,ConifALD and
fCAld5H,ConifALD, are statistically significant in all five transgenic
experiments. Although the identification of significant parameters

Fig. 3. Steps of parameter estimation. (A) Steps of the parameter estimation process using the system in Fig. 2: (1) constrain each parameter (kinetic order) to a
physiologically realistic range and simulate the transgenic experiments in the training set with thousands of randomly sampled parameter profiles; (2) compute a statistical
measure (Pearson’s correlation coefficient or mutual information) between each parameter and the S/G ratio for all transgenic experiments (A–D) and select statistically
significant parameters; (3) values for significant parameters are further optimized to minimize the SSE, and to find an ensemble of models with comparably low SSE. (B) The
numerical value next to each reaction represents the magnitude (on a base-10 logarithmic scale) of its steady-state flux, normalized by the input of the pathway, which
consists of the reaction converting a constant supply of phenylalanine (Phe) into cinnamic acid (CinnA). (C) The intensity of each box reflects the mutual information (MI)
between one parameter and the S/G ratio of one transgenic experiment. Kinetic orders with a statistically significant mutual information score (but not always leading to a
large value, such as the kinetic order ‘c’) are listed on the left of their respective rows. Pathway reactions associated with these significant kinetic orders are represented by
heavier arrows.
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in our strategy is more or less ‘‘biologically blind,” this result can
easily be interpreted in terms of the logic of the pathway topology:
as shown by FBA and also be thioacidolysis yield, the flux leading
to the synthesis of 5-hydroxyconiferyl alcohol is negligible, which
means that the formation of 5-hydroxyconiferaldehyde or coniferyl
alcohol from coniferaldehyde is arguably the principal branch
point where the S/G ratio is determined.

In the second half of the parameter estimation process, we gen-
erated an ensemble of GMA models that reproduced a training set
of experimental results, using a simulated annealing (SA) algo-
rithm (Supplementary Method 7) to find optimal values for the sig-
nificant parameters. For the five transgenic experiments used as
training data (Table 2), the S/G ratios predicted by the ensemble
of models are highly consistent with the experimental measure-
ments (Fig. 4). The relative errors in two experiments, where either
COMT or CCoAOMT is down-regulated, are slightly greater than the
corresponding experimental errors (�3%). Considering that only a
handful of transgenic experiments are available for training the
models, this level of variance is better than one might have
expected.

To assess the reliability of the computed ensemble of models,
we used the ensemble to simulate two transgenic experiments
not used for training. Specifically, one of the experiments studied
a multi-gene co-transformation where the 4CL enzyme activity
was reduced by 80% and the CAld5H enzyme activity increased
by 2.1-fold [42]. As shown in Fig. 5, the predicted S/G ratio follows
the same upward trend and even falls within �20% of the observed
value. In the second transgenic experiment, the CCR transcript lev-
els were severely decreased to < 5% of the wild-type levels [8].
Again, the observed S/G ratio was predicted accurately by the
ensemble of models.

Beyond its good agreement with the experimental results, the
ensemble of GMA models permits further mechanistic insights.
For instance, most of the significant parameters with positive val-
ues (which are thus associated with substrates or activators) have
optimal values between 0.4 and 0.7, a typical range for kinetic or-
ders estimated from Michaelis–Menten reactions operating close
to the KM (Fig. 6A and B; see also [21]: Chapter 5). By contrast, both
fCOMT,5�OH�ConifALD and fCAD,SALD take on very small values within the
ensemble of models, which according to the theory behind GMA
models suggests that both the O-methylation of 5-hydroxyconifer-
aldehyde and the reduction of sinapaldehyde to sinapyl alcohol
operate at an essentially constant rate that is almost independent
of fluctuations in their substrate concentrations. Although there
has not yet been direct evidence for this predicted operation close

to saturation, one notices that the nominal concentration of sinap-
aldehyde in wild-type poplar is much greater than the reported
Michaelis constant of its CAD-catalyzed reduction to alcohol (see
Supplementary Tables 1 and 2 for specific values), which is directly
consistent with our model deduction.

Interestingly, the distributions of optimal parameter values re-
veal a linear relationship between fCAD,ConifALD and fCAld5H,ConifALD
(Fig. 7). As discussed in more detail in Supplementary Method 3,
this collinearity implies that the ratio between the corresponding
fluxes remains unchanged over time and is thus equal to the stea-
dy-state value obtained from FBA. More importantly, a constant ra-
tio between these two fluxes suggests that the S/G ratio might be
insulated from any genetic modulation prior to the reactions
involving coniferaldehyde, provided that the synthesis of 5-
hydroxyconiferyl alcohol is negligible. In fact, this is exactly what
happens in transgenic experiments where 4CL (Fig. 4) or CCR
(Fig. 5) is down-regulated. Even if the situation is not as expected
in the CCoAOMT down-regulation experiment (Fig. 4), the ob-
served S/G ratio is raised only by �11% despite a 90% decrease in
the CCoAOMT protein level.

