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ABSTRACT 
Motivation: Gene prediction in metagenomic sequences remains a 
difficult problem.  Current sequencing technologies do not achieve 
sufficient coverage to assemble the individual genomes in a typical 
sample; consequently, sequencing runs produce a large number of 
short sequences whose exact origin is unknown.  Since these 
sequences are usually smaller than the average length of a gene, 
algorithms must make predictions based on very little data. 
Results:  We present MetaProdigal, a metagenomic version of the 
gene prediction program Prodigal, that can identify genes in short, 
anonymous coding sequences with a high degree of accuracy.  The 
novel value of the method consists of enhanced translation initiation 
site identification, ability to identify sequences that use alternate 
genetic codes, and in confidence values for each gene call.  We 
compare the results of MetaProdigal with other methods, and 
conclude with a discussion of future improvements. 
Availability: The Prodigal software is freely available under the 
General Public License from http://code.google.com/p/prodigal/. 
Contact: hyattpd@ornl.gov 

1 INTRODUCTION  
Metagenomes from environmental samples can contain thousands 
of species, and often cannot be sequenced to sufficient coverage to 
assemble each individual genome.  Even with enough coverage, 
the correct binning and assembly of the various sequences still 
present many challenges, making it likely that, at least for the 
immediate future, metagenomic sequencing will continue to 
produce a large number of small contigs. 

1.1 Challenges in Short, Anonymous Sequences 
 

Various sequencing technologies, such as 454, Illumina, and 
Sanger, can produce reads anywhere from 50bp to >1000bp when 
analyzing a typical metagenomic sample.  In the first case, gene 
identification becomes extremely difficult; in the latter case, genes 
can be predicted rather well.  In addition, sequencing errors, 
particularly the insertions and deletions common to 454, can have 
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a profound negative impact on metagenomic gene prediction 
(Hoff, 2009) (Rho et al., 2010). 

In reality, the metagenomic gene prediction problem is not one 
challenge, but two.  The first problem, which we call the 
anonymous sequence problem, is that the genome from which the 
sequence was derived is unknown.  The second problem, which we 
will refer to as the short sequence problem, is that the sequences 
are shorter than the length of an average gene, and therefore many 
fragments contain genes that run off one or both edges of the 
contig.  Although many methods treat these two problems together, 
and, indeed, the second problem does exacerbate the first, in reality 
they are two separate issues.  Short sequences present challenges 
even for draft contigs in a single genome, particularly in the 
identification of edge genes, and long sequences whose origin is 
unknown can still prove difficult to analyze as accurately as if the 
genome were known. 

Many programs have been developed to solve these problems 
and identify genes in metagenomic fragments, including Metagene 
(Noguchi et al., 2006), Metagene Annotator (Noguchi et al., 2008), 
MetaGeneMark (Zhu et al., 2010), Orphelia (Hoff et al., 2008), 
and FragGeneScan (Rho et al., 2010).  Although these methods 
perform well, none of them specializes in identifying translation 
initiation sites, and none of them is able to correctly identify 
sequences derived from the Mycoplasma genus, which uses an 
alternate genetic code that translates UGA to tryptophan (Yamao et 
al., 1985). 

1.2 The Prodigal Gene Prediction Program 
 
The gene prediction program Prodigal was introduced in 2007 

(Hyatt et al., 2010).  Prodigal achieves good performance in 
identifying genes and translation initiation sites in finished 
genomes (Hyatt et al., 2010) (de Jong et al., 2010) (Angelova et 
al., 2010).  The Joint Genome Institute uses Prodigal to annotate 
all its draft and finished genomes for the Department of Energy.  
Prodigal has been downloaded over 1000 times by users from 56 
different countries, and is in active use at numerous institutions 
around the world (data provided by analytics.google.com). 

Because Prodigal’s training methodology already incorporates a 
great deal of information, including translation table, hexamer 
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statistics, RBS motifs, and upstream base composition, we sought 
to create extensions to the existing software that would handle 
metagenomic gene prediction, rather than to begin from nothing.  
Our idea was to create a variety of Prodigal training files covering 
all ranges of GC content, genetic codes, Eubacteria, Archaea, etc., 
and analyze an incoming fragment using one or more of these files.  
The resulting prediction would then be chosen based on the 
training file(s) that provided the best fit for a particular sequence. 

1.3 The Focus of MetaProdigal 

 
In developing a metagenomic version of Prodigal, we chose to 
focus on optimizing performance for longer sequence lengths 
(700bp+), in the belief that sequencing, binning, and assembly 
technologies will rapidly improve to the point where extremely 
short sequences are no longer the norm.  Despite this focus, we still 
ensured our algorithm would perform reasonably well on shorter 
sequences.   

