
Parallel Computing 75 (2018) 130–145

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Parallel accelerated vector similarity calculations for genomics

applications

�

Wayne Joubert a , ∗, James Nance

a , Deborah Weighill a , b , Daniel Jacobson

a , b

a Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
b The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, 4 4 4 Greve Hall, 821

Volunteer Blvd, Knoxville, TN 37996-3394, United States

a r t i c l e i n f o

Article history:

Received 22 May 2017

Revised 3 March 2018

Accepted 25 March 2018

Available online 27 March 2018

MSC:

65Y05 [Computer aspects of numerical

algorithms: Parallel computation]

68W10 [Algorithms: Parallel algorithms]

Keywords:

High performance computing

Parallel algorithms

NVIDIA ® GPU

Intel ® Xeon Phi

Comparative genomics

Vector similarity metrics

Proportional Similarity metric

a b s t r a c t

The surge in availability of genomic data holds promise for enabling determination of ge-

netic causes of observed individual traits, with applications to problems such as discovery

of the genetic roots of phenotypes, be they molecular phenotypes such as gene expression

or metabolite concentrations, or complex phenotypes such as diseases. However, the grow-

ing sizes of these datasets and the quadratic, cubic or higher scaling characteristics of the

relevant algorithms pose a serious computational challenge necessitating use of leadership

scale computing. In this paper we describe a new approach to performing vector similar-

ity metrics calculations, suitable for parallel systems equipped with graphics processing

units (GPUs) or Intel Xeon Phi processors. Our primary focus is the Proportional Similarity

metric applied to Genome Wide Association Studies (GWAS) and Phenome Wide Associa-

tion Studies (PheWAS). We describe the implementation of the algorithms on accelerated

processors, methods used for eliminating redundant calculations due to symmetries, and

techniques for efficient mapping of the calculations to many-node parallel systems. Results

are presented demonstrating high per-node performance and parallel scalability with rates

of more than five quadrillion (5 × 10 15) elementwise comparisons achieved per second on

the ORNL Titan system. In a companion paper we describe corresponding techniques ap-

plied to calculations of the Custom Correlation Coefficient for comparative genomics appli-

cations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The measurement of the similarity of pairs of vectors is a computation required in many science domains including

chemistry, image processing, linguistics, ecology, document processing and genomics. To satisfy domain-specific require-

ments, many different similarity measures have been developed [1,2] .
� This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States

Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Govern-

ment purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public

Access Plan (http://energy.gov/downloads/doe- public- access- plan).
∗ Corresponding author.

E-mail address: joubert@ornl.gov (W. Joubert).

https://doi.org/10.1016/j.parco.2018.03.009

0167-8191/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2018.03.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2018.03.009&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
mailto:joubert@ornl.gov
https://doi.org/10.1016/j.parco.2018.03.009

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 131

The focus of the present study is the use of similarity measures in the analysis of GWAS and PheWAS results. GWAS

analyses involve the statistical association of genetic variants with measured phenotypes [3] . These can be complex pheno-

types such as disease states, or molecular phenotypes, such as the concentration of a particular metabolite or the expression

level of a particular gene. While GWAS analyses are generally considered to involve testing association of variants with a

single or limited number of phenotypes, PheWAS analyses involve testing the association of variants with a large number

of different phenotypes [4] . The results of GWAS and PheWAS studies can be represented as a matrix of significant as-

sociations between variants and phenotypes, and profile vectors variants and phenotypes can be extracted from the rows

and columns of this matrix. Pairwise comparisons of these vectors can allow for the discovery of phenotypes affected by

similar genetic elements, or of groups of variants which affect similar phenotypes. (For example, see [5]). These studies,

however, are computationally expensive, insofar as the computational work required for pairwise comparison grows as the

square of the number of vectors. Even more challenging is the execution of higher-order studies which consider three or

more vectors at a time—a technique required in order to discover relationships not discoverable by means of 2-way methods

alone [6] —for which the computational complexity is even higher. In the past, such studies could be performed efficiently

on workstations or small compute clusters. However, because of the large quantities of data involved, it is now necessary to

employ large-scale high performance computing to execute scientific campaigns at the largest scales.

This paper describes advances in the development of algorithms and software to address this need. We present vector

similarity measure calculation techniques for large datasets run on one of the world’s largest compute systems, scaled to

thousands of compute nodes equipped with GPU accelerators. The primary contributions of this paper are implementations

of similarity calculation methods which: 1) achieve high absolute performance on GPUs as a result of careful mapping

of calculations to the memory hierarchy and exploiting of the highly computationally intense BLAS-3-like structure of the

targeted algorithms; 2) use asynchronous internode communication, data transfers and computations to ameliorate the costs

of data motion; 3) strategically arrange the computations to avoid the potential 2X-6X performance loss factor arising from

the redundant calculations due to symmetry; 4) carefully parallelize the algorithms to enable near-perfect scalability to

thousands of compute nodes on leadership-class systems.

In this paper we focus on the 2-way and 3-way variants of the Proportional Similarity metric, also known as the

Czekanowski metric [6,7] , using an approach that is generalizable to other metrics. In the companion paper [8] we describe

corresponding work on Custom Correlation Coefficient (CCC) [9] calculations with applications to comparative genomics.

Improving computational throughput for performing comparisons between pairs, triples or larger subsets of a set of vec-

tors has been the focus of significant recent work centering around the use of parallelism, accelerated GPU or Intel Xeon Phi

processing, or both. A broad overview of epistasis detection in comparative genomics including computational issues per-

taining to parallelism and GPU acceleration is given in [10] . The GBOOST code, discussed in [11] , is a gene-gene interaction

code for 2-way studies optimized for single GPUs using encoding of gene data into bit strings with avoidance of redundant

computations. Wang et al. [12] describes GWISFI, a single-GPU code for 2-way GWAS calculations. Gonzalez-Dominguez et al.

[13] develops a UPC++ code for gene-gene interaction studies for small numbers of GPUs and Intel Phi processors exploit-

ing vector hardware and hardware population count instructions. Gonzalez-Dominguez and Schmidt [14] considers 3-way

interactions on a node with 4 GPUs. Solomonik et al. [15] develops parallel tensor computation methods, structurally simi-

lar to 3-way metrics computations, with particular attention to avoiding redundant computations; however, the work does

not consider GPUs or shaping of the computational regions to accommodate processors with long vector lengths. Haque

et al. [16] discusses similarity metric calculations for chemical informatics applications on single GPUs using space filling

curve methods and hardware population count instructions; it recognizes the correspondence of these calculations to BLAS-

3 matrix-matrix product computations and pays close attention to optimizing memory accesses. Wang et al. [17] considers

2-way studies on compute clouds using MapReduce on conventional CPUs. Yang et al. [18] adapts existing packages to per-

form 2-way CPU and GPU studies and 3-way CPU studies on as many as 200 cores in parallel. Goudey et al. [19] performs

k-way GWAS studies for arbitrary k with consideration of load balancing and elimination of redundancies on a 4096-node

IBM Blue Gene/Q system; results for a single GPU are also presented. Luecke et al. [20] performs 2-way analyses on up to

126 nodes of the Intel Phi-based Stampede system (cf. [21]). Koesterke et al. [22] considers 2-way computations on thou-

sands of compute cores with good scalability and good absolute performance on conventional CPUs. Finally, recent work

in [23] considers k -selection similarity search methods with applications to image data with results for small numbers of

GPUs; that work however focuses primarily on the k -selection problem for nonexhaustive inexact similarity search, a differ-

ent problem from what is considered here.

The present study is to our knowledge the first work bringing together all the required ingredients for high performance

2-way and 3-way comparative genomics studies on modern leadership-class systems: use of accelerated processors at high

absolute performance; optimization of calculations for use with complex memory hierarchies; elimination of redundant

computations; algorithm and code design to minimize costs of I/O; and careful arrangement of communications for near-

ideal scaling to many thousands of compute nodes.

The remainder of this paper is structured as follows. After describing the 2-way and 3-way Proportional Similarity met-

rics in Section 2 , we describe the techniques used to map these methods to GPUs and other manycore accelerated processors

in Section 3 . Then we describe the parallelization techniques applied to these methods in Section 4 , followed by implemen-

tation details in Section 5 . Computational results on the 27 petaflop Oak Ridge National Laboratory (ORNL) Cray XK7 Titan

system are presented in Section 6 , and conclusions are given in Section 7 .

