
1

Gene and Translation Initiation Site Prediction in Metagenomic
Sequences
Doug Hyatt1,2*, Philip F. LoCascio1, Loren J. Hauser1,2,and Edward C. Uberbacher1,2
1Computational Biology and Bioinformatics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
2Genome Science and Technology School, University of Tennessee, Knoxville, TN 37996, USA.

ABSTRACT
Motivation: Gene prediction in metagenomic sequences remains a
difficult problem. Current sequencing technologies do not achieve
sufficient coverage to assemble the individual genomes in a typical
sample; consequently, sequencing runs produce a large number of
short sequences whose exact origin is unknown. Since these
sequences are usually smaller than the average length of a gene,
algorithms must make predictions based on very little data.
Results: We present MetaProdigal, a metagenomic version of the
gene prediction program Prodigal, that can identify genes in short,
anonymous coding sequences with a high degree of accuracy. The
novel value of the method consists of enhanced translation initiation
site identification, ability to identify sequences that use alternate
genetic codes, and in confidence values for each gene call. We
compare the results of MetaProdigal with other methods, and
conclude with a discussion of future improvements.
Availability: The Prodigal software is freely available under the
General Public License from http://code.google.com/p/prodigal/.
Contact: hyattpd@ornl.gov

1 INTRODUCTION
Metagenomes from environmental samples can contain thousands
of species, and often cannot be sequenced to sufficient coverage to
assemble each individual genome. Even with enough coverage,
the correct binning and assembly of the various sequences still
present many challenges, making it likely that, at least for the
immediate future, metagenomic sequencing will continue to
produce a large number of small contigs.

1.1 Challenges in Short, Anonymous Sequences

Various sequencing technologies, such as 454, Illumina, and
Sanger, can produce reads anywhere from 50bp to >1000bp when
analyzing a typical metagenomic sample. In the first case, gene
identification becomes extremely difficult; in the latter case, genes
can be predicted rather well. In addition, sequencing errors,
particularly the insertions and deletions common to 454, can have

*To whom correspondence should be addressed.

a profound negative impact on metagenomic gene prediction
(Hoff, 2009) (Rho et al., 2010).

In reality, the metagenomic gene prediction problem is not one
challenge, but two. The first problem, which we call the
anonymous sequence problem, is that the genome from which the
sequence was derived is unknown. The second problem, which we
will refer to as the short sequence problem, is that the sequences
are shorter than the length of an average gene, and therefore many
fragments contain genes that run off one or both edges of the
contig. Although many methods treat these two problems together,
and, indeed, the second problem does exacerbate the first, in reality
they are two separate issues. Short sequences present challenges
even for draft contigs in a single genome, particularly in the
identification of edge genes, and long sequences whose origin is
unknown can still prove difficult to analyze as accurately as if the
genome were known.

Many programs have been developed to solve these problems
and identify genes in metagenomic fragments, including Metagene
(Noguchi et al., 2006), Metagene Annotator (Noguchi et al., 2008),
MetaGeneMark (Zhu et al., 2010), Orphelia (Hoff et al., 2008),
and FragGeneScan (Rho et al., 2010). Although these methods
perform well, none of them specializes in identifying translation
initiation sites, and none of them is able to correctly identify
sequences derived from the Mycoplasma genus, which uses an
alternate genetic code that translates UGA to tryptophan (Yamao et
al., 1985).

1.2 The Prodigal Gene Prediction Program

The gene prediction program Prodigal was introduced in 2007

(Hyatt et al., 2010). Prodigal achieves good performance in
identifying genes and translation initiation sites in finished
genomes (Hyatt et al., 2010) (de Jong et al., 2010) (Angelova et
al., 2010). The Joint Genome Institute uses Prodigal to annotate
all its draft and finished genomes for the Department of Energy.
Prodigal has been downloaded over 1000 times by users from 56
different countries, and is in active use at numerous institutions
around the world (data provided by analytics.google.com).