In addition, although we acknowledge the severe impact of 
sequencing errors on gene prediction, it proved too difficult to 
integrate the handling of insertions and deletions into the Prodigal 
framework.  We also assert that frame shifts will become 
increasingly less of a problem with future improvements to 
sequencing and assembly technologies.  In the meantime, 
FragGeneScan (Rho et al., 2010) has demonstrated robust handling 
of insertions and deletions for those using 454. 

Our algorithm provides three novel contributions:  (1) the 
incorporation of start site information into our training files, 
enabling excellent recognition of translation initiation sites, 
particularly at longer sequence lengths, (2) the ability to predict 
genes in sequences from organisms that use an alternative genetic 
code (Mycoplasma), and (3) the provision of confidence values, 
which can be used to filter gene predictions (useful when dealing 
with small gene fragments). 

2 METHODS 
 

The first step in our algorithm was to develop a set of training 
files that could be used to score an anonymous coding sequence 
using the existing Prodigal algorithm.  In order to generate these 
training files, we turned to NCBI’s Refseq repository, which, as of 
September 2010, contained 1415 genome sequences of 500,000 
bases or greater (Pruitt et al., 2009).  The idea was to partition all 
of microbial Refseq into a set of clusters, where each cluster could 
be used to create a single training file.  Rather than determine the 
number of clusters ahead of time, we hoped to establish a 
dissimilarity cutoff between clusters, such that we would halt the 
clustering process when the distance between the closest two 
clusters exceeded the established dissimilarity threshold. 

Before Refseq could be partitioned into clusters, we first needed 
to establish a distance measure between two genomes.  Although 
various methods already existed for measuring the distance 
between two genomes, we decided instead to use a novel measure 
to calculate the distance between two genomes based on Prodigal 
itself.  The reason for choosing this method is that we wanted 
something computational and not biological in nature, such that we 

could be certain that, from Prodigal’s perspective as computer 
software, two genomes in the same cluster would be truly similar.  
We called this new measure gene prediction similarity. 

2.1 Gene Prediction Similarity 
 
Prodigal can examine a single genome and record its statistics in 

a training file, which can then be used to analyze individual 
sequences from that genome.  Given two genomes A and B, we 
can train Prodigal on genome A, then use that training file to 
predict genes in both genomes A and B.  By examining how the 
predictions differ, we can measure the effective difference between 
the two genomes. 

We trained Prodigal on all 1415 microbial Refseq sequences 
individually.  Next, for each training file, we predicted the genes in 
all of the 1415 genomes.  This resulted in 1415x1415, or 
2,002,225, runs, each of which took about 15 seconds on average, 
for a total of about 8000 processor hours.  We performed these 
runs on a 64 node HPC cluster with 512 AMD Opteron processors, 
enabling this run to finish in a single day. 

Once we had these results, we considered the diagonal of the 
1415x1415 matrix to be the baseline, i.e. the runs where Prodigal 
was trained and run on the same genome.  We then needed a 
method for measuring the similarity between two sets of gene 
predictions, one in which Prodigal was trained and run on genome 
A, and one in which Prodigal was trained on a different genome 
(B, for example) and run on genome A.  We defined this to be the 
gene prediction similarity B->A.  

For a given baseline prediction p, and a second set of predictions 
p’, we considered the number of correct matches M between the 
two predictions to be: 

 
M � (m � ((a� d) /600.0)), 

 
where m is the number of genes in p and p’ that share a stop 

codon, a is the number of bases in the second prediction not 
contained in the first prediction for only the genes that share a stop 
codon, and d is the number of bases in the first prediction not 
contained in the second prediction for only the genes that share a 
stop codon.  The idea was to calculate the average distance 
between start codons and penalize 10% for every 60bp difference 
(distances >600bp in a single gene were reduced to 600bp, i.e. we 
couldn’t penalize more than 100% per gene).  For example, if 1500 
genes that share a stop codon differed by 30bp on average in their 
start site predictions, then, instead of 1500 correct identifications, 
we counted them as 95% of 1500, or 1425.  The reason for this 
modification was to allow differences in translation initiation site 
prediction to be incorporated into the clustering model. 

In addition, we made one further modification, which was that if 
the predictions failed to achieve a 90% perfect match in start sites 
among genes that shared a stop codon, we instead labeled every 
mismatch as only half correct.  For example, if genome B correctly 
predicted 1500 genes (stop codons) in A, but only 1200 of those 
1500 genes (80%) matched perfectly (start and stop codon), the 
match count M would be set to 1200 + 300*0.5 = 1350.   

The idea behind this rule was to detect cases such as Aeropyrum 
pernix, which preferentially chooses TTG as its start codon 
(Kawabarayasi et al., 1999).  When using another organism to 
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predict the genes in A. pernix, the second organism frequently 
performed quite well at finding the stop codons, and would even 
predict genes of approximately the same size, choosing a nearby 
ATG whenever available (because ATG is preferred in the second 
organism’s training file).  However, only about 50-60% of the 
genes matched perfectly.  We decided to penalize heavily for this 
situation, since the results indicated a substantially different 
preference in translation between the two organisms. 