132 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

2. The Proportional Similarity metric

2.1. The 2-way metric

We assume a set of n v vectors of length n f elements { v i } n v i =1
with v i ∈ R

n f and v i = { v i,q } . In practice, v i,q ≥ 0. Then

the 2-way Proportional Similarity metric for two vectors v i and v j is c 2 (v i , v j) = 2 n 2 (v i , v j) /d 2 (v i , v j) where d 2 (v i , v j) =∑

q v i,q + v j,q =

∑

q v i,q +

∑

q v j,q and n 2 (v i , v j) =

∑

q v i,q ◦min v j,q . Here a ◦min b = min (a, b) , which we define here (for reasons

to be described shortly) as the “min-product,” is simply the function returning the minimum value of two scalars.

Due to symmetry of the c 2 () function with respect to its arguments, computing the metric for all pairs of distinct vectors

requires computing only n v (n v − 1) / 2 distinct values, for example, { c 2 (v i , v j) } n v i =1
n v
j= i +1

. Note that to perform this computation,

computing the denominators d 2 () requires only (n f − 1) n v = O (n f n v) scalar adds, used to compute �q v i,q . The numerators

n 2 () however require (n f − 1) n v (n v − 1) / 2 adds and n f n v (n v − 1) / 2 min-product computations 1 , thus having complexity

O (n f n v
2).

With each vector v interpreted as a distribution, the Proportional Similarity metric c 2 (u, v) of two vectors is large if u

and v have a peak at the same vector entry locations q for many index values q (see [24]).

2.2. The 3-way metric

The 3-way Proportional Similarity metric is defined by

c 3 (v i , v j , v k) =

3

2

n 3 (v i , v j , v k)
d 3 (v i , v j , v k)

where d 3 (v i , v j , v k) =

∑

q v i,q + v j,q + v k,q and

n 3 (v i , v j , v k) = n 2 (v i , v j) + n 2 (v i , v k) + n 2 (v j , v k) − n

′
3 (v i , v j , v k) (1)

where n ′ 3 (v i , v j , v k) =

∑

q v i,q ◦min v j,q ◦min v k,q .

The function c 3 () is symmetric in its arguments, thus only n v (n v − 1)(n v − 2) / 6 distinct values need be computed, for

example, { c 3 (v i , v j , v k) } n v i =1
n v
j= i +1

n v
k = j+1

. As before, the denominators d 3 () require (n f − 1) n v = O (n f n v) adds. The numerators

n 3 () require one computation of each of the three n 2 () values, computed as described above and used via table lookup for

the first three terms of n 3 (), and additionally calculation of the last term n ′ 3 () requiring (n f − 1) n v (n v − 1)(n v − 2) / 6 adds

and 2 n f n v (n v − 1)(n v − 2) / 6 computations with the min-product operation, thus complexity O (n f n v
3).

The value of the 3-way Proportional Similarity metric is large when two of the three vectors have large values at corre-

sponding entries q and even larger if all three vectors have large values at matching entries q .

2.3. Related metrics

The Sorenson metric is identical to the Proportional Similarity metric for the special case when v i,q ∈ {0, 1} for all i,q .

Though Sorenson metric values can be computed using methods for computing the Proportional Similarity metric, the com-

putation can be made much faster on most processors in general use by representing vector entries as bits packed into

words and operated upon using binary arithmetic, based on the coincidence of the min-product and the bitwise logical

AND operations for this case.

3. Mapping to manycore processors

3.1. The 2-way metric

Since for large n f and n v the computation of the numerators n 2 () by far dominates the runtime, it is adequate to accel-

erate this computation only on the GPU; in the present work, all other computations are performed on the CPU.

Let V represent the matrix of column vectors V = [v 1 v 2 . . . v n v] . For arbitrary matrices A = { a i j } and B = { b i j } , define

A ◦min B by (A ◦min B) i j =

∑

k a ik ◦min b k j . It is manifest that the desired numerators can be specified as a subset of the en-

tries of the matrix M = V T ◦min V, for example, the strict upper triangular entries.

Note that the operation A ◦min B has identical computational pattern to the standard matrix-matrix product operation A · B

for a general full matrix (GEMM), the former being defined by simply replacing the standard scalar multiplication operation

a · b of the GEMM with the a ◦min b operation. This GEMM operation of the BLAS-3 standard [25] is one of the most highly

optimized kernels in high performance computing and is supported by many heavily optimized libraries, typically yielding

near-peak floating point operation rates for targeted processors. The approach we take here therefore is to optimize V

T ◦min V
1 In principle the min-product complexity could be reduced to O (n f n v log (n v)) by presorting each row of V ; however, it is unclear whether this would

accrue a performance gain on modern cache-based processors, and furthermore the number of floating point additions would remain unchanged.

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 133

performance by adapting existing highly optimized linear algebra software to perform this operation. In what follows, we

will refer to the A ◦min B computation as a “modified GEMM” or mGEMM operation.

On modern architectures it is of paramount importance that computations be optimized to the memory hierarchy, in-

cluding registers, caches and main memory. For dense linear algebra, the complex coding effort to optimize algorithms

to the memory hierarchy has already been done in the form of mathematical libraries such as the open source MAGMA

library [26] , which we use here. Though we do not pursue the topic here, it is likely that libraries optimized to other pro-

cessor architectures, such as PLASMA [27] , BLIS [28] and OpenBLAS [29] , would provide similar opportunities for adapting

to the mGEMM operation, in this case for conventional processors and Intel Xeon Phi.

A potential performance concern of this approach is that only half of the entries of M = V T ◦min V are required, whereas

all standard implementations of GEMM compute every entry of this matrix, resulting in potential performance loss of a

factor of two. A possible remedy is to break the matrices into smaller blocks and skip computation of lower triangular

blocks of M ; however, this would still result in some performance loss since GEMM computations are most efficient at large

matrix sizes. These issues are not a concern here, however; Our primary focus is the case of many compute nodes, in which

case most of the time is spent in off-diagonal block computations of the form W

T ◦min V for distinct W and V (see below),

for which there are no wasted computations. Thus the performance impact of this issue is minor.

Standard GEMMs attain high performance by spending most of the time in fused multiply-add (FMA) operations c ←
c + a · b, which are typically optimized in hardware to execute in a single clock cycle. The operation of taking the minimum

of two values, however, is not so well-optimized as FMA and may in fact require a branch in execution flow, depending on

the implementation. This puts a theoretical limit on the performance of Proportional Similarity metric computations that is

somewhat less than that of matrix-matrix product computations. To maximize performance, here we use hardware intrinsics

for taking the minimum of two values, available on recent NVIDIA GPU hardware.

Attaining high performance on a GPU-accelerated node requires overlapping transfers to and from the GPU with compu-

tations on the GPU. In this case, the mGEMM computation can be broken into blocks whose computation is overlapped with

transfers. A more effective approach however is to overlap the computations W

T ◦min V of the multiple off-diagonal blocks in

the parallel case with both GPU transfers and node-to-node communications in a pipelined fashion using double buffering.

This is efficient since the case of many nodes requires many mGEMMs pertaining to off-diagonal blocks to be computed, as

will be described below.

It is apparent that the approach described here is applicable to other vector similarity metrics that are likewise based on

the accumulation of the results of a scalar operation applied to corresponding pairs of vector elements.

3.2. The 3-way metric

The calculation of 3-way metrics requires calculation of 2-way numerators as described above as well as denominators;

the most expensive part for problems of significant size however is calculation of the 3-way term involving n ′
3
() .

This computation could be described as “BLAS-4-like” based on its computational pattern and complexity. However, since

the BLAS-3-like 2-way computation already are able to approach theoretical processor peak performance, for our purposes

it will be sufficient to decompose the 3-way computation into a sequence of 2-way computations, these in turn executed as

described earlier, without relying per se on the BLAS-4-like local structure of the problem.

Define the matrix X j such that (X j) ik = (V) i j ◦min (V) ik . The columns of X j are simply the elementwise min-products of

the columns of V with the single column v j . Then let B j = X T
j

◦min V . Observe (B j) ik = n ′
3
(v i , v j , v k) . Thus B j can readily be

computed on GPUs using the 2-way method described earlier.

