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a b s t r a c t

Operating principles address general questions regarding the response dynamics of biological systems as
we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design
principles, the question arises: Why are some operating strategies encountered more frequently than
others and in what sense might they be superior? It is at this point impossible to study operation prin-
ciples in complete generality, but the work here discusses the important situation where a biological sys-
tem must shift operation from its normal steady state to a new steady state. This situation is quite
common and includes many stress responses. We present two distinct methods for determining different
solutions to this task of achieving a new target steady state. Both methods utilize the property of
S-system models within Biochemical Systems Theory (BST) that steady states can be explicitly repre-
sented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse,
or regression to characterize the entire admissible solution space. Operations on the basis of the solution
space permit modest alterations of the transients toward the target steady state. The second method uses
standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of
functional effectiveness, which are specified beforehand. As an illustration, we use both methods to
characterize alternative response patterns of yeast subjected to heat stress, and compare them with
observations from the literature.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Biological design principles refer to structural or regulatory fea-
tures of biological systems that are observed more often than ex-
pected. They are thought to have survived evolution, thereby
making them apparently superior to hypothesized alternative
structures that a priori might seem equally reasonable and valid
[1,2]. The typical question in the investigation of design principles
is: What is the advantage of a particular structural or regulatory
feature over an otherwise equivalent design that lacks this feature?

Design principles are identified and investigated through com-
parisons with reference cases. In static network analysis, a candi-
date structure is declared a motif [3–6] if it is found significantly
more often than in random graphs, as they were originally pro-
posed over 50 years ago by Erdös and Rényi [7]. Within Biochemi-
cal Systems Theory (BST; [1,8–10]), the role of a design feature is
analyzed by comparing two systems that have exactly the same
structure except for the feature or interest. The approach of choice
for such an analysis has been theMethod of Controlled Mathematical
Comparisons (MCMC) [2,11]. A key component of this method is the
establishment of objective criteria of functional effectiveness

[11,12]. These criteria, which are formulated before the compari-
son of two system structures is performed and interpreted, serve
as a metric according to which either the system of interest or
some alternative is deemed superior. Typical criteria are stability,
robustness, a short response time to stimuli, adequate responsive-
ness to external demands, and maybe a transient response profile
that does not deviate too far from the nominal profile.

MCMC originally focused on algebraic analyses, but was subse-
quently augmented with computational and statistical methods
[1,12–15]. Dynamic biological systems that were successfully ana-
lyzed with respect to design principles include pathway topologies
[1,12,13,16], immune cascades [12], gene regulatory circuits [17–
19], signaling systems [20], and riboswitches [21]. As this entire
volume is dedicated to design principles, it is not necessary to re-
view the complete history and development of the search for de-
sign principles, or the key methods that were originally outlined
by Michael Savageau over a quarter century ago, and the reader
is referred to the references above and to other articles in this vol-
ume for further information.

While design principles have become a fashionable topic of
investigation in recent years, their dynamic counterparts, operating
principles, have received only a small fraction of the attention.
Operating principles address questions regarding the dynamics of
a response as we observe or hypothesize it, in comparison to a pri-
ori equally valid alternatives [22–24]. Like in the case of design
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principles, operating principles may be investigated in natural sys-
tems, where the goal is to discover an objective explanation for the
suitability or optimality of an observed set of procedures, or in syn-
thetic, engineered systems, where the goal is the optimization of a
procedure with respect to some target objective.

An example for an investigation of natural operating principles
is the following question: If a system is forced by the environment
to move to a new steady state, and if this state may be achieved
either by drastically changing a few control variables or by slightly
changing many control variables, which strategy is preferable?
Alvarez and colleagues [25] analyzed this question heuristically
for changes in yeast metabolism during the diauxic shift and deter-
mined that many genes in the living yeast cell were changed by a
modest degree. A different aspect of natural operating principles
was investigated in the response of yeast cells exposed to heat
stress [14,26–29]. In this case, the lead questions were: Which
genes are actually up-regulated in expression and by how much?
What are the metabolic consequences of this up-regulation? Could
there be alternative up-regulation scenarios that might perform
better? Can we find objective criteria explaining the emergence
or natural selection of the strategy that is actually observed in
yeast? Yet another example concerned the question of how bacte-
ria using a PTS system for energy production can restart glycolysis
after starvation, when one would expect the initial phosphate do-
nor, phosphoenolpyruvate, to be depleted [30,31].

Questions regarding the operation of synthetic systems are of
the following types. Which sets of process manipulations or alter-
ations will cause the system to reach a target objective? What is
the advantage of utilizing or altering a particular sequence of pro-
cesses instead of an alternative sequence? Is one set ‘‘better’’ than
another? Is one of them optimal with respect to objective criteria?
As a specific example of this situation, the task was posed to opti-
mize the product yield of a feedback-regulated pathway with two
successive branches by selecting and altering a small, fixed number
of genes or enzymes. The results, which were not easy to predict
without a quantitative analysis, demonstrated that the locations
and magnitudes of optimal manipulations depended not so much
on the topological structure of the pathway as on the locations of
its regulatory signals [22].

One might ask whether operating principles are truly different
from design principles, because the possible space of dynamic re-
sponses is clearly constrained, if not determined, by the physical
and regulatory structure of a system. While design and operation
are coupled to some degree, their distinction is both reasonable
and necessary, because a cell or organism could theoretically re-
spond to the same demand in different ways, even within exactly
the same structural confines, as the diauxic shift study [25] dem-
onstrates. Furthermore, cells can be exposed to drastically different
demands, which require appropriate responses within the same
structural design. A good example is the blue-green alga Synecho-
cystis, which generates energy either autotrophically per photosyn-
thesis, heterotrophically per consumption of carbohydrates, or
through a mixture of the two. It has been shown that the distribu-
tion of flux rates within its metabolic pathway system, and thus
the operation of the system, shifts dramatically between these
three modes [32]. In a different example, it was shown that plant
cells use the same metabolic pathway system, but with distinctly
different, dynamically changing flux distributions, to produce woo-
dy materials during their development or in different transgenic
strains [33,34].

As in the case of design principles, it is impossible to study oper-
ating principles in exhaustive generality. The analysis described
here therefore focuses exclusively on one pertinent special case,
namely, where a biological system must shift from its normal stea-
dy state to a new steady state, a response that is typical in the face
of persistent changes in a cell’s environment. While the two steady

states will be at the center of the present analysis, features of tran-
sients will also be discussed. In first approximation it may even be
possible to consider slow-changing, longer-term trends as a series
of different ‘‘almost-steady-states’’ [35].