Given the above information, we next needed to normalize the 
above value of M to be a number between 0 and 1.  Therefore, we 
defined the gene prediction similarity D(A’->A) to be the F-score, 
or the harmonic mean of the sensitivity (M/n) and precision (M/n’): 

 
D(A'�A) � 2M 2 /(Mn � M ��n ), 

 
where n is the number of genes in A and n’ is the number of genes 
in A’. The only difference between this sensitivity and precision 
and that described in the Prodigal paper is that we penalized 
matching 3’ genes for the distance between their start site 
predictions.  It is worth noting that gene prediction similarity is not 
symmetrical.  Although usually, A’s ability to predict the genes in 
B is fairly close to B’s ability to predict the genes in A, quite 
frequently one genome will predict genes quite well in its 
counterpart, while the opposing genome will do quite poorly on the 
first one. 

Table 1 shows an example of gene prediction similarity 
calculations between Escherichia coli K12 and a variety of 
organisms.  Prodigal was trained on each of these organisms and 
then run on E. coli, and the gene prediction similarity was 
calculated using the previously described formula.  “NG” indicates 
the number of genes predicted by the second training file.  “3’M” 
and “5’M” indicate the number of genes that match a stop codon 
and start codon in the E. coli predictions.  “XB” indicates the 
(a’+d’)/600 term in the match equation and indicates the number 
of genes we are penalizing from the final result.  The next column, 
“M”, represents the number of matches, which we then divide by 
4313 (the number of genes in the E. coli prediction) to get the 
sensitivity, and by the number in the first column (NG) to get the 
precision.  The final gene prediction similarity is then the harmonic 
mean of Sn and Pr.  Note that in the cases marked with an asterisk, 
we applied the alternative formula described above for calculating 
M, since less than 90% of the starts were correct (i.e. 5’M/3’M < 
0.9). 

 
Table 1:  Sample Gene Prediction Similarities for Escherichia coli K12 
 

Genome NG 3’M 5’M XB M Sn Pr GPS 

E. coli K12 4313 4313 4313 0.0 4313.0 1.00 1.00 1.000 
E. coli S88 4315 4307 4287 2.5 4304.5 0.99 0.99 0.998 
S. enterica 4309 4290 4241 7.2 4282.8 0.99 0.99 0.993 
B. melitensis 4197 4159 3991 27.2 4131.8 0.96 0.98 0.970 
H. pylori 4036 4010 3746 39.7 3970.3 0.92 0.98 0.952 
C. difficile 3707 3669 3379 40.1 3628.1 0.84 0.98 0.910 
A. aeolicus 3904 3829 3146 78.6 3487.5* 0.81 0.89 0.851 
A. pernix 3282 3128 1330 399.6 2229.0* 0.52 0.68 0.598 
M. bovis 3520 2459 2090 185.0 2274.5* 0.53 0.65 0.587 

 

Observing the table, we can see that E. coli S88 produced gene 
predictions extremely close to the original, which is to be expected 
for the same species.  The highly similar Salmonella enterica also 
performed extremely well.  The two Archaea proved to be quite 
distant, especially A. pernix with its TTG start motif.  Finally, 
Mycoplasma bovis performed the worst of the entries in this table, 
due to using a completely different genetic code.  Clostridium 
difficile proved interesting, as it failed to predict many real genes 
(~15%) in E. coli, but the genes it did predict were mostly correct 
(98% Sp). 

2.2 Complete-Linkage Clustering of Refseq 
 

Having obtained a reliable distance measure, we built the 
1415x1415 distance matrix for all sequences above 500,000bp in 
microbial Refseq.  Note that some of these sequences were 
chromosomes belonging to the same genome, but we kept these 
separate because we found it interesting to examine gene 
prediction similarities within multiple chromosomes in a single 
genome.  The distances in this matrix could be used for a variety of 
purposes beyond the scope of this paper, such as building 
phylogenetic trees, or establishing cutoffs to delineate species, 
genus, and family boundaries. 

We next clustered the sequences using an algorithm similar to 
complete-linkage clustering, in which, at each step, the two 
clusters are merged whose farthest neighbors are the closest 
(Massaro, 2005).  We chose this method to avoid the problem of 
population bias in Genbank, where more strains of one organism 
(for example, E. coli) have been sequenced than another.  This 
makes merging clusters of different sizes using various weighted 
average distance methods difficult. 

When calculating the distance between two clusters, we 
examined the new cluster that would be created by merging them.  
For each point in the potential new cluster, we located the point 
farthest away from it, i.e. the one with the lowest gene prediction 
similarity, which corresponded to the sequence least recognized by 
the initial data point.  We then chose the data point that had the 
“best” such distance, which can be roughly thought of as the 
central-most point in the merged cluster.  We label this sequence 
the recognizer of the cluster.  An example cluster using these 
concepts is illustrated in Figure 1, in which Pseudomonas 
aeruginosa would be chosen as the recognizer for the cluster based 
on its worst gene prediction similarity being better than that of the 
other two organisms.  At each step of the clustering algorithm, the 
two closest clusters were merged, until only one cluster comprising 
all 1415 sequences remained. 