With an ensemble of models that seems to be qualitatively ade-
quate, we can now apply the IOM approach to minimize the S/G ra-
tio of the monolignol biosynthetic pathway toward a higher yield
of xylose. Normally, IOM can be implemented in many different
ways. The most common scenario is that all enzymes (genes) in-
volved in the pathway are accessible to manipulations, which
unfortunately is not feasible with current biotechnological tech-
niques in plants. [66]. Instead, we mimic the current state of the
art (Fang Chen, personal communication) by allowing only one,
two, or three enzyme activities to be altered between 5% and 5
times the basal levels. Furthermore, we enforce physiological con-
straints that are necessary for plant viability and that are discussed
in Supplementary Method 6.

The optimization results (Table 3) indicate that by altering the
activity levels of three enzymes in prescribed amounts, the S/G ratio
predicted by the ensemble of models can be reduced from about 1.8
to about 1.11 – a significant decrease that far exceeds the natural
variation observed in poplar [44]. Moreover, by modulating just

Fig. 4. Simulation results of five transgenic experiments used as training data. Each
vertical bar represents either the experimentally observed S/G ratio (EXPT) or the
mean of 20 predictions from the ensemble of GMA models fitted by a simulated
annealing (SA) algorithm. The transgenic experiments are numbered as in Fig. 3C,
with the dashed line featuring the assumed wild-type value (1.8) and the error bar
indicating the 95% confidence interval for the mean.

Fig. 5. Simulation results of two novel transgenic experiments. As in Fig. 4, each
vertical bar represents either the experimentally observed S/G ratio (EXPT), or the
mean of 20 predictions from the ensemble of GMA models fitted by SA. Also, the
dashed line features the assumed wide-type value (1.8), and the error bar indicates
the 95% confidence interval for the mean. For the CCR down-regulation experiment,
the confidence interval is so small (�10�5) that it is nearly invisible.
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one enzyme (CAld5H), we can already achieve�60% of themaximal
reduction that is obtained when three enzymes are manipulated. In
other words, the S/G ratio is predicted to decrease from 1.8 to about
1.39 if one down-regulates the enzyme activity of CAld5H by one
quarter (the result is easily confirmed in PLAS). Overall, the opti-
mized solutions require only a moderate degree of modulation of

the selected enzymes (from approximately 70% to 4.3 times the
wild-type activity levels), which are well within the range of mod-
ern recombinant DNA techniques.

4. Discussion and conclusions

The application of mathematical modeling to studies of the
monolignol biosynthetic pathway, or of plant secondary metabo-
lism in general, has not yet attracted much attention, especially
when compared with central metabolism in microorganisms. One
reason is that the in vivo concentrations of secondary metabolites
are often low and difficult to measure, which makes quantitative
modeling difficult.

In this work, we used diverse types of data to pursue a two-step
model analysis of the monolignol pathway, using both Flux Balance
Analysis (FBA) and Biochemical Systems Theory (BST). These two
approaches had so far not been combined in the construction of
a dynamic model. Thus, we first constructed an initial, coarse
FBA model and used it in a second phase as a constraint for devel-
oping fully parameterized nonlinear BST models. The result of this
dual procedure was an ensemble of models that yield interesting
qualitative insights into the topological and regulatory properties
of monolignol biosynthesis. These models also lead to simulation
results and predictions that are quantitatively consistent with
experimental measurements that were either used for model train-
ing or validation. This concordance is quite striking, because the
data and information supporting the models are rather scarce
and involve a number of assumptions. Two reasons seem to be
responsible for the good performance of the model in predicting

Fig. 6. Illustration of kinetic orders derived from a Michaelis–Menten function and distributions of values for seven significant parameters – the identities of which are
described in Fig. 3C – within the ensemble of GMAmodels. (A) The kinetic order (red number) in each power-law representation of a Michaelis–Menten function is within the
range of 0 and 1, with the specific value depending on the assumed in vivo concentration of X. If the reaction operates at a point where the concentration of X is much greater
than KM, the corresponding power-law representation has a kinetic order close to zero, implying that the reaction rate is almost unaffected by the concentration of X. (B) As in
Fig. 4, the height of a vertical bar is proportional to the mean value of a significant parameter within the ensemble of models fitted by SA, with the error bar representing the
95% confidence interval for the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Plot of fCAld5H,ConifALD against fCAD,ConifALD. Each point represents the pair
(fCAD,ConifALD, fCAld5H,ConifALD) found in one GMA model within the ensemble obtained
through simulated annealing.
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the outcomes of validation experiments. The first is the proven
robustness of BST models, which is manifest in low model sensitiv-
ity with respect to most parameters, as long as the connectivity
and regulatory structure of a system is adequately captured by
the model equations. The second reason is our strategic and severe
model reduction, which effectively eliminated many parameters
which we had proven to be relatively inconsequential.