Due to symmetries it is necessary to compute only the bottom n v − j + 1 rows of B j . Even after this optimization, some

redundant calculations still remain; however, as with the 2-way case, when many GPU-enabled nodes are used most com-

putations involve off-node blocks for which the relevant matrix entries are distinct and thus redundancy is not present. The

use of only a single compute node is not the focus of performance optimization here, though in our experience even with

some performance losses the methods described here may run many times faster than conventional methods at low node

counts.

Since the 3-way calculation requires a sequence of GPU kernel calls corresponding to 2-way operations for the B j matri-

ces described above, the calculation lends itself naturally to overlapping the transfers of data to and from the GPU with the

computations on the GPU in a pipelined fashion using double buffering, thus minimizing the overhead of transfers. Further-

more, many such kernel calls can be performed without the need for intervening off-node communication in the parallel

case, this being an added performance benefit resulting from the BLAS-4-like nature of the computation.

4. Multi-node parallelism

4.1. The 2-way case

We assume a large set of compute nodes, each equipped with local memory and one GPU, with interconnect pro-

grammable via MPI; this case is easily generalizable to multiple GPUs per node by assuming each GPU is associated with a

single MPI rank on the node.

134 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

Fig. 1. (a): Computational pattern of 2-way metric calculation; (b) Data decomposition for 2-way metric calculation.

Fig. 2. Load balancing for 2-way case. (a) naïve computation of upper triangular entries of result; (b) load imbalance for naïve approach; (c) load balanced

method using block circulant structure of computed values; (d) alternative load balancing strategy.

For the 2-way case, the primary aim is to compute the 2-D square matrix M of results corresponding to the numera-

tors n 2 () described earlier, approximately half of which are unique, describable for example by a triangular set of values

(Fig. 1 (a)).

Considering the set of column vectors in the matrix V , at least two possible axes of parallelism exist. First, each vector

can be split into multiple pieces and assigned to compute nodes (parallelism in vector elements: partitioning of rows of V).

Second, a subset of the vectors can be assigned to each compute node (parallelism in vector number: partitioning of columns

of V), with each node storing the rows of M corresponding to the owned vectors (Fig. 1 (b)). In the present work we allow

both axes of parallelism in arbitrary combination. Let n pf and n pv denote the number of nodes in the decomposition along

the vector element and vector number axes, respectively, with vector elements and counts per node represented by n fp and

n vp .

Parallelizing along the vector elements axis requires a reduction of locally summed values along this axis to accumulate

results. This typically requires log (n pf) communication steps, each with nodes communicating n v p = n v /n pv values per node.

Relying on this axis alone for parallelism is problematic for several reasons: (1) for larger values of n pf , the logarithmic

growth in communication cost with respect to node count will eventually dominate, even if communication is hidden un-

der computation; (2) the problem sizes targeted in practice by comparative genomics problems sometimes result in small

values for the vector length per node n f p = n f /n p f for large n pf , leading to low efficiencies. For these reasons, we only con-

sider modest amounts of parallelism along this axis. We might consider additional performance improvement from use of

asynchronous reduction operations here; we will not pursue this in the present work.

Decomposing along the vector number axis necessitates an all-to-all communication. Though such operations are in gen-

eral expensive, advantage can be taken here of the special structure of the problem. We formulate the computation as

a sequence of parallel steps. At step i ≥ 0, each node computes numerator values for the comparison of its own vectors

with vectors stored on the node that is i nodes away in the upward direction, with wraparound if needed. This process is

pipelined and double-buffered, both between nodes and between each node’s CPU and GPU, so that at any parallel step,

computations of numerators on the GPU, GPU transfers in each direction, communications, and computations of denomina-

tors and quotients on the CPU are all overlapped. Due to the computational intensity of the mGEMM, for sufficiently large

per-node problem sizes, GPU computations will fully overlap all other operations.

This approach must be implemented so as to avoid computation of unneeded, redundant values. Using a naïve approach

based on computing only the upper triangular matrix entries would result in load imbalance: some block rows assigned to

compute nodes would have much less work than others and be idle for part of the computation; see Fig. 2 (b). The solution

adopted here is to compute results associated with a block circulant-structured subset of the matrix blocks (Fig. 2 (c)); this

subset has the properties that all unique values are represented exactly once and also each block row has the same amount

of work, resulting in load balance.

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 135

Fig. 3. (a) Domain of results for 3-way metric with a representative subregion of unique values; (b) the results domain resulting from parallel decomposi-

tion across vector number; (c) induced decomposition of domain into blocks.

Past experience, e.g., with the ScaLAPACK project [30] , has shown that distributed dense linear algebra based on only a

1-D decomposition of the target matrix may not provide sufficient parallelism. 2 To generalize the above approach, we thus

define an additional parallelism axis. A parameter n pr is chosen, and the computations of the blocks corresponding to a block

row of the matrix M are distributed to the n pr compute nodes in round-robin fashion. We thus have total internode paral-

lelism of n p = n p f n pv n pr across n p compute nodes. The specific decomposition is selected to tune for optimal performance

for the targeted case.

The pseudocode in Algorithm 1 demonstrates the computation of metrics using the vector elements V f, v stored on node

(p f , p v , p r). This code, unlike the actual code, assumes for simplicity certain divisibility conditions of variables and also does

not overlap communications, GPU transfers and computations.

Algorithm 1: 2-way metrics computation.

Put V f, v to GPU

for �p ji = 0 to � n pv / 2 	 do

if mod (�p ji , n pr) = p r then

p v s = mod(p v − �p ji , n pv) ; p v r = mod(p v + �p ji , n pv)

Send V f, v to (p f , p v s , p r) ; Receive V f, v r from (p f , p v r , p r)

Put V f, v r to GPU; Compute N f, v , v r ← V T
f, v r

◦min V f, v on GPU; Get N f, v , v r from GPU

Compute N v , v r from N f, v , v r by reduction

Compute denominators; Compute metrics

end

end

4.2. The 3-way case

For the 3-way case, a 3-D cube of results must be computed, approximately 1/6 of which are unique. A tetrahedral region

represents one possible selection of unique values (Fig. 3 (a)).

As previously, we decompose along the vector element axis and the vector number axis. For the vector element axis, we

use a nonblocking reduction operation, since a sequence of mGEMM operations is readily available to overlap this reduction.

For the vector number decomposition, analogously to the 2-way case we partition the set of vectors, inducing a 1-D

decomposition of the cube of results into small cube-shaped blocks arranged into “slabs,” each owned by the respective

compute node (Fig. 3 (b)). To accomplish the all-to-all communication, a doubly nested loop is required for any given node

to obtain the vectors required to compute its slab of results, analogously to the singly nested loop of the 2-way case. In

particular, compute node i , owning vector partition i , must compute comparisons with vector partitions j and k , within the

nested parallel step loops over all j and k . Each parallel step in turn entails a sequence of mGEMM operations pipelined

with overlapping of transfers to and from the GPU. This inner pipeline is thus itself a component of an outer pipeline of

parallel steps which overlaps the required communications of vector blocks with the mGEMM calculation pipeline.

As with the 2-way case, the redundant calculations for the 3-way case must be eliminated, to avoid potential 6X per-

formance loss. It is unclear that the 2-way approach generalizes; we thus seek an alternative. To motivate the approach,

Fig. 2 (d) shows for the 2-way case an alternative selection of unique values satisfying the property that not only every row
2 The parallelization strategies used here and in ScaLAPACK are related to the concepts of sharding, vertical partitioning and replication used in dis-

tributed database management.

136 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

Fig. 4. Decomposition of the results domain into disjoint tetrahedra.

Fig. 5. Compute region for main diagonal edge blocks (a), face blocks (b) and volume blocks (3).

but also every block has approximately the same number of computed results. Furthermore one can see by reflection across

the main diagonal that all unique values are represented exactly once.

To generalize to the 3-way case we consider a partitioning of the results cube into six tetrahedra, each sharing an edge

with the main diagonal of the cube (Fig. 4). Onto this partitioning is superimposed the implicit tiling into blocks induced

by the parallel decomposition (Fig. 3 (c)).

Following the approach of Fig. 2 (d), we now consider three types of blocks: blocks on the main diagonal of the cube

(“diagonal edge blocks”), blocks on an interior face of a tetrahedron (“face blocks”), and the remaining blocks in the volume

of the cube (“volume blocks”). To define the algorithm, as a first step we select for each block a strategic subset of 1/6 of

the values to compute so as to cover all unique values in a load balanced fashion. We then adjust this approach to improve

performance.