After the clustering was completed, we examined the similarity 
cutoffs, and found that the score dropped below 95% when going 
from 51 to 50 clusters.  Therefore, with 50 training files, a gene 
prediction similarity of 95% or better would be guaranteed across 
all of microbial GenBank.  We then trained MetaProdigal on the 
sequences in these 50 clusters, resulting in 50 training files that 
could be used to recognize anonymous coding sequences.  A 
detailed list of the 50 clusters (with their best recognizer) is 
provided in Supplementary Table 1.   

Of the 50 genomes selected by the clustering process, 35 were 
bacteria and 15 were Archaea.  3 of the bacteria were from the 
Mycoplasma genus, which uses translation table 4, while the 
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remaining 47 genomes used the standard translation table.  32 of 
the chosen genomes used Shine-Dalgarno RBS motifs (Shine and 
Dalgarno, 1975), and 18 genomes (many of them Cyanobacteria, 
Chlorobi, or Archaea) did not.  GC content of the 50 genomes 
ranged from 29.3% to 69.8%.  The five largest clusters consisted of 
262, 232, 184, 130, and 98 genomes, respectively, accounting for 
64% of the 1415 sequences in GenBank, with the remaining 45 
clusters covering the other 36%.  Despite the top 5 clusters being 
very large, the average gene prediction similarities of their 
recognizers was over 98.5%.  The 50 genomes roughly subdivided 
into 3% GC intervals, with a Shine-Dalgarno-using bacterium, a 
non-Shine-Dalgarno bacterium (such as a Cyanobacteria or 
Chlorobi), and an Archaeum at each interval. 

 
Figure 1:  Example of Best Worst Distance and Recognizer in Cluster 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
One can see from the supplementary table that many clusters are 

devoted to small numbers of “unusual” genomes, with a relatively 
small number of clusters covering the common organisms like E. 
coli, Pseudomonas, etc.  In fact, 26 of the 50 clusters contained 5 
or fewer genomes.  An open question would be if devoting so 
many training files to recognizing such a small number of genomes 
is worthwhile.  An alternative approach would delve into more 
detail on the larger clusters, splitting them further.  As noted in the 
previous paragraph, however, recognition of even the largest 
clusters was already at 98.5%, so it is questionable if one could 
really get a significant improvement by doing so. 

2.3 Using the Prodigal Training Files for 
Metagenomic Analysis 

 
Using the 50 training files, an input sequence can be scored with 

the standard Prodigal dynamic programming algorithm for finished 
genomes (Hyatt et al., 2010).  Since the Prodigal dynamic 
programming function returns a numerical score, the algorithm can 
run an input sequence through each of the 50 training files and 
output only the best result.  This approach, however, presents two 
drawbacks:  (1) vastly increased computation time (50 times a 
normal Prodigal run), and (2) increased false positive rate at 
shorter sequence lengths due to sampling multiple training files. 

In order to address the first drawback, MetaProdigal calculates 
the GC content for an incoming fragment and runs only on the 

training files within a given range of GC content relative to the 
fragment GC (a configurable parameter).  In order to address the 
second drawback, we implemented a series of penalties for each 
gene in a sequence based on the length of the input sequence, the 
number of training files used to score the sequence, and the length 
of the gene being scored.  The principle of these penalties is 
similar to that of a Bonferroni correction (Bonferroni, 1935), in 
which a score is corrected based on the number of tested 
hypotheses (in this case, each test is a training file).  Such a 
correction was only necessary in shorter sequences (<500bp), 
where a lack of sufficient information resulted in greater volatility 
when using multiple training models to score a gene. 

One novel contribution of our algorithm is the calculation of 
confidence scores for each gene.  Since the MetaProdigal score 
represents the log of the likelihood of this gene to be real vs. 
background (i.e. a gene 1000x more likely to be real than false 
would have a score of ln(1000)), the score can be converted to a 
percent value between 0 and 100 exclusive using the logistic 
function 

 
C � es /(1� es), 

 
where C is the confidence value and s is the Prodigal score for that 
gene.  We will examine the performance of this confidence score 
in the Results section. 

The algorithm for the MetaProdigal is illustrated in Figure 2.  A 
sequence arrives on standard input, the lower and upper GC 
content bounds for the fragment are established, and the full 
dynamic programming is performed using only training files 
trained on genomes with GC content in the specified range.  The 
highest scoring set of gene models is selected and output to the 
user, along with confidence scores for each gene and detailed 
information about the training file used (genetic code used, Shine-
Dalgarno preferences, etc.).  In addition, as in the regular version 
of Prodigal, protein translations, DNA sequences, and detailed 
information about every potential start site in the sequence can be 
output upon request. 
 