Most analyses of design principles in the past had the benefit of
clear reference systems that were topologically very similar to the
system of interest. For instance, a system with feedback was com-
pared to a system without this particular feedback signal. In the
case of operating principles, it is not always a priori clear what
the alternatives are. For instance, we cannot simply compare up-
regulation of one process against unaltered operation, because
the two would lead to different transients and presumably to dif-
ferent steady states. Instead, the approach toward a new steady
state will almost always require alterations in larger sets of inde-
pendent variables. Thus, the first important step in the analysis
of operating principles is an exhaustive exploration of the admissi-
ble set of operating strategies. Once this set is characterized, the true
discovery of operating principles consists of the selection of the one
strategy that is superior to all others under the chosen criteria of
functional effectiveness and optimality.

2. Methods and theoretical results

Canonical models, and in particular S-systems within Biochem-
ical Systems Theory [1,8], are especially well suited for analyzing
operating principles. As in the case of design principles, the pri-
mary reasons are twofold. First, these systems have a fixed struc-
ture, where each component has a well-defined meaning and
where system features are mapped onto parameters in a one-to-
one fashion [1,10]. Secondly, S-systems permit a linear representa-
tion of their steady states within the language of linear algebra,
upon a logarithmic transformation of all variables [36].

As described many times, S-systems always have the format

_Xi ¼ ai

Ynþm

j¼1

X
gij
j � bi

Ynþm

j¼1

X
hij
j : ð1Þ

Here, the Xi, i = 1, . . . , n, are dependent variables, which may
change under the action of the system, while Xi, i = n + 1, . . . , n +m,
are independent variables, which may affect the action of the sys-
tem but are themselves not affected by the system. The parameters
ai and bi are non-negative rate constants, and gij and hij are real-
valued kinetic orders. The literature on these systems is quite rich
(e.g., see references in [10]).

The generic situation to be addressed here concerns a biological
system, represented by S-system equations, that needs to respond
to a changed environmental demand by assuming a new steady
state. It is not difficult to imagine that this task usually has many
solutions and that distinctly different settings of independent vari-
ables may lead to the same steady state with respect to the depen-
dent variables. This multiplicity of possibilities is due to the fact
that most systems contain many more processes than variables.
Because these processes are usually under the control of indepen-
dent variables, different choices of independent variables corre-
spond to distinct solution strategies.

The non-trivial steady state of an S-systemmodel can be formu-
lated in matrix notation as [37]

AD � yD þ AI � yI ¼ b ð2Þ
where yD denotes the vector of the logarithms of the dependent
variables at steady state, yI is the corresponding vector of indepen-
dent variables, the elements of the matrices AD and AI are aij =
gij � hij for all i and j, separated into dependent and independent
variables, and bi = log(bi/ai) for i = 1, . . . , n.

In a typical analysis, all parameter values are known and one
computes the non-trivial steady state, which may then be used
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for other diagnostics like stability, sensitivity, and gain analysis
[1,10,36]. This steady state can be expressed explicitly as

yD ¼ S � bþ L � yI; ð3Þ
where S ¼ A�1

D and L ¼ �A�1
D AI are the so-called sensitivity and log-

arithmic gain matrices, respectively [37].
For our purposes here, we must turn the task around. We as-

sume that the system has to switch from some initial steady state
to a target steady state yD that is mandated by new environmental
demands. We furthermore suppose that we know the numerical
values of the dependent variables at this target steady state. The
question thus becomes how the independent variables should be
changed to achieve this state (cf. [35,38]). Again using stress as
an example, we might observe an altered metabolic steady state
and ask which enzymes would have to be altered in activity to
reach the stress state.

For ease of representation, we rewrite Eq. (3) as

�A�1
D AIyI ¼ yD � A�1

D b: ð4Þ
Since A�1

D b is constant and AD and b are known, we define

y0
D ¼ yD � A�1

D b; ð5Þ
which yields the simplified representation

LyI ¼ y0
D: ð6Þ

For the special case where m = n and L has full rank, we can in-
vert the system of equations and express each independent vari-
able as a unique linear function of the new variables that
constitute y0

D; namely we obtain

yI ¼ L�1y0
D: ð7Þ

Expressed in words, we can demand numerical values for the
dependent variables of a particular target steady state, and Eq.
(7) determines how the independent variables have to be set for
the system to reach this state. If the new state is stable, and if
the system starts within its basin of attraction, one may actually
reach this state by starting the system at the original steady state
and resetting the independent variables according to Eq. (7). Of
course, we do not know how much time the dynamic system will
require to come sufficiently close to the target.

For cases where m < n, the matrix L is ‘‘tall,’’ which reflects an
over-determined system that generally permits no solution. Never-
theless, for practical purposes we can compute a least-squares
solution, which minimizes the deviation from the target state
and is given as the regression equation

yI LS ¼ Lþy0
D; ð8Þ

where Lþ is the pseudo-inverse of L [39].
In the most pertinent case, the number of independent variables

is larger than the number of dependent variables (m > n). This rela-
tionship is not always true in actual systems, but it usually holds,
because most systems contain more processes than pools and each
process normally involves at least one independent variable. The
matrix equation (6) now can no longer be inverted directly, and
if the rank of L is r, the solution consists of an m � r dimensional
space. Even though an inversion is not directly possible, the solu-
tion space may be characterized with methods of linear algebra,
where the starting point is the pseudo-inverse. Specifically, the
solution space, which consists of every admissible yI, can be
spanned through the following steps. First, find a particular solu-
tion yI_PS. Then use yI_PS and the span of the null space of L to de-
scribe the entire solution space as

yI PS ¼ Lþy0
D; ð9Þ

yI ¼ yI PS þ B � k: ð10Þ
Here, k is any given real-valued (m–n)-dimensional vector,

rank(L) = n, and B is a matrix in which each column is a basis vec-
tor. Together, these column vectors constitute a basis of the null
space of L.

