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ABSTRACT

Anaerocellum thermophilum DSM 6725 is a strictly anaerobic bacterium that
grows optimally at 75°C. It uses a variety of polysaccharides, including crystalline
cellulose and untreated plant biomass, and has potential utility in biomass
conversion. Here we report its complete genome sequence of 2.97 Mb, which is
contained within one chromosome and two plasmids (of 8.3 and 3.6 kb). The
genome encodes a broad set of cellulolytic enzymes, transporters and pathways for
sugar utilization and compared to those of other saccharolytic, anaerobic
thermophiles is most similar to that of Caldicellulosiruptor saccharolyticus DSM

8903.

Microorganisms that grow at elevated temperatures and are able to utilize arange
of carbohydrates have potentia utility in the conversion of lignocellulosic biomass to
bioenergy. Many hyperthermophilic bacteria and archaea (T,, = 80°C) from marine
environments are able to grow on various a- and p-linked glucans, but none of them are
able to efficiently hydrolyze crystaline cellulose and plant biomass (1). The most
thermophilic cellulolytic species known at present include the strictly anaerobic
bacterium, Anaerocellum thermophilum. The type strain (Z-1320) was isolated from
thermal springs of Kamchatka (Russia) almost two decades ago (10). It grows optimally
at 75°C and utilizes both ssmple and complex polysaccharides with lactate, acetate, CO,
and H, as end products (10). In particular, A. thermophilum DSM 6725 efficiently

utilizes the two main components of plant biomass (cellulose and hemicellulose), as well
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as untreated grasses with low lignin (napiergrass, bermuda grass) or high lignin

(switchgrass) contents and a hardwood (poplar) (12).

The genome of A. thermophilum DSM 6725 was sequenced at the Joint Genome
Institute (JGI) using an 8 kb library. In addition to Sanger sequencing, 454
pyrosequencing was carried out to a depth of 20x coverage. All general aspects of library
construction and sequencing performed a the JGI can be found at

http://www.jgi.doe.gov. Draft assemblies were based on 38,121 total reads and all

libraries provided 13x coverage. The Phred/Phrap/Consed software package

(www.phrap.com <http://www.phrap.com>) was used for sequence assembly and quality

assessment (4-6). After the shotgun stage, reads were assembled with parallel phrap
(High Performance Software, LLC). Possible mis-assemblies were corrected with
Dupfinisher (7) or transposon bombing of bridging clones (Epicentre Biotechnologies,
Madison, WI). Gaps between contigs were closed by editing in Consed, custom primer
walk or PCR amplification (Roche Applied Science, Indianapolis, IN). A total of 981
additional reactions were necessary to close gaps and to raise the quality of the finished
sequence. The completed genome sequences contain 41,706 reads, achieving an average
of 13.4x coverage in the chromosome (and 56x in pATHEOL and 15x in the pATHEOQL)

with an error rate 0.01 in 100,000.

The chromosome of 2919718 bp has 35.17 % of GC. pATHEO1 of 8291 bp and
PATHEO2 of 3653 bp have 38.53% and 42.92% of GC, respectively. Two native A.

thermophilum DSM 6725 plasmids pBAL (AX710673) and pBAS (AX710687) had been
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sequenced earlier (2). The sequence of pATHEO2 perfectly matches that of pBAS2, while
that of pATHEOL is similar to pBAL but pBAL contains 19 gaps and 3 mismatches.
Similarly, the gene sequences of 16S rRNA (L09180) (9) of a large multi-domain
glycoside hydrolase CelA (Z86105) (13) from A. thermophilum Z-1320 were previously
reported and the corresponding genes in the genome sequence contain 2 inserts and 12

mismatches, and 23 mismatches, respectively.

The genome size of A. thermophilum DSM 6725 is similar to that of the
celluloytic Caldicellulosiruptor saccharolyticus DSM 8903 (T,, 70°C, 2.97 Mb, 35%
GC, CP000679), which was also isolated from a continental hot spring (11), but smaller
than that of the cellulolytic bacterium Clostridium thermocellum ATCC 27405 (T, 60°C,
3.8 Mb, 39% GC, NC_009012, US DOE Joint Genome Institute), and larger than that of
the xylanolytic bacterium Thermotoga maritima MSB8 (T,, 80°C, 1.86 Mb, 46% GC,

NC_000853) (8).

The chromosome of A. thermophilum DSM 6725 is predicted to contain 2662
coding sequences, three rRNA operons, and 47 tRNA genes. pATHEOL and pATHEOL
are predicted to contain 8 and 4 orfs, respectively. The genes in the genome of A.
thermophilum DSM 6725 are predicted to be organized into 573 multi-gene transcripts
and 626 single-gene transcripts (3), and a total of102 transcripts contain genes that are
predicted to be involved in the degradation of complex polysaccharides. While most of
the genesin A. thermophilum DSM 6725 have their best Blast hits (e-value of <1e-20) in

the genome of C. saccharolyticus DSN 8903, a total of 550 genes do not. Of these, 18
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are predicted to have functions relating to biomass degradation, suggesting that these
genes may contribute to any nutritiona differences between the two organisms. The
genomes of A. thermophilum DSM 6725 and C. saccharolyticus DSM 8903 contain 25
and 68 putative transposase genes, respectively. This might account for the apparent
genome plasticity within the two genomes of these closely-related bacteria that were

isolated from similar geothermal freshwater environments.

Nucleotide sequence accession number. The genome sequence and annotation
of the Anaerocellum thermophilum DSM 6725 chromosome and the two plasmids
pPATHEOL and pATHEO2 were deposited in GenBank under accession numbers

CP001393, CP001394 and CP001395, respectively.
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