Figure 2:  Pseudocode Description of the MetaProdigal Algorithm 
 
 
 
 
 
 
 
 
 
 

As a result of running a full dynamic programming algorithm 
multiple times, which admittedly is complete overkill on short 
fragments, MetaProdigal is somewhat slow compared to existing 
programs like MetaGene Annotator and MetaGeneMark (Noguchi 
et al., 2008) (Zhu et al., 2010).  However, the finished genome 
version only took about 15-20 seconds to analyze a typical 4M bp 
genome on a single processor, so, even running on 5-6 training 
files per sequence, the metagenomic version can analyze 4M worth 
of data in about 100 seconds.  A 1GB sample could be analyzed in 
7 hours on a single processor at this rate, which, in our experience, 
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is an acceptable turnaround time, especially given the ease by 
which the sample could be divided and run on multiple processors. 

3 RESULTS 
 

Assessing the performance of metagenomic gene prediction 
tools remains a difficult task, due to the lack of experimentally 
verified gene sets.  Tools such as Metagene Annotator, 
MetaGeneMark, Orphelia, and FragGeneScan, have compared 
their predicted results to GenBank annotations (Noguchi et al., 
2008) (Zhu et al., 2010) (Hoff et al., 2008) (Rho et al., 2010).  
Using this method, complete genomes from Refseq are sampled to 
a certain level of coverage at various fragment sizes (either with or 
without simulated errors), and the predicted results are compared 
with the positions of the GenBank-annotated genes in the 
fragments 

Unfortunately, this methodology has one significant drawback. 
Since the gene calls in Refseq have not been experimentally 
verified, it is likely some of them are incorrect.  Error rates have 
been shown to be greater in high-GC-content genomes (Angelova 
et al., 2010).  In addition, some translation initiation site 
predictions are likely to be incorrect as well, which could have an 
impact on gene predictions as fragment sizes become smaller.  
Nonetheless, the chosen genomes represent a good cross section 
across bacteria, Archaea, and all levels of GC content.  Therefore 
we decided to analyze the results of MetaProdigal on the 50-
genome set from the MetaGeneMark publication, according to the 
same standards previously described (Zhu et al., 2010). 

3.1 Gene Prediction Performance on an Errorless 
Simulated Dataset 

 
In the first analysis, we measured the performance of several 

methods at locating genes in an errorless simulated dataset.  In this 
dataset, we did not consider the performance of programs on 
identifying translation initiation sites, since the error rate of start 
site predictions in the Genbank files is likely too high to make such 
a test meaningful (we examine start site performance separately in 
the next section).  Each of the 50 sequences in the MetaGeneMark 
set was randomly sampled to 5x coverage in 4 different fragment 
sizes: 150bp, 300bp, 700bp, and 1200bp.  Sequencing errors were 
not considered for this analysis.  In addition, one genome was 
added to the 50 Refseq sequences, namely that of Mycoplasma 
leachii.  Since approximately 2% of the finished genomes in 
GenBank are Mycoplasma (Benson et al., 2011), adding one 
Mycoplasma to a set of 50 sequences seemed like a reasonable 
addition.  This genome was added to the set to demonstrate how 
MetaProdigal can distinguish between genetic code 4 (used by 
Mycoplasma) and genetic code 11 (the standard microbial code) 
and achieve good performance on both types of genomes.  Neither 
MetaGeneMark nor MetaGene Annotator possesses this capability, 
and both programs performed poorly on the M. leachii genome.  A 
complete list of the 51 sequences used to evaluate the algorithms 
can be found in Supplementary Table 2. 

As described above, genes less than 60bp, whether partial or 
complete, were not considered.  The programs were only evaluated 

on their ability to predict genes 60bp or more in length.  
Regardless of the amount of coding present in a fragment, only the 
stop codon (or correct frame in the absence of a stop codon) and 
60bp of shared coding were required; the start codon was not 
required to match the predicted start in the Genbank file.  For this 
analysis, we created a special version of MetaProdigal in which we 
excluded the 51 genomes in our test set from the clustering and 
training process; however, for the release version, these genomes 
were added back in to the training process.  Table 2 shows the 
results of four methods:  finished genome Prodigal, MetaProdigal, 
MetaGeneMark, and MetaGene Annotator.  The finished genome 
version of Prodigal (labeled as Prodigal_Finished in Table 3) was 
run in order to observe how closely the metagenomic version could 
match a version trained on the actual genome.  In this analysis, the 
sensitivity, precision, and F-score were calculated separately for 
each of the 51 sequences, then averaged together to produce the 
numbers in Table 2.  We define sensitivity to be TP/(TP+FN), 
precision to be TP/(TP+FP), and F-score to be the harmonic mean 
of the precision and sensitivity, or 2pr/(p+r). 
 