2.1. Illustration examples

It is useful to demonstrate the theoretical results with simple
didactic examples. The first representative case is a cascaded sys-
tem (Fig. 1), where the numbers of precursors and state variables
are the same (n =m = 4) and the system has a unique solution.
The cascade could describe the expression of a formerly inactive
gene X5, which becomes activated (X1) and is subsequently tran-
scribed; X6 could model nucleotides that are assembled into mRNA
(X2); X7 could represent amino acids, which are assembled into an
enzyme (X3), which subsequently catalyzes the conversion of a
metabolic substrate X8 into a product X4. The final product could
directly or indirectly repress the expression of the gene. The gener-
ic S-system representation of the model is

_X1 ¼ a1X
g14
4 Xg15

5 � b1X
h11
1 ;

_X2 ¼ a2X
g21
1 Xg26

6 � b2X
h22
2 ;

_X3 ¼ a3X
g32
2 Xg37

7 � b3X
h33
3 ;

_X4 ¼ a4X
g43
3 Xg48

8 � b4X
h44
4 :

ð11Þ

Without loss of generality in this and the later illustration
examples, all rate constants ai and bi are arbitrarily set to 1 and
the independent variables are initially defined as 1.2. By this defi-
nition we know that y0

D ¼ yD because b = 0. The values of the ki-
netic order parameters in this and other systems are given in
Table 1.

The second example is a simple linear pathway with feedback
and an exogenous demand for product (Fig. 2). This example was
chosen in contrast to the cascaded system, because it involves sev-
eral precursor-product relationships, which constrain the parame-
ters of the corresponding effluxes and influxes. While one may
initially wonder what the effects of these constraints may be, we
will see that these constraints have no real bearing on the charac-
terization of a set of independent variables that moves the system
to the target steady state. The enzymes for the conversions of X2

into X3 and X4 are explicitly modeled, as are the input to the
pathway and the demand for X4, such that n =m = 4. The generic
S-system model is

X1

X2

X3

X4

X5

X6

X7

X8

Fig. 1. A cascaded system with as many dependent (circles) as independent
(squares) variables. The cascade could represent, from top to bottom, gene
expression, transcription into mRNA, translation into protein, and a metabolic
process catalyzed by enzyme X3.
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_X1 ¼ a1X
g15
5 � b1X

h11
1 Xh14

4 ;

_X2 ¼ b1X
h11
1 Xh14

4 � b2X
h22
2 Xh26

6 ;

_X3 ¼ b2X
h22
2 Xh26

6 � b3X
h33
3 Xh37

7 ;

_X4 ¼ b3X
h33
3 Xh37

7 � b4X
h44
4 Xh48

8 :

ð12Þ

Again, all rate constants ai and bi are arbitrarily set to 1 and the
independent variables to 1.2. The values of the kinetic orders are
given in Table 1.

For our illustration, we start both systems arbitrarily at
(1, 1, 1, 1) and let them reach their nominal steady states. While
at the steady state, the environmental demand changes at time
t = 60 or t = 150, respectively, and we assume that all variables in
the cascade and the linear pathway must move to a new target va-
lue of 2. Because n =m = 4, the solutions are in both cases unique.
They are given as XI ¼ ½16:0 4:0 0:7937 1:4142 �T and

XI ¼ ½0:933 0:1857 0:0442 0:5 �T , respectively. Numerical sim-
ulation demonstrates that the systems indeed respond by moving
to the desired target states (Fig. 3). The vectors XI in the inverse
solutions do not convey anything about the transients.

The third and fourth introductory examples are cascaded and
linear pathways with fewer independent than dependent variables
(Fig. 4). S-systems models were constructed according to well-
documented guidelines, and the values of the kinetic orders for
the cascaded system were defined as presented in Table 1. The tar-
get values were defined as 3. It could seem that theses scenarios
are rather unrealistic, but they do occur in cases like the ones
shown here as well as in cases of strongly connected pathways
where not all genes or enzymes are accessible to manipulations.
If it is infeasible or impossible to alter some of the independent
variables, m is in effect decreased and may become lower than n.

This ‘‘unsolvable’’ situation may be addressed in different ways.
First, instead of searching for an exact solution, one may solve the
corresponding regression problem (see Eq. (8)) and find a set of
independent variables that moves the system to a steady state that
is as close as possible to the target state (Fig. 5). In the numerical
example here, the solution vector is XI = [17.7905 9 5.4885]T, and
we see that X3 and X4 are not quite on target.

As a variation on this theme, closeness to the target state may
be defined differently for each dependent variable, through the
use of appropriate weights. This strategy allows for the option that
some ‘‘important’’ dependent variables can be selected to come as
closely as possible to their target values, while others are possibly

Table 1
Numerical values of kinetic parameters for all illustration examplesa.

Cascade 1 Linear pathway Cascade 2 Branched pathway
Fig. 1 Fig. 2 Fig. 4 Fig. 7

g14 �0.8 g15 0.5 g14 �0.8 a1 1.755 b1 1
g15 0.25 g21 0.2 g15 0.24 a2 1 b2 2
g21 0.4 g24 �0.25 g21 0.4 a3 1 b3 2
g26 0.3 g32 0.8 g26 0.3 a4 1 b4 1
g32 0.5 g36 0.35 g32 0.5 g13 0.05 h11 1
g37 0.3 g43 0.4 g37 0.3 g15 0.75 h16 1
g43 0.1 g47 0.1 g43 0.4 g1,11 0.125 h22 0.5
g48 0.2 h11 0.2 h11 0.2 g21 1 h27 0.5
h11 0.2 h14 �0.25 h22 1 g26 1 h29 0.5
h22 1 h22 0.8 h33 0.8 g32 0.5 h33 0.2
h33 0.4 h26 0.35 h44 0.9 g39 1 h3,10 0.25
h44 0.2 h33 0.4 g42 0.5 h3,11 0.25

h37 0.1 g47 1 h44 0.5
h44 0.2 h48 1
h48 0.25

a The rate constants for the linear and the two cascaded pathways were set equal
to 1.

X3 X4X1 X2
X7

X8

X5
X6

Fig. 2. Linear pathway with feedback and an exogenous demand for product. The
task of moving the system to a new steady state has a unique solution.

Fig. 3. Resetting the independent variables according to the computed unique solutions moves the cascaded (left) and linear (right) pathway systems to the desired target
(2, 2, 2, 2). During the initial phase (shaded light grey), the systems move from their arbitrary initial values (1, 1, 1, 1) to their nominal steady states. At time t = 60 or t = 150,
respectively, the environment changes, requiring all variables to reach the target value 2.

X1

X2

X3 X4

X5

X6

X7

X3 X4X1 X2
X7

X5
X6

Fig. 4. Over-determined cascaded and linear pathway systems with n = 4, m = 3. In
the example of a linear pathway, the reaction between X1 and X2 may not be
accessible to alterations.

52 Y. Lee et al. /Mathematical Biosciences 231 (2011) 49–60



p py

not. Finally, one may ignore some of the dependent variables,
whose specific values are not considered as important as those of
other variables, and restrict the optimization to a subset of impor-
tant dependent variables, thereby in effect reducing n. Examples
for less important variables might be intermediates in linear
pathways.