The subset of values to compute for each block is selected as follows. For diagonal edge blocks, we select a small tetra-

hedron of result values (Fig. 5 (a)). For face blocks, one of three possible 1/3-height triangular prisms is selected, with ori-

entation and positioning depending on the location in the cube; an example is given in Fig. 5 (b). Finally, for volume blocks,

one of six 1/6-thickness slices of the block is selected, with placement and orientation based on location in the domain

(Fig. 5 (c)). By a sequence of folding and reflection operations it can be shown that these combined selections are equivalent

to the single large tetrahedron of values in Fig. 3 (a).

For significant numbers of nodes, most of the time is spent computing volume blocks. To compute a volume block, the

shorter dimension of the slice is used as the GPU pipeline direction, so that the mGEMMs have maximal size and run at

high efficiency.

As with the 2-way case, it is possible to extract additional parallelism. To accomplish this, the blocks computed by the

doubly nested loop are round-robin distributed to a set of n pr compute nodes assigned to the slab. Again we have total

internode parallelism of n p = n p f n pv n pr across n p compute nodes.

In the actual implementation the above scheme is modified slightly. First, to simplify scheduling, the three diagonal

planes of face blocks are folded into a single plane, so that the 1/3-height triangular prisms are replaced with a smaller set

of full-height prisms; because of the structure of the computation, this change does not introduce load balancing concerns.

Second, though the method described assigns an equal number of result values to each block, the work per block is not

equal since volume blocks execute much more efficiently than diagonal edge and face blocks, resulting in load imbalance

for high values of n pr . To resolve this, we additionally divide diagonal edge blocks and face blocks each into six slices and

distribute these slices along the n pr axis. As a result, each slab of the domain now has 6 + 6(n pv − 1) + (n pv − 1)(n pv − 2) =
(n pv + 1)(n pv + 2) slices to compute. This eliminates the load balancing problem while introducing a slight load imbalance

factor of n 2 pv / (n pv + 1)(n pv + 2) which becomes insignificant as the node count n pv is made large.

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 137

An additional modification is made to improve efficiency. For the 3-way case, the number of metrics to be computed

and stored can be enormous due to the algorithm’s scaling complexity. This has two tangible adverse impacts. First, nodal

memory requirements constrain the problem size per node to be very small, thus reducing mGEMM efficiency. Second, the

wallclock time to compute the entire complement of metrics at once may exceed the queue limit policies at some computing

facilities. To remedy this, for the 3-way case we implement a staging capability: the entire run campaign for a set of metrics

can be decomposed into n st stages, with only a single stage of results computed and stored at a time. This is implemented

by dividing the GPU pipeline described earlier into n st parts and computing and storing the metrics for only one part at a

time. This allows mGEMM sizes and thus efficiencies to be increased substantially.

As described above, the 3-way computation is composed of an inner GPU computation pipeline wrapped in an outer

communication pipeline. Algorithm 2 shows pseudocode demonstrating the communication pipeline for computation of

Algorithm 2: 3-way metrics communication pipeline.

Put V f, v to GPU; block/slice counter s b ← 0

for s = 0 to 5 do

if mod(s b , n pr) = p r then

Compute V f, v denominators

Compute metrics for block using (V f, v , V f, v , V f, v)

end

s b ← s b + 1

end

for s = 0 to 5 do

for �p ji = 1 to n pv − 1 do

if mod(s b , n pr) = p r then

p v s = mod(p v − �p ji , n pv) ; p v r = mod(p v + �p ji , n pv)

Send V f, v to (p f , p v s , p r) ; Receive V f, v r from (p f , p v r , p r)

Put V f, v r to GPU

Compute V f, v r denominators

Compute metrics for block using (V f, v , V f, v r , V f, v r)

end

s b ← s b + 1

end

end

for �p ki = 1 to n pv − 1 do

p v s,k = mod(p v − �p ki , n pv) ; p v r,k = mod(p v + �p ki , n pv)

Send V f, v to (p f , p v s,k , p r) ; Receive V f, v r,k from (p f , p v r,k , p r)

Put V f, v r,k to GPU

Compute V f, v r,k denominators

for �p ji = 1 to n pv − 1 do

if mod(s b , n pr) = p r and �p ji
 = �p ki then

p v s, j
= mod(p v − �p ji , n pv) ; p v r, j

= mod(p v + �p ji , n pv)

Send V f, v to (p f , p v s, j
, p r) ; Receive V f, v r, j

from (p f , p v r, j
, p r)

Put V f, v r, j
to GPU

Compute V f, v r, j
denominators

Compute metrics for block using (V f, v , V f, v r, j
, V f, v r,k)

end

s b ← s b + 1

end

end

metrics using the vector elements V f, v stored on node (p f , p v , p r). The pseudocode in Algorithm 3 describes the GPU pipeline

computing the metrics associated with (V f, v , V f, v r, j
, V f, v r,k) , a component of Algorithm 2 . In both cases a simplified form is

shown without the asynchronous behavior of the actual implementation.

5. Implementation

The algorithms described here are implemented in the CoMet parallel genomics code. This code is written in C++, com-

piles with the GNU compiler suite and depends on MPI, CUDA and the modified versions of the MAGMA library. GNU Make

138 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

Algorithm 3: 3-way metrics GPU pipeline for slice s in block and stage s t using (V f, v , V f, v r, j
, V f, v r,k) .

Compute N f, v r, j , v ← V T
f, v r, j

◦min V f, v on GPU; Get N f, v r, j , v from GPU; Reduce to N v r, j , v

Compute N f, v r,k , v ← V T
f, v r,k

◦min V f, v on GPU; Get N f, v r,k , v from GPU; Reduce to N v r,k , v

Compute N f, v r, j , v r,k ← V T
f, v r, j

◦min V f, v r,k on GPU; Get N f, v r, j , v r,k from GPU; Reduce to N v r, j , v r,k

j min ← � (s t + n st s)(n v /n pv) / (6 n st) 	 ; j max ← � (s t + 1 + n st s)(n v /n pv) / (6 n st) 	
for j = j min to j max − 1 do

Compute X j columns from V f, v , e
T
j
V f, v r, j

; Put X j columns to GPU

Compute B j rows; Get B j rows from GPU; reduce

Compute metrics

end

and CMake are used for build management, and googletest is used for unit testing. The clang-format source code tool from

the clang compiler package is used for source code formatting, and Git is used for repository management.

OpenMP CPU threading is used to accelerate the parts of the computation that are not ported to the GPU by mapping ex-

ecution to multiple CPU cores on the node; when possible, the CPU work is also hidden under the asynchronously launched

GPU kernels to improve performance.

For making comparisons, each method has a reference (CPU-only) version, a (possibly optimized) CPU version, and a

GPU version. A set of synthetic reference test cases is implemented for testing, designed to give the exact same bit-for-

bit result for all code versions and for all parallel decompositions. Two types of synthetic problem are implemented: a

version for which each vector entry is set to a randomized value, and a second version with randomized placement of

entries specifically chosen so that the correctness of every result value can be verified analytically. A checksum feature

using extended precision integer arithmetic computes a bit-for-bit exact checksum of computed results to check for errors

when using synthetic inputs.

The code can be compiled under single or double precision. The single precision version requires less compute time

and is adequate if the vector lengths are sufficiently short and the number of digits of precision required in the result is

sufficiently low.

To modify MAGMA as needed for the algorithms, it is necessary to modify the two files in the MAGMA package

magmablas/gemm_stencil.cuh and magmablas/gemm_stencil_defs.h . In particular, the macro definition for

“fma ” defining the fused multiply-add must be changed to make use of the min-product operation.

6. Computational results

6.1. Overview

Experiments are performed on the ORNL Titan Cray XK7 system. Titan is composed of 18,688 compute nodes each

equipped with an AMD Interlagos 16 core CPU and an NVIDIA Kepler K20X GPU connected via a PCIe-2 bus. The K20X GPU

has peak single/double precision flop rate of 3935/1311 GF and peak memory bandwidth of 250 GB/s. Each node contains

32 GB main memory and 6 GB GPU memory.

The software versions used are Cray OS version 5.2.82, Cray Programming Environment 2.5.5, GCC 4.9.3, MAGMA 1.6.2

and CUDA toolkit 7.5.18-1.0502.10743.2.1. For large node counts, it is in some cases necessary to set the environment variable

APRUN_BALANCED_INJECTION to values such as 63 or 33 to avoid throttling of the communication network resulting

from the algorithms’ communication patterns and causing performance loss.