Because Prodigal’s training methodology already incorporates a
great deal of information, including translation table, hexamer

Associate Editor: Prof. Martin Bishop

Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Bioinformatics Advance Access published July 12, 2012
 at O

ak R
idge N

ational Laboratory on July 24, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

2

statistics, RBS motifs, and upstream base composition, we sought
to create extensions to the existing software that would handle
metagenomic gene prediction, rather than to begin from nothing.
Our idea was to create a variety of Prodigal training files covering
all ranges of GC content, genetic codes, Eubacteria, Archaea, etc.,
and analyze an incoming fragment using one or more of these files.
The resulting prediction would then be chosen based on the
training file(s) that provided the best fit for a particular sequence.

1.3 The Focus of MetaProdigal

In developing a metagenomic version of Prodigal, we chose to
focus on optimizing performance for longer sequence lengths
(700bp+), in the belief that sequencing, binning, and assembly
technologies will rapidly improve to the point where extremely
short sequences are no longer the norm. Despite this focus, we still
ensured our algorithm would perform reasonably well on shorter
sequences.

In addition, although we acknowledge the severe impact of
sequencing errors on gene prediction, it proved too difficult to
integrate the handling of insertions and deletions into the Prodigal
framework. We also assert that frame shifts will become
increasingly less of a problem with future improvements to
sequencing and assembly technologies. In the meantime,
FragGeneScan (Rho et al., 2010) has demonstrated robust handling
of insertions and deletions for those using 454.

Our algorithm provides three novel contributions: (1) the
incorporation of start site information into our training files,
enabling excellent recognition of translation initiation sites,
particularly at longer sequence lengths, (2) the ability to predict
genes in sequences from organisms that use an alternative genetic
code (Mycoplasma), and (3) the provision of confidence values,
which can be used to filter gene predictions (useful when dealing
with small gene fragments).

2 METHODS

The first step in our algorithm was to develop a set of training
files that could be used to score an anonymous coding sequence
using the existing Prodigal algorithm. In order to generate these
training files, we turned to NCBI’s Refseq repository, which, as of
September 2010, contained 1415 genome sequences of 500,000
bases or greater (Pruitt et al., 2009). The idea was to partition all
of microbial Refseq into a set of clusters, where each cluster could
be used to create a single training file. Rather than determine the
number of clusters ahead of time, we hoped to establish a
dissimilarity cutoff between clusters, such that we would halt the
clustering process when the distance between the closest two
clusters exceeded the established dissimilarity threshold.

Before Refseq could be partitioned into clusters, we first needed
to establish a distance measure between two genomes. Although
various methods already existed for measuring the distance
between two genomes, we decided instead to use a novel measure
to calculate the distance between two genomes based on Prodigal
itself. The reason for choosing this method is that we wanted
something computational and not biological in nature, such that we

could be certain that, from Prodigal’s perspective as computer
software, two genomes in the same cluster would be truly similar.
We called this new measure gene prediction similarity.

2.1 Gene Prediction Similarity

Prodigal can examine a single genome and record its statistics in

a training file, which can then be used to analyze individual
sequences from that genome. Given two genomes A and B, we
can train Prodigal on genome A, then use that training file to
predict genes in both genomes A and B. By examining how the
predictions differ, we can measure the effective difference between
the two genomes.

We trained Prodigal on all 1415 microbial Refseq sequences
individually. Next, for each training file, we predicted the genes in
all of the 1415 genomes. This resulted in 1415x1415, or
2,002,225, runs, each of which took about 15 seconds on average,
for a total of about 8000 processor hours. We performed these
runs on a 64 node HPC cluster with 512 AMD Opteron processors,
enabling this run to finish in a single day.

Once we had these results, we considered the diagonal of the
1415x1415 matrix to be the baseline, i.e. the runs where Prodigal
was trained and run on the same genome. We then needed a
method for measuring the similarity between two sets of gene
predictions, one in which Prodigal was trained and run on genome
A, and one in which Prodigal was trained on a different genome
(B, for example) and run on genome A. We defined this to be the
gene prediction similarity B->A.