To be specific, suppose it is most important that variable X4 of
the cascaded pathway attain the target value, while other variables
are of secondary importance. The original task can be written as

yD ¼ LyI where yD ¼

y1
y2
y3
y4

2
6664

3
7775; L ¼

L11 L12 L13
L21 L22 L23
L31 L32 L33
L41 L42 L43

2
6664

3
7775;

and yI ¼
y5
y6
y7

2
64

3
75� ð13Þ

To enforce that X4 moves to the target, presumably at the cost of
other variables, we separate the equation for X4 in Eq. (13) from the
rest, which yields

y4 ¼ ½ L41 L42 L43 �
y5
y6
y7

2
64

3
75: ð14Þ

Using the notation L123 ¼
L11 L21 L13
L21 L22 L23
L31 L32 L33

2
4

3
5, and L4 ¼

½ L41 L42 L43 �, the particular solution of yI based on this separated
equation is now given as

yI ¼ yI PS þ b4 � k; ð15Þ
where

yI PS ¼ Lþ
4 y4; ð16Þ

b4 is a 3 � 2 matrix where each column is a basis vector of the null
space of L4, and k is any real-valued 2-dimensional vector. Having
enforced that the fourth variable will reach the target value, we still
have options for the remaining independent variables. Namely, the
equation

½ y1 y2 y3 �T ¼ L123yI ¼ L123ðyI PS þ b4 � kÞ ð17Þ
allows us to define criteria such as a least-squares error for the
remaining variables, which correspond to different choices for k.
For instance, we can use the pseudo-inverse to define

k ¼ ðL123 � b4Þþð½ y1 y2 y3 �T � L123 � yI PSÞ; ð18Þ

which yields the solution as

yI ¼ yI PS þ b4 � ðL123 � b4Þþð½ y1 y2 y3 �T � L123 � yI PSÞ: ð19Þ
The result of this operation is shown in Fig. 6. In comparison

with Fig. 5, X4 now reaches the target value 3 exactly, while the
remaining variables approach the value 3 only approximately. In
particular, the improvement in X4 is ‘‘paid for’’ with an inferior per-
formance of X3. The solution vector of independent variables in this
case is XI ¼ ½97:2759 9:0 116:8222 �T . If X3 is most important in
the same system, the solution vector is XI ¼ ½12:7188 9:0 3:0 �T
and X4 overshoots the target (plot not shown).

The most pertinent case is n <m. A representative example is
the pathway shown in Fig. 7, which has four dependent and seven
independent variables. The S-system was constructed according to
usual guidelines (see Table 1 for parameter values), and as before,
we set all independent variables arbitrarily set to 1.2 and solved
the system from (1, 1, 1, 1) to its normal steady state. Subse-
quently, we assumed that the environmental demand changed by
requiring all target values for the dependent variables to assume
the value of 2.

Because n <m, the solution consists of a space that can be ex-
pressed by a particular solution plus a linear span of a basis of
the null space of L ¼ �A�1

D AI . The particular solution is computed
as

yD ¼ LyI ð20Þ

yI PS ¼ LþyD ð21Þ
and any feasible solution can be characterized by the particular
solution plus an arbitrary vector in the null space of L:

yI ¼ b � kþ yI PS: ð22Þ

Fig. 5. Least squares solution for the over-determined cascaded system in Fig. 4.

Fig. 6. Solution for the over-determined cascaded system in Fig. 4, where X4 is
forced to reach the target state 3.

X3

X4

X1 X2

X10

X5
X6

X9

X7

X8

X11

Fig. 7. Branched pathway with a substrate cycle. The system contains four
dependent variables (circles) and seven independent variables, which model the
system input (X5) and catalyzing enzymes (X6, . . . , X11). The system is representa-
tive of the most prevalent situation where n <m.
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where k may be any 3-dimensional real-valued vector and B is a
matrix in which each column is a basis vector of the null space of L.

Choosing any yI inside this solution space is guaranteed to
lead the system to the target steady state. Two examples
of admissible solutions in Cartesian space are XI ¼
½1:9363 1:4646 0:7293 0:7293 1:4705 0:7755 0:8658 �T and
XI ¼ ½4:3355 2:8505 2:1973 2:1973 1:8490 1:1861 1:4149 �T .
The former of these solutions is the least-squares solution,while the
latter is the least-squares solution plus the first basis vector of the
null space. These and other solutions within the admissible space
move the system to the target steady state of (2, 2, 2, 2) as expected,
but the transient behaviors of these systems are different, and it is
not a priori clear how to manipulate them.

Interestingly, it is possible to alter any solution to some degree
in a targeted fashion by controlling the basis vectors of the three-
dimensional null space of L. In the given numerical case, the basis
vectors are

B1 ¼ ½0:403 0:333 0:5514 0:5514 0:1145 0:2124 0:2456 �T ;
B2 ¼ ½0:0226 0:0091 �0:1991 �0:1991 0:2173 0:9322 �0:063 �T ;
B3 ¼ ½�0:1285 0:0201 �0:1776 �0:1776 0:2178 �0:0607 0:9321 �T :

ð23Þ

These basis vectors can be computed directly in Matlab with the
Null command, which applies singular value decomposition to ob-
tain an orthogonal basis set. Different effects are observed when
any of these basis vectors is altered. For instance, increasing B1

by a positive factor causes all responses to speed up (Fig. 8), while
increasing B2 or B3 causes X1, X2 and X3 to accelerate but X4 to slow
down (data not shown). Thus, the transient behavior can be con-
trolled to some degree through the basis vectors. However, the ef-
fects of such manipulations are difficult to predict, and it is more
straightforward to use direct optimization methods as we will dis-
cuss them next.

2.2. Optimal operating strategies

The computation of the pseudo-inverse in the steady-state
equations of the S-system, along with the characterization of the
null space, results in the space of all possible solutions. Within this
space, any computed resetting of the independent variables leads
to a desired steady state in terms of the dependent variables. While
it is mathematically and practically satisfying to have a concise
representation of this solution space, one will wonder whether
some admissible solutions within this space are ‘‘better’’ than oth-
ers. Clearly, the answer requires optimization, which, interestingly,
does not need an explicit characterization of the solution space per

se. The optimization does require an objective function, which is to
be selected according to the chosen criteria of functional
effectiveness.