The primary use of the code is to solve very large problems not previously solvable; thus weak scaling behavior, for

which the work per node is kept roughly constant as compute node count is increased, is the primary focus.

GPU-enabled runs are executed with one MPI rank and one GPU per Titan node. Reported execution times do not in-

clude I/O and setup costs. The source code execution path for the algorithm is identical independent of the actual values

contained in the input vectors; thus we expect performance for the synthetic datasets used here to be essentially identical

to performance with actual genomics data.

6.2. Single GPU kernel performance

We first validate that the modified MAGMA kernel has comparable performance to the true GEMM operation. Table 1

shows results for a sample case with n v = 10 , 240 vectors of length n f = 12 , 288 elements run on a single node. Kernel

times are taken from the CUDA Profiler and include kernel time only, without transfer or CPU times. GEMM achievable

performance figures are taken from [31] . Though the CUDA intrinsics fmin and fminf are used in the production code,

timings using the C ternary conditional operator are additionally included for comparison.

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 139

Table 1

Kernel times in seconds for single GPU case.

Single precision Double precision

mGEMM, c += a < b ? a : b 3.056 7.222

mGEMM, CUDA intrinsic fminf/fmin 2.602 6.484

GEMM, MAGMA 2.097 4.179

GEMM, cuBLAS 1.035 2.410

GEMM achievable peak 0.889 2.112

GEMM theoretical peak 0.655 1.966

Table 2

GPU vs. CPU runtime comparisons in sec-

onds.

Num way GPU CPU Ratio

2 76.8 3149.9 41.0

3 371.3 10,067 27.1

It is apparent from the results that the performance of the modified GEMM kernel is a large fraction of achievable peak

GEMM rate. There is an expected degradation of performance from using an fmin or fminf hardware intrinsic combined

with a scalar addition instead of FMA, insofar as FMA can execute in a single clock cycle unlike the fmin or fminf op-

eration combined with an addition. Furthermore, the MAGMA standard GEMM on which the methods are based is not as

fast as the cuBLAS GEMM. This is because the MAGMA GEMM is specifically optimized for smaller matrix sizes required by

other MAGMA operations rather than the large sizes in focus here. Though the performance is high, a topic of future study

is to improve the performance of this kernel, which is the ultimate performance determiner of the algorithm.

6.3. Performance model

It is desirable to model algorithm performance in order to evaluate expected performance and also to give guidance

regarding selection of tuning parameters. We assume here that mGEMM sizes are large enough to hide communications,

GPU data transfers and CPU computations.

For the 2-way case, we define � , the “load,” to denote the number of blocks assigned to each node. Then the execution

time of the algorithm is estimated by

t = t C + t T,V + � · t G + t T,M

+ t CPU ,

where t C is the time for communicating n fp n vp vector elements per node for a parallel step, t T, V the time to transfer n fp n vp

vector elements to the GPU for a step, t T,M

the time to transfer n 2 v p metrics values from the GPU per step, t CPU the time for

denominator and quotient calculations per step and t G the time for an mGEMM computation. The non-mGEMM times are

included here to account for pipeline startup and drain, assuming the mGEMMs perfectly overlap the other operations. It

is evident that maximizing � (by limiting n pr) makes it possible to approach peak mGEMM performance. mGEMM rates are

determined empirically; the goal is to make the matrix dimensions n fp and n vp as large as possible to maximize mGEMM

efficiency. This suggests for a given problem it is desirable to reduce n pv and n pf until CPU or GPU memory is filled.

For the 3-way case, we again define the load � , here representing the number of block slices computed by a node. Each

slice is computed by a GPU pipeline of (n vp /6)/ n st mGEMM steps. The execution time of the algorithm is estimated by

t = t C + t T,V + � · [(3 + (n v p / 6) /n st) t G + 3 t T,V + 4 t T,M

+ t CPU] .

mGEMM performance is approached by increasing � , and n vp and decreasing n st , subject to memory constraints. The value

of n st should be kept small to minimize the impact of the three 2-way metrics calculations required for each slice. As with

the 2-way case, n fp and n vp should be maximized in order to maximize mGEMM performance.

6.4. GPU vs. CPU performance comparison

The following results compare performance with and without use of GPUs, to evaluate the performance advantage af-

forded by use of GPUs. These results use 20,0 0 0 fields on 32 compute nodes decomposed via n pv = 32 using double precision

and 20 0,0 0 0 (2-way case) or 6144 (3-way case) vectors. Results are shown in Table 2 . The GPU version performs better than

CPU by factors of 41X (2-way case) and 27X (3-way case). These figures should be compared against the roughly 10X peak

flop rate ratio and 5X peak memory bandwidth ratio between GPU and CPU for each Titan node. Since the CPU code version

used here is a reasonable implementation but not as heavily optimized as the GPU version, these results should not be

interpreted to reflect the comparative best achievable performance by a highly optimized code for each case.

140 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

Fig. 6. Proportional Similarity metric 2-way and 3-way double precision strong scaling runtimes.

6.5. Strong scaling results

Though the primary application of this work is weak scaling regimes, we present strong scaling results for completeness.

Fig. 6 shows double precision results for a fixed problem with 20,0 0 0 fields and 16,384 (2-way case) or 1544 (3-way case)

vectors. The problem is run on 2 to 64 compute nodes with various processor decompositions; the best case for each node

count is shown. The parallel efficiencies at 64 nodes relative to 2 nodes are 79% (2-way) and 34% (3-way). The 3-way case

is less efficient here, since the large number of metrics to be computed constrains the problem size to be smaller than what

would be typically run in practice. Efficiency could be substantially increased by computing only a single stage at a time

out of many compute stages, enabling larger matrix sizes; doing this here however would not be a strong scaling test in the

commonly understood sense, since the subset of elements selected for a compute stage is not independent of the processor

decomposition, thus a slightly different problem would be solved in each case.

6.6. 2-way weak scaling results

Executing a problem on n p nodes requires selecting tuning parameters n pf , n pv and n pr satisfying n p f n pv n pr = n p . We set

n p f = 1 for these experiments since actual datasets these cases are intended to emulate have modest sizes for n f ; nonethe-

less, experiments show that the code has very good weak scaling behavior along this axis for modest n pf .

For fixed n pv , setting n pr = � n pv / 2 + 1 � assigns a single block to each node. We thus set n pr = �� n pv / 2 + 1 � /� � where � is

the load.

Experiments are performed for up to 17,472 of Titan’s 18,688 compute nodes, or 93.5% of the system. The double precision

case uses n f = 5 , 0 0 0 elements per vector, n v p = 10 , 240 vectors per node and load � = 13 .

Though the BLAS-3 nature of the mGEMM makes it possible to asynchronously hide communication costs for large

problems, the 2-way Proportional Similarity communication costs are still challenging, in this case for example requir-

ing messages of nearly 1/2 GB size. To maximize communication performance, we execute the 2-way runs in dedi-

cated system mode with environment variables APRUN_BALANCED_INJECTION = 96 , ARMCI_DMAPP_LOCK_ON_GET = 1
and ARMCI_DMAPP_LOCK_ON_PUT = 1 . Furthermore, following an approach previously used for optimizing parallel

transpose operations [32] , we apply a randomly generated mapping of the problem to compute nodes, using the

MPICH_RANK_REORDER_METHOD environment variable and a specifying a random reordering by input file. Failure to use

these two techniques at scale often resulted in network throttling events leading to irregular runtimes and decreased appli-

cation performance by a factor of 2X or more.

Fig. 7 shows weak scaling results. Timings are shown in the left graph. Though there is some loss of performance due

to communication costs as the node count is increased, the performance loss is a mere 37% as the node count is increased

by nearly three orders of magnitude. The right graph shows rate of operations per node, where scalar addition, scalar mul-

tiplication and scalar minimum are each counted as one operation. Since the comparison of two vector elements requires a

scalar minimum and a scalar add, the value of twice the comparison rate is also shown. The values nearly match, except at

low node counts for which the unneeded computations for the main diagonal block cause slight loss of performance. The

implied operation rate for large cases derived from Table 1 is roughly 398 GOps/s per node (1 GOp = 10 9 operations), to

which the rates in Fig. 7 should be compared. The maximum comparison rate for the largest case is 1.70 petacomparisons

per second; see Table 3 .