Table 2: Performance on 51 Genome Sequences from Refseq 
 

Category 
Meta 
Prodigal 

Meta 
Gene 
Mark 

Meta 
Gene 
Annotator 

Prodigal 
Finished 

Combined 
(MP+MGmk)

1200bp Sens. 95.5%  95.2% 94.9% 95.9% 93.5% 
1200bp Prec. 95.4%  94.0% 93.6% 95.8% 96.9% 
1200bp F-Score 95.4%  94.6% 94.2% 95.8% 95.3% 
700bp Sens. 95.1% 94.6% 94.7% 95.5% 93.1% 
700bp Prec. 95.0% 94.1% 92.9% 95.9% 96.9% 
700bp F-Score 95.0% 94.3% 93.8% 95.7% 95.0% 
300bp Sens. 94.5% 93.6% 94.1% 95.0% 91.8% 
300bp Prec. 93.5% 94.1% 91.1% 96.1% 96.5% 
300bp F-Score 94.0% 93.8% 92.6% 95.5% 94.1% 
150bp Sens. 92.5% 91.0% 91.7% 94.0% 88.4% 
150bp Prec. 90.0% 92.6% 88.1% 94.9% 95.1% 
150bp F-Score 91.2% 91.8% 89.9% 94.4% 91.6% 

 
In the longer fragment lengths, it is clear that MetaProdigal 

performs very closely to a version trained on the actual genomes 
(0.4 difference in F-score at 1200bp, 0.7 at 700bp, 1.5 at 300bp, 
3.2 at 150bp).  The implication is that, for longer sequence lengths, 
such as 2000bp, MetaProdigal identifies genes nearly as well as if 
it had actually been trained on the full reference genome.  At the 
700bp and 1200bp sequence lengths, MetaProdigal outperforms 
MetaGeneMark and MetaGene Annotator both in sensitivity and in 
precision.  At 300bp and 150bp, MetaProdigal still has better 
sensitivity and precision than MetaGene Annotator, but 
MetaGeneMark achieves a lower false positive rate, as well as 
better overall accuracy at 150bp.  Based on our results, it appears 
that MetaProdigal performs better at sequence lengths 250-300bp 
and above, while MetaGeneMark, due to a lower false positive 
rate, achieves a better F-score at lengths <250bp.   

We view the two programs (MetaProdigal and MetaGeneMark) 
as quite complementary on smaller sequences, however, as 
MetaProdigal seems to preserve sensitivity as sequence lengths 
grow shorter, whereas MetaGeneMark sacrifices sensitivity to 
preserve precision.  At all four sequence lengths, overall accuracy 
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was within 1% between MetaProdigal and MetaGeneMark, which 
may well lie in the margin of error based on incorrectly called 
genes in the Refseq annotations.  It is likely, however, that both 
programs perform better than MetaGene Annotator at identifying 
genes. 

In the particular case of Mycoplasma leachii, the genome we 
added to the MetaGeneMark set, the MetaProdigal achieved 95.3% 
sensitivity and 94.3% precision even in the 150bp fragments, 
whereas MetaGeneMark and MetaGene Annotator managed only 
78.1% and 83.6% sensitivity, respectively.  In 1200bp fragments, 
MetaGeneMark and MetaGene locate most of the stop codons, but, 
since Mycoplasma translates TGA, they often only find the 3’ end 
of the gene and split the true gene into many smaller genes.  The 
precision in 1200bp fragments for MetaGeneMark and MetaGene, 
therefore, was only 69% and 66%, respectively, whereas 
MetaProdigal had 98% sensitivity and 97.3% sensitivity.  That 
MetaProdigal can distinguish anonymous coding sequences using 
the Mycoplasma genetic code without sacrificing performance on 
the sequences that use the standard genetic code is a novel 
capability of the program compared to other methods. 

Recent publications have considered combining gene prediction 
methods for better results (Yok and Rosen, 2011).  Although 
examining more elaborate methods of combining MetaProdigal 
and MetaGeneMark gene predictions is beyond the scope of this 
paper, we did nonetheless benchmark the performance of the 
intersection of the gene sets predicted by each program.  This data 
is presented in the “Combined” column in Table 2.  Although 
sensitivity dropped, the precision of the predictions improved 
dramatically, exceeding even that of the finished genome version 
of Prodigal.  Even at 150bp, the precision of the set of genes 
predicted by both MetaGeneMark and MetaProdigal remained 
above 95%.  This data highlights the advantages of using multiple 
methods to obtain a set of high confidence gene models.  Even 
though MetaProdigal’s performance is similar to MetaGeneMark’s 
individually, the inclusion of another method still provides 
substantial value. 