Operating principles have not yet been analyzed often enough
to permit a listing of ‘‘typical’’ criteria of functional effectiveness,
and judging by the exploration of design principles, one might ex-
pect them to change from one application to another. Among
likely, generic criteria one will often establish similar metrics as
for design principles, which often include local stability, modest
gains and sensitivities, and tolerance of the steady state to pertur-
bations. Also as in the case of design principles, one might prefer
fast response times and bounded transients. Another typical crite-
rion in superior designs is a minimal accumulation of intermedi-
ates. Here, this criterion is automatically satisfied when a
complete target profile of steady-state values is mandated, but if
no target values for intermediates are specified, it may indeed
serve as a criterion.

In addition to these criteria gleaned from design principle anal-
ysis, operating strategies are distinguishable in other respects. In
the work presented here, we focus primarily on two aspects that
appear to be particularly pertinent: the collective deviation of inde-
pendent variables from their nominal levels, and the number of
independent variables that are to be changed. These criteria are
important to a cell, because they are directly related to the effort
that has to be expended in terms of gene expression and the
dynamics of RNAs and proteins [40], and to the degree of possible
side effects from such changes. Secondarily, we will look into the
profiles of transients between steady states. One could presumably
study a variety of additional criteria, such as a favorable dynamic
sensitivity profile [41,42].

To formalize the deviation from normal operation, we introduce
a vector d that represents the change in the vector of independent
variables such that the system reaches the target steady state ~yD,
which is assumed to be known. With these definitions, we can for-
mulate the target state as

~yD ¼ A�1
D b� A�1

D AIðyI þ dÞ; ð24Þ
and this expression can be rearranged as a linear constraint on d.
Namely, we can write

A�1
D AId ¼ A�1

D ðb� AIyIÞ � ~yD: ð25Þ
Now let

zi ¼
1 if the catalytic step coded by di

is induced to reach the steady state
0 otherwise

8><
>:

: ð26Þ

If all zi are set to 1, the optimization task allows every indepen-
dent variable to change as long as the linear constraints are satis-
fied, but the identification of specific solutions still depends on the
dimension and rank of A�1

D AI as well as the chosen criteria of func-
tional effectiveness.

One of the most commonly used criteria for finding a particular
solution is the total squared error E, which in this case can be writ-
ten as

E ¼ kA�1
D ðb� AIyIÞ � ~yD � A�1

D AIdk2; ð27Þ
where k � k2 is the squared 2-norm. The solution d̂ with the lowest E
corresponds to an optimal operating strategy where the first crite-
rion, i.e., the collective deviation in independent variables from
their nominal values, is minimized.

The second criterion requires finding a minimum set of inde-
pendent variables whose alteration is necessary for reaching the
target steady state. This task is equivalent to solving the following
Mixed Integer Linear Programming (MILP) problem:

Fig. 8. Manipulation of the basis vectors permits modest changes in transient
speed. Here, increasing B1 causes all transients to accelerate (arrow). Solid lines: no
acceleration; dashed lines: acceleration by increasing B1 twofold; dotted lines:
acceleration by increasing B1 fourfold.
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min
Xm
i¼1

zi

subject to

A�1
D AId ¼ A�1

D ðb� AIyIÞ � ~yD;

di P 0;
di 6 ziD ðD is an arbitrarily large positive numberÞ;
zi : 0=1;
8i ¼ 1; :::;m:

ð28Þ

The CPLEX solver in AMPL can be used to solve this type of MILP.
Similar to optimization tasks in the field of biotechnology,

where the typical objective is the maximization of a metabolite
pool or flux, it is here also possible to account for constraints on
concentrations and fluxes [43–47] as well as more complex limita-
tions such as metabolic burden [9] or the feasibility of parameter
regions that correspond to admissible physiological states [28]. In
particular, the metabolic burden, which is associated with the total
mass of all protein (cf. discussion in [9]), can be an important issue
of cellular protein economy because it was shown for the case of
recombinant bacteria that the growth rate decreased monotoni-
cally with increasing numbers of introduced plasmid copies (e.g.,
[48–50]).

Moreover, one should expect that it is easier to up- or down-
regulate some genes or enzyme activities than others. In fact, it
might not be practically feasible to change some enzyme activities
at all. If so, the corresponding independent variables in the model
are off limits in the selection of any viable operating strategies.
Other processes might be accessible to manipulations but limited
in the degree of alteration. We will discuss some of these concepts
in the following Case Study.

3. Case study

As a specific case study, we consider the response of yeast cells
to heat stress. The first indications of such a response are observa-
ble within minutes of the initiation of heat stress: transcription
factors are mobilized and translocated [51], and numerous genes
respond with strong changes in expression [52–54]. At the proteo-
mic level, heat shock proteins emerge in high numbers [55–57]. At
the metabolic level, a significantly altered profile of sphingolipids
guides the expression of some key genes [58], and, most important

for the following illustration, the protective disaccharide trehalose
is produced in huge amounts [40,59].

Several modeling studies have investigated the dynamics of tre-
halose upon heat shock in recent years [14,26,28,29,40,60,61],
which allows us to keep the discussion of background information
to a minimum. In a nutshell, material is siphoned off glycolysis at
the level of glucose 6-phosphate and channeled toward the
production of glucose 1-phosphate, UDPG, glycogen, trehalose 6-
phospate and trehalose, with trehalose accumulating in large
quantities. The enzyme trehalase splits trehalose into two glucose
molecules and thereby completes the trehalose cycle (see Fig. 9).
Because the present study is focused on methodological advances
rather than new biological insights, we take the S-system model
of the trehalose cycle in [14] at face value and analyze alternative
operating strategies.

The S-system equations describing the system were taken di-
rectly from [14]. They are

Glucose : _X1 ¼ 31:912X0:968
0 X�0:194

2 X0:00968
7 X0:968

8 X0:0323
19 � 89:935X0:75

1 X�0:4
6 X9

G6P : _X2 ¼ 142:72X0:517
1 X�0:179

2 X0:183
3 X�0:276

6 X0:689
9 X0:311

12r

� 30:120X�0:00333
1 X0:575

2 X�0:17
3 X0:00333

4 X0:5111
10 X0:0667

11 X0:411
12f X0:0111

17

G1P : _X3 ¼ 7:8819X0:394
2 X�0:392

3 X�0:010
4 X0:0128

5 X0:949
12f X0:0513

15r

� 76:434X�0:412
2 X0:593

3 X0:718
12r X0:180

13 X0:103
15f

UDPG : _X4 ¼ 11:070X0:5
3 X13 � 3:4556X�0:0429

1 X0:214
2 X0:386

4 X0:857
14 X0:143

17

Glycogen : _X5 ¼ 11:060X0:040
2 X0:320

3 X0:160
4 X0:600

14 X0:400
15f

� 4:9290X�0:04
2 X�0:04

4 X0:25
5 X0:200

15r X0:800
16

T6P : _X6 ¼ 0:19424X�0:300
1 X0:300

2 X0:300
4 X17 � 1:0939X0:200

6 X18

Trehalose : _X7 ¼ 1:0939X0:200
6 X18 � 1:2288X0:300

7 X19

ð29Þ
Of primary interest here is the response of yeast to heat stress,

which affects most of the reactions steps in the pathway. According
to literature studies (cited in [14]), the alterations among the
dependent and independent variables under heat stress are dis-
tinctly different, with some variables and steps changing substan-
tially and others not as much or not at all (Tables 2 and 3).