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 141

Fig. 7. Proportional Similarity metric 2-way double precision weak scaling. Left: time to solution. Right: operations (add, multiply, fmin) per second, and

corresponding number of unique elementwise comparisons per second per node.

Table 3

Maximum performance, 2-way Proportional Similarity metric.

Method Operations per second Comparisons per second

Double precision 3.40 × 10 15 1.70 × 10 15

Single precision 8.59 × 10 15 4.29 × 10 15

Fig. 8. Proportional Similarity metric 2-way single precision weak scaling. Left: time to solution. Right: operations (add, multiply, fminf) per second, and

corresponding number of unique elementwise comparisons per second per node.

In practice, the use of a random permutation of nodes might be expected to result in some performance variability based

on the specific permutation used; in production, if needed one could in principle save a “good” permutation for a given

node count and problem setup for subsequent reuse. However, we believe code modifications are possible which would

make it unnecessary to use a random permutation of nodes: by an adjustment of the code it should be possible to recast

the communication pattern as a nearest neighbor communication and then use known methods to map the communication

pattern optimally to the network, see, e.g. [33] ; this will be a topic of future study. In any case, as with other parallel

applications, optimizing communications in a multiuser environment is challenging insofar as the network bandwidth is

shared by other users and furthermore it is not always possible for a user to reserve a communication-optimal subset of

nodes for job execution.

The single precision test cases use n f = 10 , 0 0 0 elements per vector, n v p = 12 , 288 vectors per node and load � = 13 .

Fig. 8 shows the weak scaling results. Results are qualitatively similar to the double precision case, with rate over twice

as fast, owing to the use of single precision. The performance loss is only 41% as the node count is increased by nearly

three orders of magnitude. The implied operation rate for large cases derived from Table 1 is roughly 991 GOps/s per node,

to which these rates should be compared. The maximum comparison rate for the largest case is 4.29 petacomparisons per

second.

6.7. 3-way weak scaling results

For the 3-way case we must select n pf , n pv , n pr and additionally the stage count n st . For load � we set n pr = � (n pv +
1)(n pv + 2) /� � . The stage count n st for best efficiency should be set to divide n vp /6 evenly, for n v p = n v /n pv vectors per node.

142 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

Fig. 9. Proportional Similarity metric 3-way double precision weak scaling. Left: time to solution. Right: operations (add, multiply, fmin) per second, and

corresponding number of unique elementwise comparisons per second per node.

Fig. 10. Proportional Similarity metric 3-way single precision weak scaling. Left: time to solution. Right: operations (add, multiply, fminf) per second, and

corresponding number of unique elementwise comparisons per second per node.

Table 4

Maximum performance, 3-way Proportional Similarity metric.

Method Operations per second Comparisons per second

Double precision 5.75 × 10 15 2.44 × 10 15

Single precision 13.40 × 10 15 5.70 × 10 15

The test runs are executed on up to 18,424 of Titan’s 18,688 compute nodes, or 98.6% of the system. Fig. 9 shows results

for the double precision case, with n f = 20 , 0 0 0 elements per vector and n v p = 2 , 880 vectors per node, computing the final

stage of n st = 16 stages (pipeline depth 30), with load � = 6 . The left graph shows very good weak scaling behavior, with

some anomalies at low node counts for which per-node performance is less efficient. The right graph shows the average

operations per node primarily dominated by mGEMM costs. The rate is maintained above 300 GOps per node up to the

highest node counts, a figure to be compared to the double precision GEMM rate of up to 398 GOps implied by Table 1 .

This is compared in the figure to twice the comparison rate per node. At lower node counts there is some disparity between

the two, primarily caused by the load balancing issues described earlier, but at high node counts these two quantities

approximate each other, indicating that overheads are low; the remaining disparity is mainly the result of the required

2-way computations at pipeline startup, which are counted here as part of the 3-way comparison operation.

Fig. 10 shows corresponding results for the single precision case, with n f = 20 , 0 0 0 elements per vector and n vp = 2880

vectors per node, computing the final stage of n st = 16 stages, with load � = 6 . The results are qualitatively similar to the

double precision case, with over 2X higher performance due to increases in instruction rate and memory bandwidth.

Table 4 shows the maximum operation and comparison rates attained at the highest node counts, up to 2.44 petacom-

parisons per second (double precision) or 5.70 petacomparisons per second (single precision).

6.8. Results for a realistic sample problem

We now show results for data corresponding to an actual (i.e., nonsynthetic) problem. The input data is from a Phe-

nome Wide Association dataset of poplar metabolites, containing all of the single nucleotide polymorphisms (SNPs) that

have a significant genome wide association study (GWAS) association to one or more metabolites measured across a GWAS

population of poplar trees. GWAS was performed using EMMAX [34] . This case has n v = 189 , 625 vectors of length n f = 385 .

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 143

Table 5

Sample problem timings in seconds (unoptimized I/O).

Num way n f Input time Metrics comp time Output time Comparison rate / node

2 385 0.06 1.85 24.78 125e9

2 20,0 0 0 – 28.86 24.79 415e9

3 385 13.89 15.38 – 54e9

3 50 0 0 – 33.37 – 321e9

Table 6

Comparisons to related work.

Code Problem Node config Nodes used GFlop rate cmp/s(× 10 9) Norm perf

[16] 2-way 1-bit 1 Intel Core i7-920 1 42.56 DP 222 5.216

GBOOST [11] 2-way GWAS 1 NVIDIA GTX 285 1 1062.72 SP 64.08 0.060

GWISFI [12] 2-way GWAS 1 NVIDIA GTX 470 1 1088.6 SP 767 0.705

[19] 2-way GWAS 1 NVIDIA GTX 470 1 1088.6 SP 649 0.596

[16] 2-way 1-bit 1 NVIDIA GTX 480 1 1345 SP 1185 0.881

[19] 2-way GWAS IBM Blue Gene/Q 4096 839e3 DP 2520 0.003

epiSNP [20] 2-way GWAS 2 Intel Xeon Phi SE10P 126 271e3 DP 1593 0.006

[13] 2-way GWAS 2 NVIDIA K20m + 1 3360.56 DP 1053 0.313

1 Intel Xeon Phi 5110P

CoMet 2-way PS SP 1 NVIDIA K20X 17,472 25.3e6 DP 4.290e6 0.169

CoMet 2-way PS DP 1 NVIDIA K20X 17,472 25.3e6 DP 1.700e6 0.067

GPU3SNP [14] 3-way GWAS 4 NVIDIA GTX Titan 1 60 0 0 DP 264.7 0.044

CoMet 3-way PS SP 1 NVIDIA K20X 18,424 26.7e6 DP 5.700e6 0.213

CoMet 3-way PS DP 1 NVIDIA K20X 18,424 26.7e6 DP 2.440e6 0.091

The runs are performed in single precision; this is satisfactory on account of the short vector lengths and modest accu-

racy requirements. Due to the comparatively short vector length for this dataset, it is expected that the mGEMM operations

will run at less than optimal efficiency; therefore, for comparison, a synthetic problem is also run with the same dimen-

sions and settings except that the vector length n f is chosen larger. All cases set n p f = 1 . The input data is stored in a single

column-major binary file; each compute node reads the required portion of this file. The output is written as one file per

node with each metric value written as a single unsigned byte value storing roughly 2-1/2 significant figures, an adequate

size for this study; all metrics are written with no thresholding. No indexing information need be written explicitly since

this information can be computed formulaically offline. No further efforts are made to optimize I/O performance.

The 2-way method is run using n p = n pv = 30 Titan nodes. The 3-way method is run with n pv = 30 and n pr = 496 on

n p = n pv · n pr = 14 , 880 Titan nodes; in this case only the last stage of n st = 220 stages is computed. Ouput is measured only

for the 2-way cases. Results are given in Table 5 . Performance is good for the sample case but substantially better if the

vector length is longer, due to the improved mGEMM performance.