Because we used all available metabolite concentrations and S/
G ratios in transgenic experiments, either to estimate unknown
parameters or to validate our models, it is presently not feasible
to try improving the model further with purely computational
means. To construct a ‘‘crisper” mathematical model in the future,
specific data of the following types will be very helpful. At the met-
abolic level, intracellular metabolite concentrations, in vitro assays
of individual enzymes, and perhaps intracellular flux measure-
ments from dynamic labeling experiments [67] are in dire need.
As demonstrated in our parameter estimation approach, these data
should ideally be accompanied by measurements of lignin mono-
mers from transgenic plants with various genetic modulations of
monolignol biosynthesis.

Another source of relevant information will come from gene
expression data and specifically from microarray analyses, which
have already revealed distinct transcriptional regulation patterns
in genes encoding lignin biosynthetic enzymes at different develop-
mental stages [68]. At present, the growth periods in different
transgenic experiments span from several months to years, but it
is implicitly assumed that enzyme activities are more or less con-
stant. Future experiments and models should account for (slowly)
changing levels of enzyme activities over the course of xylem for-
mation during primary and secondary growth. Furthermore, since
most reactions within the pathway are catalyzed by several
isozymes, changes in gene expression should be confirmed with
measurements of changes in enzyme activities. As a first approxi-
mation, the number of mRNA copies for each corresponding gene
may be an indication of enzyme activity, but direct measurements
would eliminate uncertainties associated with different splice
variants and posttranslational modifications. Experiments and
models should also focus on the dynamics of transcription factors,
such as MYB and LIM, that have been found to coordinate the
regulation of the expression of genes encoding lignin biosynthetic
enzymes [69,70].

The proposed ensemble of models is clearly preliminary. Never-
theless, the models appear to be robust to modest differences in
parameter values, are qualitatively consistent with five training
experiments, and are even capable of semi-quantitatively repro-
ducing the results of two validation experiments that had not been
used for model construction. These initial successes are grounds for
cautious optimism that the model might serve as a basis from
which future developments may be launched. As an illustration,
we demonstrated one of its potential applications in genetic engi-
neering, namely the optimization of the pathway toward a reduced
S/G ratio and a higher yield of xylose. The results of this optimiza-
tion seem to be reasonable in a sense that all proposed changes in
enzyme activities are modest and therefore implementable. The
estimated improvements in the optimized system are actually very
conservative compared with the 75% decrease in the S/G ratio ob-
served in the COMT down-regulation experiment (Table 2). The
reason for this discrepancy is that we imposed much more strin-
gent bounds on metabolites than what is observed in the COMT
down-regulation experiment. While wider bounds are clearly
implementable in optimizations with the computational model
and would result in much stronger reductions in the S/G ratio,
large metabolite variations in vivomight lead to toxicity or reduced
viability. Two explanations are possible for the observed 75% de-
crease in the S/G ratio. First, evidence indicates that metabolites
that might be expected to accumulate in the cytoplasm are instead

being transported to the cell wall and incorporated into lignin by
so far unknown mechanisms [31], thereby precluding toxicity. Sec-
ond, the observed variation in the S/G ratio may result from a
change in the subcellular structure of pathway enzymes – or al-
leged ‘‘metabolic channeling” [71] – that is currently outside the
scope of our GMA models. Taken together, the observed physiolog-
ical response seems to suggest that our optimization settings
might be overly cautious and that the S/G ratio could be reduced
even further than predicted.

As new data are being generated in the emerging field of plant
systems biology, the next goal will be to integrate a wider variety
of ‘‘omics” data from different organizational levels into the con-
struction of multi-scale models that will be capable of predicting
the physiological consequences of hypothetical transgenic experi-
ments. Models of this capability will be particularly helpful as
the corresponding experiments in actual trees are slow and labori-
ous. The need to test model predictions, as well as proposed genet-
ic engineering strategies, will not abate. However, once a model is
sufficiently reliable, it may be able to screen out experiments that
are unlikely to lead to improved outcomes.
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