For a given baseline prediction p, and a second set of predictions
p’, we considered the number of correct matches M between the
two predictions to be:

M � (m � ((a� d) /600.0)),

where m is the number of genes in p and p’ that share a stop

codon, a is the number of bases in the second prediction not
contained in the first prediction for only the genes that share a stop
codon, and d is the number of bases in the first prediction not
contained in the second prediction for only the genes that share a
stop codon. The idea was to calculate the average distance
between start codons and penalize 10% for every 60bp difference
(distances >600bp in a single gene were reduced to 600bp, i.e. we
couldn’t penalize more than 100% per gene). For example, if 1500
genes that share a stop codon differed by 30bp on average in their
start site predictions, then, instead of 1500 correct identifications,
we counted them as 95% of 1500, or 1425. The reason for this
modification was to allow differences in translation initiation site
prediction to be incorporated into the clustering model.

In addition, we made one further modification, which was that if
the predictions failed to achieve a 90% perfect match in start sites
among genes that shared a stop codon, we instead labeled every
mismatch as only half correct. For example, if genome B correctly
predicted 1500 genes (stop codons) in A, but only 1200 of those
1500 genes (80%) matched perfectly (start and stop codon), the
match count M would be set to 1200 + 300*0.5 = 1350.

The idea behind this rule was to detect cases such as Aeropyrum
pernix, which preferentially chooses TTG as its start codon
(Kawabarayasi et al., 1999). When using another organism to

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

3

predict the genes in A. pernix, the second organism frequently
performed quite well at finding the stop codons, and would even
predict genes of approximately the same size, choosing a nearby
ATG whenever available (because ATG is preferred in the second
organism’s training file). However, only about 50-60% of the
genes matched perfectly. We decided to penalize heavily for this
situation, since the results indicated a substantially different
preference in translation between the two organisms.

Given the above information, we next needed to normalize the
above value of M to be a number between 0 and 1. Therefore, we
defined the gene prediction similarity D(A’->A) to be the F-score,
or the harmonic mean of the sensitivity (M/n) and precision (M/n’):

D(A'�A) � 2M 2 /(Mn � M ��n),

where n is the number of genes in A and n’ is the number of genes
in A’. The only difference between this sensitivity and precision
and that described in the Prodigal paper is that we penalized
matching 3’ genes for the distance between their start site
predictions. It is worth noting that gene prediction similarity is not
symmetrical. Although usually, A’s ability to predict the genes in
B is fairly close to B’s ability to predict the genes in A, quite
frequently one genome will predict genes quite well in its
counterpart, while the opposing genome will do quite poorly on the
first one.

Table 1 shows an example of gene prediction similarity
calculations between Escherichia coli K12 and a variety of
organisms. Prodigal was trained on each of these organisms and
then run on E. coli, and the gene prediction similarity was
calculated using the previously described formula. “NG” indicates
the number of genes predicted by the second training file. “3’M”
and “5’M” indicate the number of genes that match a stop codon
and start codon in the E. coli predictions. “XB” indicates the
(a’+d’)/600 term in the match equation and indicates the number
of genes we are penalizing from the final result. The next column,
“M”, represents the number of matches, which we then divide by
4313 (the number of genes in the E. coli prediction) to get the
sensitivity, and by the number in the first column (NG) to get the
precision. The final gene prediction similarity is then the harmonic
mean of Sn and Pr. Note that in the cases marked with an asterisk,
we applied the alternative formula described above for calculating
M, since less than 90% of the starts were correct (i.e. 5’M/3’M <
0.9).

Table 1: Sample Gene Prediction Similarities for Escherichia coli K12

Genome NG 3’M 5’M XB M Sn Pr GPS

E. coli K12 4313 4313 4313 0.0 4313.0 1.00 1.00 1.000
E. coli S88 4315 4307 4287 2.5 4304.5 0.99 0.99 0.998
S. enterica 4309 4290 4241 7.2 4282.8 0.99 0.99 0.993
B. melitensis 4197 4159 3991 27.2 4131.8 0.96 0.98 0.970
H. pylori 4036 4010 3746 39.7 3970.3 0.92 0.98 0.952
C. difficile 3707 3669 3379 40.1 3628.1 0.84 0.98 0.910
A. aeolicus 3904 3829 3146 78.6 3487.5* 0.81 0.89 0.851
A. pernix 3282 3128 1330 399.6 2229.0* 0.52 0.68 0.598
M. bovis 3520 2459 2090 185.0 2274.5* 0.53 0.65 0.587