It is apparent that the high speed of the metrics calculation itself requires that careful attention be given to workflow

design for scientific campaigns, specifically the handling of the large volume of generated metrics data. The trend in high

performance computing system hardware is increasing compute node speed, while I/O bandwidths are growing at a much

slower rate; burst buffers will increase this rate, but their storage capacities will be limited. Techniques for performing in

situ analysis on the nodes before writing out results will reduce the data burden. Methods to threshold, downsample and

compress data and optimize the data writing process will be important for efficient performance. Any requirements to use

global methods for determining the thresholding values or other output tuning parameters will be problematic when using

staging, since in this case not all of the results are available in memory at any given time to compute the needed parameters.

The staging option for the 3-way case however will allow favorable opportunities for overlapping of computation and output:

a stage can be computed at the same time that asynchronously the previous stage is written to disk. This strategy will

require some care however, since main memory bandwidth is required for the output as well as for the data transfers

to and from the GPU during compute and also for communication; these competing operations will need to be carefully

scheduled in order to avoid resource contention.

6.9. Comparison with other work

We now compare against results reported in the literature as described in Section 1 . We consider the most relevant

comparable work we are aware of as of this writing. Table 6 shows comparisons per second for alternative methods and im-

plementations. Unfortunately, it is difficult to make rigorous comparisons when architectures and algorithms are significantly

different and source code for the methods is not available or is not easily ported and tuned to a single common architecture

for comparison. Furthermore, most reported results in the literature for vector similarity for genomics applications represent

input values as bits rather than full floating point values. This makes comparisons tenuous insofar as manipulating many

binary values packed into a word is disproportionately much faster than operating on floating point numbers. With these

caveats in mind we report element comparisons per second in Table 6 , whether an element is a single bit, a string of 2 or 3

144 W. Joubert et al. / Parallel Computing 75 (2018) 130–145

bits, or a floating point number. Also as a rough measure of this performance normalized against hardware capability, a nor-

malized performance ratio is calculated by normalizing the (absolute) comparison rate against the floating point rate of the

respective hardware. For newer hardware, the double precision peak rate is used; for older GPUs with weak or nonexistent

double precision support, single precision is used.

We consider first the raw number of comparisons per second. Table 6 demonstrates that the CoMet code used in the

present work gives several orders of magnitude higher absolute performance, as measured in comparisons per second, far

beyond the demonstrated capability of any other code shown. Furthermore, the 3-way method’s normalized performance

ratio is as high as 5X higher than that of any other 3-way implementation shown.

The normalized performance ratio of CoMet is within the general range of performance ratios of the other methods.

Also, the CoMet 2-way single precision method’s rate is within about a factor of four of the best performing 2-way GWAS

method. This should be considered a strong result, insofar as the bitwise GWAS methods operate on 2-bit or 3-bit values,

disproportionately easier since they are less than one-tenth the size of the 32 bit floating point values operated on by the

current code. Also, pointing back to Table 1 , CoMet code performance is already approaching peak available performance

of the underlying hardware; thus we believe that in a fair apples-to-apples comparison the present code would rank well.

Finally, the performance of Haque et al. [16] is exceptionally high since the codes operate on single bit values and the CPU

code exploits native high performance features of that processor model.

7. Conclusions

We have defined a new set of algorithm implementations for computing 2-way and 3-way vector comparison metrics

on leadership class systems, showing performance of up to five quadrillion vector element comparisons per second. To our

knowledge this is the first computation of its kind ever performed at this scale, demonstrating the capability to perform

simulations that were until recently considered far beyond what is possible, enabling new kinds of science in GWAS and

PheWAS to be done.

Future work will include investigation of additional code performance improvements—for example, improved mGEMM

performance and lessening of overheads by additional code tuning. We anticipate the methods described here will be di-

rectly portable to alternative processor architectures such as Intel Xeon Phi. We will also examine implementation of higher

order comparison methods. Use of these methods will require careful engineering of computational science workflows in

such a way that the entire workflow is well optimized for scientific discovery.

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which

is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 .

This research was funded by the BioEnergy Science Center (BESC) at the Oak Ridge National Laboratory (contract DE-

PS02-06ER64304). BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and

Environmental Research in the DOE Office of Science. This research was also supported by the Plant-Microbe Interfaces Sci-

entific Focus Area (http://pmi.ornl.gov) in the Genomic Science Program, the Office of Biological and Environmental Research

(BER) in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for

the US DOE under contract DE-AC05-00OR22725.

We would like to acknowledge the following people: Timothy Tschaplinski, Priya Ranjan, Nan Zhao and Madhavi Martin

for the metabolomics data; Nancy Engle, David Weston, Ryan Aug, KC Cushman, Lee Gunter and Sara Jawdy for metabolomics

sample collection; Carissa Bleker and Piet Jones for performing the GWAS; Gerald Tuskan, Wellington Muchero and the DOE

Joint Genome Institute (JGI) for sequencing the Populus genotypes and generating the processed the SNP data.

References

[1] S.-H. Cha, Comprehensive survey on distance/similarity measures between probability density functions, Int. J. Math. Models Methods Appl. Sci. 1 (4)

(2007) . http://arabic-icr.googlecode.com/git/Papers/Comprehensive%20Survey%20on%20Distance-Similarity.pdf .
[2] D.A. Weighill , D. Jacobson , Network metamodeling: effect of correlation metric choice on phylogenomic and transcriptomic network topology, Adv.

Biochem. Eng./ Biotechnol. (2017) .

[3] N. Solovieff, C. Cotsapas , P.H. Lee , S.M. Purcell , J.W. Smoller , Pleiotropy in complex traits: challenges and strategies, Nat. Rev. Genet. 14 (7) (2013)
4 83–4 95 .

[4] S.A. Pendergrass , K. Brown-Gentry , S.M. Dudek , E.S. Torstenson , J.L. Ambite , C.L. Avery , S. Buyske , C. Cai , M.D. Fesinmeyer , C. Haiman , et al. , The use of
phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery, Genet. Epidemiol.

35 (5) (2011) 410–422 .
[5] S. Bolormaa , J.E. Pryce , A. Reverter , Y. Zhang , W. Barendse , K. Kemper , B. Tier , K. Savin , B.J. Hayes , M.E. Goddard , A multi-trait, meta-analysis for

detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle, PLoS Genet. 10 (3) (2014) e1004198 .

[6] D.A . Weighill, D.A . Jacobson, 3-Way networks: application of hypergraphs for modelling increased complexity in comparative genomics, PLoS Comput.
Biol. 11 (3) (2015) . http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004079 . [Online; accessed 1-March-2016].

[7] J.R. Bray, J.T. Curtis, An ordination of the upland forest communities of southern wisconsin, Ecol. Monogr. 27 (4) (1957) . http://www.geobotany.org/
teaching/biol474/journals/Bray1957v27n4.pdf . [Online; accessed 1-March-2016].

[8] W. Joubert , J. Nance , S. Climer , D. Weighill , D. Jacobson , Parallel accelerated custom correlation coefficient calculations for genomics applications,
Parallel Comput. (2018) . in press, in review.

https://doi.org/10.13039/100006132
https://doi.org/10.13039/100006228
http://pmi.ornl.gov
http://arabic-icr.googlecode.com/git/Papers/Comprehensive%20Survey%20on%20Distance-Similarity.pdf
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0005
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004079
http://www.geobotany.org/teaching/biol474/journals/Bray1957v27n4.pdf
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0008

W. Joubert et al. / Parallel Computing 75 (2018) 130–145 145

[9] S. Climer, W. Yang, L. de las Fuentes, V.G. Davila-Roman, C.C. Gu, A custom correlation coefficient (CCC) approach for fast identification of multi-SNP
association patterns in genome-Wide SNPs data, Genet. Epidemiol. 38 (7) (2014) . http://www.ncbi.nlm.nih.gov/pubmed/25168954 . [Online; accessed

1-March-2016].
[10] W.-H. Wei, G. Hemani, C.S. Haley, Detecting epistasis in human complex traits, Nat. Rev. Genet. (2014) . http://www.nature.com/nrg/journal/v15/n11/

full/nrg3747.html . [Online; accessed 11-October-2016].
[11] L.S. Yung, C. Yang, X. Wan, W. Yu, GBOOST: a GPU - based tool for detecting gene gene interactions in genome wide case control studies, Bioinformatics

27 (9) (2011) 1309–1310 . http://bioinformatics.oxfordjournals.org/content/27/9/1309.abstract .