In this case, n = 7 andm = 12, which indicates quite a bit of flexi-
bility among different solutions. Application of the pseudo-inverse
method reveals the space of all admissible solutions; an example
of a possible solution is XI ¼ ½5:4169 5:2877 0:9723 2:3770
2:30043:01972:88552:85742:16502:97394:46201:4873�T . XI is

Glcext

Glc

G6P G1P UDPG 

T6P 

Tre

PPP 

Medium

Cytosol

Glycolysis 

Glycogen

X9

X12
X10

X13 X14

X8

X11

X15

X16

X17

X18X19

Fig. 9. Diagram of the trehalose cycle (solid blue arrows) in yeast. Solid brown arrows represent other pertinent reactions. The main glycolytic flux is presented with heavy
arrows. Red dotted arrows with associated minus signs indicate inhibition, while green dotted arrows associated with plus signs indicate activation. Abbreviations: Glcext:
external glucose; Glc: internal glucose (X1); G6P: glucose 6-phosphate (X2); G1P: glucose 1-phosphate (X3); UDGP: uridine diphosphate glucose (X4); glycogen (X5); T6P:
trehalose 6-phosphate (X6); Tre: trehalose (X7); PPP: pentose phosphate pathway. X8, . . . , X19 represent independent variables (see Table 4). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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computed using the pseudo-inverse of L and the original basis of the
null space of L, which was obtained through singular value decom-
position in MATLAB, and k¼ ½1 1 1 1 1 �T . As to be expected, this
vector of independent variablesmoves the system to the target stea-
dy state. However, the solution is much slower than the observed
solution (Fig. 10).

The solution space obtained with the pseudo-inverse method is
5-dimensional, and a basis is

As in the illustrative example of a branched pathway, it is to
some degree possible to affect the transient speed by manipulating

the basis vectors. Tuning B1 or B2 causes the glycogen concentra-
tion to speed up but has almost no effect on trehalose or the other
variables. Increasing B3 accelerates trehalose and no other vari-
ables, increasing B4 speeds up both trehalose and glycogen, while
increasing B5 speeds up trehalose but slows down glycogen pro-
duction (Fig. 11).

In contrast to exploring the entire solution space, the direct
optimization method allows us to select criteria of functional effec-

tiveness a priori and to optimize the solution toward these criteria
under the constraint that the target steady state is reached. As the
first example, suppose the overriding criterion is to alter the inde-
pendent variables as little as possible in magnitude. Least-squares
optimization toward this criterion yields a solution that not only
reaches the target steady state but also exhibits only modest vari-
ations in enzyme activities (Table 3; column 4).

As a second example, we mandate to keep the number of al-
tered independent variables to a minimum. MILP optimization re-
veals that this minimum number is 7, and the steady state is
reached upon quite strong alterations in this minimum set (Table 3;
column 5).

There are unlimited combinations on this theme, depending on
the choice of criteria of functional effectiveness. For instance, we
may consider a more complex scenario, which accommodates the
following criteria. First, suppose that the phosphofructokinase step
(X10) cannot be altered. This supposition was motivated by actual
observations in yeast (cf. [26]), and rationale for this restriction
was presented based on different types of analyses [28,29]. The
restriction is easy to implement by fixing X10 = 1. Secondly, 20
transporters are involved in glucose uptake and fine tuned for dif-
ferent glucose concentrations in the medium, which may mean
that the glucose transport step probably cannot be altered effec-
tively from what is observed. Thus, we enforce X8 = 8, which corre-
sponds to the observed level. Third, the rates of glycogen and

Table 2
Dependent variables of the canonical model (Eq. (29)) of the trehalose cycle. Steady-
state values under optimal temperature conditions were collected from the literature
[14]; heat-stress values (scaled by optimal steady-state values) computed with the S-
system model upon changes in independent variables as shown in Table 4.

Metabolite Variable
name

Steady-state
concentration [mM]
under optimal
temperature
conditions (from the
literature)

Computed fold change
in steady-state
concentration during
heat stress (scaled by
normal steady state)

Glucose X1 0.03 1.46
Glucose 6-

phosphate
X2 1 5.54

Glucose 1-
phosphate

X3 0.1 3.99

Uridine
diphosphate
glucose

X4 0.7 2.69

Glycogen X5 1 55.8
Trehalose 6-

phosphate
X6 0.02 4.28

Trehalose X7 0.05 103

B1 ¼ ½ 0:1635 0:1582 0:2144 �0:1562 0:0986 �0:1328 �0:1543 0:9026 0:1099 �0:0034 �0:0034 �0:0034 �T ;
B2 ¼ ½�0:2260 �0:2188 �0:3985 0:2716 0:3480 0:3708 0:4330 0:2639 0:3907 �0:0017 �0:0017 �0:0017 �T ;
B3 ¼ ½�0:2260 �0:2087 �0:1967 �0:7547 0:0363 0:0466 0:0021 0:0002 0:0016 0:3128 0:3128 0:3128 �T ;
B4 ¼ ½ 0:3576 0:3568 0:4235 0:1207 0:1771 0:2723 0:2627 �0:1569 0:1578 0:3301 0:3301 0:3301 �T ;
B5 ¼ ½�0:1451 �0:1291 �0:2276 0:5556 �0:1360 �0:2193 �0:3147 0:1558 �0:1971 0:3527 0:3527 0:3527 �T :

Table 3
Different implementations of computed heat stress responses, which all lead to exactly the same target steady state.