3.2 Translation Initiation Site Prediction 
Performance on an Experimentally Verified Gene 
Set 

 
Start site identification in metagenomic sequences has not been 

studied much in the literature, although programs such as 
MetaTISA have been built to address this problem (Hu et al., 
2009).  While the primary focus remains finding the genes 
themselves, it is still desirable to locate as many translation 
initiation sites correctly as possible.  The problem is complicated 
by the fact that some organisms use Shine-Dalgarno RBS motifs, 
while others, such as Cyanobacteria and Chlorobi, do not appear to 
use RBS motifs at all (Hyatt et al., 2010).  Regardless of the 
presence or absence of an RBS motif, one of the 50 training files 
used in the metagenomic version of Prodigal will likely assign that 
start site a positive score, since both SD and non-SD organisms are 
included.   

In order to assess start site performance, we took the data set 
from the Prodigal publication, containing 2443 genes (Hyatt et al., 
2010) (Rudd, 2000) (Aivaliotis et al., 2009).  The genomes were 

randomly sampled in five fragment sizes: 150bp, 300bp, 700bp, 
1200bp, and 3000bp, with the restriction that the fragment must 
contain at least 60bp of one of the 2443 experimentally verified 
genes.  We added the longer fragment size to illustrate the 
continuing increase in start site accuracy as more information 
becomes available.  Again, for this analysis, we used a special 
version of MetaProdigal that had not been trained on any of the 
genomes in this data set; however, we did include these genomes 
in the training process for the final release version (resulting in 
much higher performance on some of the Archaea).  The 
performance on this data set is given in Table 3.  Results of the 
regular version of Prodigal are again shown for comparison (in the 
“Prodigal Finished” column) as a best achievable result for the 
metagenomic program. 

 Accuracy in start site prediction was defined to be the 
percentage of start sites correctly identified from the successfully 
located genes, i.e. we did not penalize a program for being less 
sensitive at finding genes overall.  For the start site accuracy, we 
divided the start sites into two categories:  those where the start site 
was present in the fragment (“Internal”), and those where the 
correct start site lay beyond the edge of the fragment (“External”).  
The “% Total” column indicates the percentage of the total start 
sites that belong to that category.  At shorter sequence lengths, the 
vast majority of start sites are not present in the contig (external), 
making it most important not to incorrectly predict a start site near 
the edge of the sequence.  At longer sequence lengths, many more 
start sites are contained within the fragment (internal), and the 
RBS motifs, etc., become more important. 
 
Table 3: Performance on 2,443 Experimentally Verified Genes and Start 
Sites 
 

Length Type % Total
Prodigal
Meta 

Meta 
GeneMark

Meta 
Gene  
Annot. 

MGA+ 
Meta 
TISA 

Prodigal
Finished

3000bp Internal 77.4% 93.5% 86.3% 87.6% 93.3% 96.3% 
3000bp External 23.6% 99.8% 98.3% 94.2% 83.4% 99.8% 
1200bp Internal 56.9% 91.6% 85.3% 86.7% 90.5% 95.0% 
1200bp  External 43.1% 99.8% 98.8% 94.1% 82.9% 99.8% 
700bp Internal 42.4% 89.5% 83.5% 85.6% 86.7% 93.7% 
700bp External 57.6% 99.8% 99.2% 94.0% 82.8% 99.8% 
300bp Internal 21.7% 82.1% 77.1% 80.1% 71.0% 88.2% 
300bp External 78.3% 99.7% 99.0% 93.8% 81.3% 99.8% 
150bp Internal 9.4% 66.0% 60.4% 66.5% 26.9% 75.2% 
150bp External 90.6% 99.6% 98.9% 94.0% 80.0% 99.8% 

 
Prodigal outperformed its nearest competitor, MetaGene 

Annotator, on internal starts by 5.9% in 3000bp fragments, 4.9% in 
1200bp fragments, and 3.9% in 700bp fragments.  The gap shrinks 
at the smaller fragment lengths due to less likelihood of upstream 
information to aid in start prediction, and due to the fact MetaGene 
calls many more internal starts than the other programs.  On start 
sites external to the contig, Prodigal achieved near perfect results, 
falsely calling a start site within the fragment only 0.2-0.4% of the 
time, regardless of fragment length.  MetaGene Annotator 
outperformed MetaGenemark on internal starts, perhaps due to the 
specific RBS routines added in the annotator version (Noguchi et 
al., 2008).  However, MetaGene Annotator, regardless of fragment 
length, incorrectly truncated many genes (5-6%) prematurely, 
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calling an internal start site instead of allowing the gene correctly 
to run off the edge.  MetaGeneMark does not experience this 
problem, although, interestingly, at longer sequence lengths, it 
begins to truncate more genes prematurely as well (1.7% at 
3000bp). 