[12] Q. Wang, F. Shi, A. Kowalczyk, R.M. Campbell, B. Goudey, D. Rawlinson, A. Harwood, H. Ferra, A. Kowalczyk, GWISFI: a universal GPU interface for
exhaustive search of pairwise interactions in case-control GWAS in minutes, in: 2014 IEEE International Conference on Bioinformatics and Biomedicine,

2014 . http://ieeexplore.ieee.org/document/6999192 . [Online; accessed 11-October-2016].
[13] J. Gonzalez-Dominguez, S. Ramos, J. Tourino, B. Schmidt, Parallel pairwise epistasis detection on heterogeneous computing architectures, IEEE Trans.

Parallel Distrib. Syst. (2016) . http://ieeexplore.ieee.org/document/7165657/ . [Online; accessed 11-October-2016].
[14] J. Gonzalez-Dominguez, B. Schmidt, GPU-accelerated exhaustive search for third-order epistatic interactions in casecontrol studies, J. Comput. Sci. 8

(2015) 93–100, doi: 10.1016/j.jocs.2015.04.001 . http://www.sciencedirect.com/science/article/pii/S18777503150 0 0393 .
[15] E. Solomonik, D. Matthews, J.R. Hammond, J. Demmel, Cyclops tensor framework: reducing communication and eliminating load imbalance in mas-

sively parallel contractions, in: Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013, pp. 813–824, doi: 10.1109/

IPDPS.2013.112 . http://ieeexplore.ieee.org/document/6569864/?arnumber=6569864 . [Online; accessed 11-October-2016].
[16] I.S. Haque, V.S. Pande, W.P. Walters, Anatomy of high-performance 2D similarity calculations, J. Chem. Inf. Model. 51 (9) (2011) 2345–2351 . https:

//doi.org/10.1021/ci200235e .
[17] Z. Wang, Y. Wang, K.-L. Tan, L. Wong, D. Agrawal, ECEO: an efficient cloud epistasis computing model in genome-wide association study, Bioinformatics

27 (8) (2011) 1045–1051, doi: 10.1093/bioinformatics/btr091 . http://bioinformatics.oxfordjournals.org/content/27/8/1045.abstract .
[18] J.C. Yang, C. Harris, S. Young, G. Morahan, Adapting genome-wide association workflows for HPC processing at pawsey, Supercomputing SC15, 2015 .

http://sc15.supercomputing.org/sites/all/themes/SC15images/tech _ poster/tech _ poster _ pages/post200.html . [Online; accessed 11-October-2016].

[19] B. Goudey, M. Abedini, J.L. Hopper, M. Inouye, E. Makalic, D.F. Schmidt, J. Wagner, Z. Zhou, J. Zobel, M. Reumann, High performance computing enabling
exhaustive analysis of higher order single nucleotide polymorphism interaction in genome wide association studies, in: Proceedings of the HISA BIG

DATA 2013 Conference, 2015 . https://link.springer.com/article/10.1186/2047- 2501- 3- S1- S3 . [Online; accessed 5-February-2018].
[20] G.R. Luecke, N.T. Weeks, B.M. Groth, M. Kraeva, L. Ma, L.M. Kramer, J.E. Koltes, J.M. Reecy, Fast epistasis detection in large-scale GWAS for Intel Xeon

Phi clusters, Trustcom/BigDataSE/ISPA, 2015 IEEE, 2011 . http://ieeexplore.ieee.org/document/7345653/ . [Online; accessed 11-October-2016].
[21] N.T. Weeks, G.R. Luecke, B.M. Groth, M. Kraeva, L. Ma, L.M. Kramer, J.E. Koltes, J.M. Reecy, High-performance epistasis detection in quantitative trait

GWAS, Int. J. High Perform. Comput. Appl. (2016) . 1094342016658110. https://doi.org/10.1177/1094342016658110 .

[22] L. Koesterke, D. Stanzione, M. Vaughn, S.M. Welch, W. Kusnierczyk, An efficient and scalable implementation of SNP-pair interaction testing for ge-
netic association studies, 2011 IEEE International Parallel and Distributed Processing Symposium, 2011 . http://ieeexplore.ieee.org/document/6008872/ .

[Online; accessed 11-October-2016].
[23] J. Johnson, M. Douze, H. Jegou, Billion-scale Similarity Search with GPUs, 2017 . https://arxiv.org/abs/1702.08734 . [Online; accessed 10-May-2017].

[24] J. Vegelius, S. Janson, F. Johansson, Measures of similarity between distributions, Qual. Quant. 20 (4) (1986) 437–441, doi: 10.10 07/BF0 0123091 . https:
//doi.org/10.10 07/BF0 0123091 .

[25] J.J. Dongarra, J. Du Croz, S. Hammarling, I.S. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Softw. 16 (1) (1990) 1–17,

doi: 10.1145/77626.79170 . http://doi.acm.org/10.1145/77626.79170 .
[26] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra solvers for multicore with GPU accelerators, in: Parallel Distributed Processing, Workshops

and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1–8, doi: 10.1109/IPDPSW.2010.5470941 . http://ieeexplore.ieee.org/xpls/
abs _ all.jsp?arnumber=5470941 . [Online; accessed 1-March-2016].

[27] PLASMA. http://icl.cs.utk.edu/plasma/software . [Online; accessed 11-October-2016].
[28] BLIS. https://github.com/flame/blis . [Online; accessed 11-October-2016].

[29] OpenBLAS: An optimized BLAS library. http://www.openblas.net/ . [Online; accessed 11-October-2016].

[30] J. Choi, J.J. Dongarra, R. Pozo, D.W. Walker, ScaLAPACK: a scalable linear algebra library for distributed memory concurrent computers, in: Frontiers
of Massively Parallel Computation, 1992., Fourth Symposium on the, IEEE, 1992, pp. 120–127 . http://ieeexplore.ieee.org/document/234898/ . [Online;

accessed 11-October-2016].
[31] NVIDIA Tesla K20-K20X GPU Accelerators Benchmarks, 2012. http://www.nvidia.com/docs/IO/122874/K20- and- K20X- application- performance-

technical-brief.pdf . [Online; accessed 11-October-2016].
[32] Using Balanced Injection in Cray Systems, 2012. http://docs.cray.com/books/S- 0040- A/S- 0040- A.pdf . [Online; accessed 11-October-2016].

[33] R. Sankaran, J. Angel, M. Brown, Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific

applications, Concurr. Comput. Prac. Experience 27 (17) (2015) . https://doi.org/10.1002/cpe.3457 . [Online; accessed 1-March-2016].
[34] H.M. Kang , J.H. Sul , S.K. Service , N.A. Zaitlen , S.-y. Kong , N.B. Freimer , C. Sabatti , E. Eskin , et al. , Variance component model to account for sample

structure in genome-wide association studies, Nat. Genet. 42 (4) (2010) 348–354 .

http://www.ncbi.nlm.nih.gov/pubmed/25168954
http://www.nature.com/nrg/journal/v15/n11/full/nrg3747.html
http://bioinformatics.oxfordjournals.org/content/27/9/1309.abstract
http://ieeexplore.ieee.org/document/6999192
http://ieeexplore.ieee.org/document/7165657/
https://doi.org/10.1016/j.jocs.2015.04.001
http://www.sciencedirect.com/science/article/pii/S1877750315000393
https://doi.org/10.1109/IPDPS.2013.112
http://ieeexplore.ieee.org/document/6569864/?arnumber=6569864
https://doi.org/10.1021/ci200235e
https://doi.org/10.1093/bioinformatics/btr091
http://bioinformatics.oxfordjournals.org/content/27/8/1045.abstract
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post200.html
https://link.springer.com/article/10.1186/2047-2501-3-S1-S3
http://ieeexplore.ieee.org/document/7345653/
https://doi.org/10.1177/1094342016658110
http://ieeexplore.ieee.org/document/6008872/
https://arxiv.org/abs/1702.08734
https://doi.org/10.1007/BF00123091
https://doi.org/10.1007/BF00123091
https://doi.org/10.1145/77626.79170
http://doi.acm.org/10.1145/77626.79170
https://doi.org/10.1109/IPDPSW.2010.5470941
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5470941
http://icl.cs.utk.edu/plasma/software
https://github.com/flame/blis
http://www.openblas.net/
http://ieeexplore.ieee.org/document/234898/
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
http://docs.cray.com/books/S-0040-A/S-0040-A.pdf
https://doi.org/10.1002/cpe.3457
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30084-X/sbref0031