Observing the table, we can see that E. coli S88 produced gene
predictions extremely close to the original, which is to be expected
for the same species. The highly similar Salmonella enterica also
performed extremely well. The two Archaea proved to be quite
distant, especially A. pernix with its TTG start motif. Finally,
Mycoplasma bovis performed the worst of the entries in this table,
due to using a completely different genetic code. Clostridium
difficile proved interesting, as it failed to predict many real genes
(~15%) in E. coli, but the genes it did predict were mostly correct
(98% Sp).

2.2 Complete-Linkage Clustering of Refseq

Having obtained a reliable distance measure, we built the
1415x1415 distance matrix for all sequences above 500,000bp in
microbial Refseq. Note that some of these sequences were
chromosomes belonging to the same genome, but we kept these
separate because we found it interesting to examine gene
prediction similarities within multiple chromosomes in a single
genome. The distances in this matrix could be used for a variety of
purposes beyond the scope of this paper, such as building
phylogenetic trees, or establishing cutoffs to delineate species,
genus, and family boundaries.

We next clustered the sequences using an algorithm similar to
complete-linkage clustering, in which, at each step, the two
clusters are merged whose farthest neighbors are the closest
(Massaro, 2005). We chose this method to avoid the problem of
population bias in Genbank, where more strains of one organism
(for example, E. coli) have been sequenced than another. This
makes merging clusters of different sizes using various weighted
average distance methods difficult.

When calculating the distance between two clusters, we
examined the new cluster that would be created by merging them.
For each point in the potential new cluster, we located the point
farthest away from it, i.e. the one with the lowest gene prediction
similarity, which corresponded to the sequence least recognized by
the initial data point. We then chose the data point that had the
“best” such distance, which can be roughly thought of as the
central-most point in the merged cluster. We label this sequence
the recognizer of the cluster. An example cluster using these
concepts is illustrated in Figure 1, in which Pseudomonas
aeruginosa would be chosen as the recognizer for the cluster based
on its worst gene prediction similarity being better than that of the
other two organisms. At each step of the clustering algorithm, the
two closest clusters were merged, until only one cluster comprising
all 1415 sequences remained.

After the clustering was completed, we examined the similarity
cutoffs, and found that the score dropped below 95% when going
from 51 to 50 clusters. Therefore, with 50 training files, a gene
prediction similarity of 95% or better would be guaranteed across
all of microbial GenBank. We then trained MetaProdigal on the
sequences in these 50 clusters, resulting in 50 training files that
could be used to recognize anonymous coding sequences. A
detailed list of the 50 clusters (with their best recognizer) is
provided in Supplementary Table 1.

Of the 50 genomes selected by the clustering process, 35 were
bacteria and 15 were Archaea. 3 of the bacteria were from the
Mycoplasma genus, which uses translation table 4, while the

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

4

remaining 47 genomes used the standard translation table. 32 of
the chosen genomes used Shine-Dalgarno RBS motifs (Shine and
Dalgarno, 1975), and 18 genomes (many of them Cyanobacteria,
Chlorobi, or Archaea) did not. GC content of the 50 genomes
ranged from 29.3% to 69.8%. The five largest clusters consisted of
262, 232, 184, 130, and 98 genomes, respectively, accounting for
64% of the 1415 sequences in GenBank, with the remaining 45
clusters covering the other 36%. Despite the top 5 clusters being
very large, the average gene prediction similarities of their
recognizers was over 98.5%. The 50 genomes roughly subdivided
into 3% GC intervals, with a Shine-Dalgarno-using bacterium, a
non-Shine-Dalgarno bacterium (such as a Cyanobacteria or
Chlorobi), and an Archaeum at each interval.