Catalytic or transport
step

Variable
name

Nominala Least
squares

Minimum
set

Least squares (X8, X10, V
þ
5 , and Vþ

7

fixed)
Minimum Set (X8, X10, V

þ
5 , and Vþ

7

fixed)

Glucose transport X8 8 2.0096 4.6155 8 (fixed) 8 (fixed)
Hexokinase/glucokinase X9 8 1.9440 4.4334 8 8
Phosphofructokinase X10 1 0.3577 1 1 (fixed) 1 (fixed)
G6P dehydrogenase X11 6 0.8745 1 6.2371 1.6377
Phosphoglucomutase X12 16 0.8435 1.1046 15.5916 38.0406
UDPG

pyrophosphorylase
X13 16 1.1110 1.5932 14.9673 149.5541

Glycogen synthase X14 16 1.0616 1.4620 14.8016 217.1534
Glycogen phosphorylase X15 50 1.0512 1 56.1937 1
Glycogen use X16 16 0.7965 1 15.5396 42.5464
a,a-T6P synthase X17 12 1.0942 2 12 12
a,a-T6P phosphatase X18 18 1.6413 3 18 18
Trehalase X19 6 0.5471 1 6 6

a Heat-induced fold-increase in activity used in the model (Eq. (29)).
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trehalose production (Vþ
5 and Vþ

7 ) should be sufficiently large to
achieve a timely response to elevated temperatures, which we
implement by setting these flux rates to those actually observed
and not permitting them to be altered. If subscript e indicates
the nominal steady-state values under heat stress condition (as
discussed in [14]), we obtain

Vþ
5 ¼ Vþ

5e

) lna5 þ 0:04y2e þ 0:32y3e þ 0:16y4e þ 0:6y14 þ 0:4y15 ¼
lna5 þ 0:04y2e þ 0:32y3e þ 0:16y4e þ 0:6y14e þ 0:4y15e

) 0:6y14 þ 0:4y15 ¼ 0:6y14e þ 0:4y15e

Vþ
7 ¼ Vþ

7e

) lna7 þ 0:2y6e þ y18 ¼ lna7 þ y6e þ y18e
) y18 ¼ y18e

These conditions impose further constraints on the system and
are easily formulated in the MILP. The size of the solution space
(number of free variables minus the number of linearly indepen-
dent equality constraints) is now drastically reduced from 5 to 1.
Within the constrained system, we can again identify the least-
squares or minimum-set solution (Table 3, Columns 6 and 7) or
could use some other criterion of function effectiveness.

Both results are interesting. First, the constrained least-squares
solution turns out to be very similar to the nominal solution, which
indicates a similar strategy as in the case of the diauxic shift (see
introduction and [25]). Second, the minimum-set solution shows
drastically different values than the nominal solution and identi-
fies glycogen phosphorylase as the most dispensable reaction step.
In an entirely different study [40], this same step was also identi-
fied as only modestly relevant for the trehalose response. The ques-
tion of which strategy is superior depends on the criteria of
functional effectiveness. One might say that the least-squares solu-
tion should be the preferred means of operation because all vari-
ables remain as close to their normal operating points as possible
and the strategy produces glycogen faster. Yet, if the cost of gene
expression and the production of transcription factors and mRNAs
is a major concern, then the minimum-set solution might be supe-
rior because its sum of independent variables is smaller. In short,
the superiority is context-dependent rather than universal.

Table 3 seems to indicate that much ‘‘cheaper’’ solutions than
the nominal solution can be found, which raises the question of
why the nominal solution employs alterations in independent
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Fig. 12. All solutions eventually reach the exact same steady state and the transients have similar shapes, but the timing is quite different. While glycogen and trehalose in
the nominal solution come close to their steady state values within about 5 time minutes (left panel), reaching the same levels takes ten or more times as long in the least-
squares (right panel; solid lines) and minimum-set (right panel; dotted lines) solutions (note different time scales). Other variables respond on a time scale that is more
similar to the nominal solution (not shown).
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Fig. 11. The solutions obtained with the pseudo-inverse method can be manipulated by modifying the basis vectors. In the left panel, basis vector B3 was multiplied with
factors 1, . . . , 5 (in direction of the arrow); this action did not affect the glycogen profile. In the right panel, basis vector B5 was multiplied with factors 1, . . . , 5, in direction of
the arrows. All solutions eventually reach the same target steady state.
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Fig. 10. A possible solution within the space characterized by the pseudo-inverse
method (dashed), in comparison with the nominal solution discussed in [14]. While
both solutions eventually reach the same steady state, the transient of the solution
computed here is comparatively slow (see text for details).
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variables that are so much more dramatic than the least squares or
minimum set solutions. At least one answer can be found in the re-
sponse time: although all solutions reach exactly the same steady
state, the nominal solution is more than ten times faster than the
least squares and minimum-set solutions (Fig. 12; note different
time scales).

The issue of drastically different transient speeds begs the ques-
tion of whether and how the least-squares and minimum-set solu-
tions could be accelerated. The most direct way of accomplishing
acceleration arises if every flux contains its own independent var-
iable. For instance, if every flux is governed by an enzyme which
enters the flux with a kinetic order of 1, then multiplication by
the same factor u > 1 will speed up the dynamics of the entire sys-
tem by u. This advance does not come for free though, because the
cost of the solution with respect to the chosen criterion increases
and the result may no longer be optimal. For instance, the meta-
bolic burden, which roughly corresponds to the sum of indepen-
dent variables, increases u-fold. An increased metabolic burden
can be a disadvantage because it puts additional stress on the cell
due to higher levels of transcription and translation [48]. If mini-
mal metabolic burden is indeed a pertinent criterion of functional
effectiveness, the totality of changes in independent variables
should be kept as small as possible.

If the independent variables have different kinetic orders or ap-
pear in several equations, a systemic speed-up may still be possi-
ble. Specifically, one has to solve the equations

Ynþm

j¼nþ1

~X
gij
j ¼ u

Ynþm

j¼nþ1

X
gij
j ;

Ynþm

j¼nþ1

~X
hij
j ¼ u

Ynþm

j¼nþ1

X
hij
j

for all i = 1, . . . , n. In the trehalose case, these conditions result in a
set of 14 linear equations with 12 unknowns, which has no
algebraic solution. Nevertheless, one can obtain a solution in a
least-squares sense, which indeed leads to an acceleration of the
transients and approximately reaches the target steady state. The
required changes in independent variables are presented in Table 4,
where uLS = 11.19 and uMS = 6.29 are the acceleration factors for
the least-squares and the minimum-set solutions, respectively.
These factors are computed based on the settling time s, which here
is the amount of time needed for trehalose to reach and stay within
95% of its nominal heat stress value. While the resulting trehalose
profiles are essentially the same as in the nominal scenario, the gly-
cogen trends are still slower (Fig. 13). Interestingly, the steps di-
rectly associated with the dynamics of trehalose are very similar
to the nominal solution, and the glycogen phosphorylase step is
again much lower (Table 4).