We also compared MetaProdigal to the start-correction program 
MetaTISA (Hu et al., 2009), which was run as a post-processing 
step to MetaGene Annotator.  Although MetaTISA accurately 
binned most of the fragments and scored starts with the requisite 
amount of upstream bases (50nt) about the same as well as 
MetaProdigal, it moved many starts away from the edges of 
contigs to incorrect starts farther downstream in the contigs.  In 
addition, rather than correcting MetaGene’s truncation problem, 
MetaTISA exacerbated it by taking many more genes that ran off 
the edges of the contigs and instead predicting false starts for these 
genes internal to the contigs.  A modification to MetaTISA to leave 
starts near the edge of fragments unchanged, as well as not to 
truncate genes that run off edges of contigs, would result in a 
dramatic improvement in its performance. 

These results suggest that the simplest change programs could 
make to improve their start site predictions is to implement large 
penalties for calling a start site near the edge of a fragment when it 
is possible that the true start site lies beyond the edge.  It is worth 
noting that starts are not present in the contig 90% of the time at 
150bp fragments.  Even in 3000bp fragments, the correct start was 
not present in the contig in 23.6% of the cases.  This highlights the 
importance of not prematurely truncating genes by calling starts 
near the edges of contigs, especially in smaller fragment sizes. 

3.3 Evaluating Confidence Measures for Gene 
Predictions 

 
 Using the confidence measures described in the Methods 

section, we can subdivide our results into confidence intervals and 
examine how sensitivity and precision change if we only consider 
high confidence genes, medium confidence genes, etc.  Table 4 
shows the results of this analysis for 300bp and 700bp fragments 
based on the MetaGeneMark data set described in section 3.1.  In 
this table, the sensitivity (Sn), precision (Pr), and F-score 
correspond to the performance of the algorithm if only genes of 
that confidence level or higher were accepted.  For example, 
Prodigal could achieve a 99.2% precision by accepting only genes 
with 100% confidence in 700bp fragments, but it would fail to 
identify 40% of real genes with this stringent a restriction. 

At the longer sequence lengths, Prodigal’s confidence score 
corresponds very well to the actual performance.  For example, at 
700bp, 99.2% of genes with a 100% confidence score were true 
positives, and 95% of genes with a confidence score of 90-99.99% 
were true positives.  At the smaller sequence lengths (150bp and 
300bp), however, the comparison worsens, and only 38.7% of 
genes in the 50-59% confidence interval were actually true 
positives, according to the Refseq annotations of our data set.  This 
suggests further room for improvement in the scoring function of 
the algorithm, particularly in our Bonferroni modifications to the 
scores (Bonferroni, 1935).  Perhaps the algorithm should eliminate 
more of the lower scoring genes or add more rules to penalize our 
score based on fragment or gene length.  However, we were 

reluctant to make changes based on a single data set, since that 
could be considered to be fitting to the test set data.  Examining 
these lower scoring genes on a larger data set to see if they should 
be kept is a worthwhile goal for future versions.  Regardless of the 
actual performance, the confidence estimation gives researchers a 
valuable tool for deciding whether to retain or eliminate a given 
gene model.  We believe this % confidence measure to be a 
significant improvement over a numerical score, the meaning of 
which can often be difficult to understand or apply to practical 
problems. 
 
Table 4: Prodigal Confidence Estimations for 51 Genome Sequences from 
Refseq 
Frag. 
Length 

Conf- 
idence 

Real 
Genes 

False 
Genes 

% Real % False Sn Pr F-
score

700bp 100% 854622 6727 99.2 0.8 60.0 99.2 79.6 
700bp 90-99% 441336 23011 95.0 5.0 90.9 97.8 94.3 
700bp 80-89% 35547 10648 76.9 23.1 93.4 97.1 95.2 
700bp 70-79% 19307 9512 67.0 33.0 94.8 96.4 95.6 
700bp 60-69% 10200 7311 58.2 41.8 95.5 96.0 95.8 
700bp 50-59% 5796 6212 48.3 51.7 95.9 95.6 95.8 
300bp 100% 772854 5061 99.3 0.7 29.7 99.3 64.5 
300bp 90-99% 1552693 73289 95.5 4.5 89.4 96.7 93.1 
300bp 80-89% 78026 33410 70.0 30.0 92.4 95.6 94.0 
300bp 70-79% 41307 32911 55.7 44.3 94.0 94.4 94.2 
300bp 60-69% 15789 17670 47.2 52.8 94.6 93.8 94.2 
300bp 50-59% 7373 11673 38.7 61.3 94.8 93.4 94.1 

4 CONCLUSION 
 

We built an open source heuristic ab initio algorithm for 
metagenomic gene prediction using Prodigal.  The program can 
analyze fragments independently and thereby achieve full speedup 
through utilization of multiple processors.  Although we 
understand the problems posed by sequencing errors, we chose to 
focus instead on other problems that have received less attention, 
such as translation initiation site identification, handling of 
alternate genetic codes, and providing filtering mechanisms for 
scores based on confidence.  In future versions, we hope to address 
sequencing errors in more detail, as well as provide further 
improvements to the program’s performance at smaller fragment 
lengths. 
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