Distinctly different solutions to speeding up the transients
could possibly be reached in two ways. First, the cell could initiate
a fast transient toward a steady state with more extreme values
than needed, and in a second phase relax these values toward
the true target state. This strategy is expected to incur overshoots
before the true target steady state is reached [35]. Second, it is pos-
sible to compute settings in independent variables that reach
states that are not steady states. These computations require meth-
ods of nonlinear control theory, which were demonstrated for S-
systems elsewhere [62].

4. Discussion

Deciphering how nature solves problems has been the dream of
scientists for a long time. Consequently, enormous effort has been
devoted to shining light on operating procedures in nature, dissect-
ing systems, and identifying and characterizing processes that cells
employ to solve specific problems. Given the seemingly unlimited
variability and complexity of tasks that need to be addressed, a
comprehensive understanding of operating procedures, let alone
operating strategies or even operating principles, will not be
gained in the foreseeable future. Nonetheless, the overwhelming
magnitude of the challenge does not suggest that we give up, but
that even small advances might be beneficial on our long journey.

Thanks to high-throughput techniques of molecular biology, the
availability of large datasets has grown immensely and will con-
tinue to increase. Along with this increase will be a more and more
pressing need to find means of interpretation and of comparing
similar, yet structurally different solution strategies. Similar to

Table 4
Accelerated least-squares and minimum-set solutions for the trehalose cycle.

Catalytic or transport step Nominal Least squares (accelerated) Minimum set (accelerated)

Glucose transport 8 22.4731 28.8238
Hexokinase/glucokinase 8 21.7616 27.7065
Phosphofructokinase 1 5.2507 7.9468
G6P dehydrogenase 6 1.2416 1
Phosphoglucomutase 16 9.4252 6.8941
UDPG pyrophosphorylase 16 12.4311 9.9536
Glycogen synthase 16 11.8831 9.1365
Glycogen phosphorylase 50 11.7559 6.2449
Glycogen use 16 8.9158 6.2494
a,a-T6P synthase 12 12.2458 12.4968
a,a-T6P phosphatase 18 18.3691 18.7455
Trehalase 6 6.1230 6.2485
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Fig. 13. Acceleration of the least squares (dotted lines) and minimum set (dashed
lines) solutions in the trehalose example leads to similar solutions as the nominal
case (solid lines), but the accelerated solutions reach the target only approximately
(although they come very close). The trehalose trend is now essentially indistin-
guishable from that in the nominal solution, while the rise in glycogen is slower.
Time courses of the other variables essentially match those of the nominal case.
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the investigation of design principles, the study of operating prin-
ciples is expected to lead to the discovery of motifs, which will pro-
vide explanations of naturally evolved systems as well as guidance
regarding the design of new systems within the field of synthetic
biology.

We have shown in this article that a small sub-class of cellular
tasks can be addressed quite efficiently with mathematical and
computational tools. Namely, we propose methods for investigat-
ing the situation where a biological system is forced to move to a
new steady state, which we assume to be known. For example, in
the heat stress scenario discussed here, the cell must accumulate
sufficient amounts of trehalose and possibly glycogen, while inter-
nal glucose and trehalose 6-phosphate need to be carefully con-
trolled, because they cause adverse effects in high concentrations
[59,63,64]. Thus, some pools in a pathway need to be altered sub-
stantially, while others must remain more or less at their nominal
level. We show here that such tasks can be formulated rigorously
in the language of linear algebra and constrained optimization.

The analysis yields two main results. First, it defines the entire
solution space of the problem, and second, it allows a direct system
optimization toward given criteria of functional effectiveness. The
elegance of these solutions is primarily due to the special structure
of S-system models, whose steady states are characterized by sys-
tems of linear equations. With the exception of Lotka–Volterra
[65–67] and lin-log models [68,69], whose steady states are also
governed by linear equations, it seems very difficult to obtain sim-
ilarly general results with ad hoc models, such as pathway systems
that are represented with Michaelis–Menten rate laws and their
generalizations.

Interestingly, Generalized Mass Action (GMA) representations
within BST [10,70], as well as other model structures, may permit
numerical solutions under favorable conditions, although these
solutions are not as general as in the case of S-systems. Namely,
consider the important special case where each flux representation
contains at most one independent variable, which enters the flux in
a linear fashion, as it is typical for most enzymes. If all parameter
values and the target steady state are known, all terms in the stea-
dy-state equations either become linear functions of one indepen-
dent variable, or they do not contain an independent variable at all.
Furthermore, outside the independent variables, all other compo-
nents of each term combine to a single numerical value, so that
the entire system of steady-state equations is linear in the inde-
pendent variables. As in the cases shown here, this system may
have a unique solution or be over- or underdetermined, and it
can be analyzed in each case with methods of linear algebra and
optimization. The condition of linearity with respect to indepen-
dent variables can actually be further relaxed, for instance, to the
requirement that the same independent variable, if it appears in
different terms, always has the same kinetic order.

The tasks and solutions proposed here are reminiscent of opti-
mization problems that have been analyzed in the field for two dec-
ades [9,28,43–46]. However, the two lines of investigation
represent different aspects of targeted alterations in pathways. In
the typical optimization tasks in biotechnology or metabolic engi-
neering, a metabolite pool or flux is to be maximized, while other
features of the steady-state profile are rather irrelevant as long as
they remain within general physiological constraints. As a conse-
quence, the task typically has a clearly defined, single optimal solu-
tion, although in some cases alternative optimawith the same value
of the objective function occur, and it is furthermore possible to
investigate multi-objective optimization tasks [9,71]. In the analy-
sis here, the primary requirement is that the system must reach a
specified steady-state profile. This task often admits an entire solu-
tion space, within which the system must operate. Within this
space, questions of superiority of one solution over another with re-
spect to selected criteria can be explored. Functional effectiveness

is not usually considered in biotechnological optimization, but in
the case analyzed here provides the metric for comparing alterna-
tive strategies and declaring one solution superior to another.

An unresolved issue is the definition of criteria for functional
effectiveness, which are not necessarily known a priori. Is it advan-
tageous to up-regulate just a few genes substantially, or is it better
to up-regulate many genes by a small amount? We do not yet have
answers to such questions, but we have taken a first step by asking
these questions and by suggesting that it might be advisable to ob-
serve how nature solves tasks in order for us to develop ideas for
what types of operating strategies might be candidates for opti-
mality. Moreover, the work presented here suggests tools for com-
paring different solutions with objectivity and for declaring
superiority of different alternatives once criteria are established.
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