Figure 1: Example of Best Worst Distance and Recognizer in Cluster

One can see from the supplementary table that many clusters are

devoted to small numbers of “unusual” genomes, with a relatively
small number of clusters covering the common organisms like E.
coli, Pseudomonas, etc. In fact, 26 of the 50 clusters contained 5
or fewer genomes. An open question would be if devoting so
many training files to recognizing such a small number of genomes
is worthwhile. An alternative approach would delve into more
detail on the larger clusters, splitting them further. As noted in the
previous paragraph, however, recognition of even the largest
clusters was already at 98.5%, so it is questionable if one could
really get a significant improvement by doing so.

2.3 Using the Prodigal Training Files for
Metagenomic Analysis

Using the 50 training files, an input sequence can be scored with

the standard Prodigal dynamic programming algorithm for finished
genomes (Hyatt et al., 2010). Since the Prodigal dynamic
programming function returns a numerical score, the algorithm can
run an input sequence through each of the 50 training files and
output only the best result. This approach, however, presents two
drawbacks: (1) vastly increased computation time (50 times a
normal Prodigal run), and (2) increased false positive rate at
shorter sequence lengths due to sampling multiple training files.

In order to address the first drawback, MetaProdigal calculates
the GC content for an incoming fragment and runs only on the

training files within a given range of GC content relative to the
fragment GC (a configurable parameter). In order to address the
second drawback, we implemented a series of penalties for each
gene in a sequence based on the length of the input sequence, the
number of training files used to score the sequence, and the length
of the gene being scored. The principle of these penalties is
similar to that of a Bonferroni correction (Bonferroni, 1935), in
which a score is corrected based on the number of tested
hypotheses (in this case, each test is a training file). Such a
correction was only necessary in shorter sequences (<500bp),
where a lack of sufficient information resulted in greater volatility
when using multiple training models to score a gene.

One novel contribution of our algorithm is the calculation of
confidence scores for each gene. Since the MetaProdigal score
represents the log of the likelihood of this gene to be real vs.
background (i.e. a gene 1000x more likely to be real than false
would have a score of ln(1000)), the score can be converted to a
percent value between 0 and 100 exclusive using the logistic
function

C � es /(1� es),

where C is the confidence value and s is the Prodigal score for that
gene. We will examine the performance of this confidence score
in the Results section.

The algorithm for the MetaProdigal is illustrated in Figure 2. A
sequence arrives on standard input, the lower and upper GC
content bounds for the fragment are established, and the full
dynamic programming is performed using only training files
trained on genomes with GC content in the specified range. The
highest scoring set of gene models is selected and output to the
user, along with confidence scores for each gene and detailed
information about the training file used (genetic code used, Shine-
Dalgarno preferences, etc.). In addition, as in the regular version
of Prodigal, protein translations, DNA sequences, and detailed
information about every potential start site in the sequence can be
output upon request.

Figure 2: Pseudocode Description of the MetaProdigal Algorithm

As a result of running a full dynamic programming algorithm
multiple times, which admittedly is complete overkill on short
fragments, MetaProdigal is somewhat slow compared to existing
programs like MetaGene Annotator and MetaGeneMark (Noguchi
et al., 2008) (Zhu et al., 2010). However, the finished genome
version only took about 15-20 seconds to analyze a typical 4M bp
genome on a single processor, so, even running on 5-6 training
files per sequence, the metagenomic version can analyze 4M worth
of data in about 100 seconds. A 1GB sample could be analyzed in
7 hours on a single processor at this rate, which, in our experience,

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

5

is an acceptable turnaround time, especially given the ease by
which the sample could be divided and run on multiple processors.

3 RESULTS

Assessing the performance of metagenomic gene prediction
tools remains a difficult task, due to the lack of experimentally
verified gene sets. Tools such as Metagene Annotator,
MetaGeneMark, Orphelia, and FragGeneScan, have compared
their predicted results to GenBank annotations (Noguchi et al.,
2008) (Zhu et al., 2010) (Hoff et al., 2008) (Rho et al., 2010).
Using this method, complete genomes from Refseq are sampled to
a certain level of coverage at various fragment sizes (either with or
without simulated errors), and the predicted results are compared
with the positions of the GenBank-annotated genes in the
fragments

Unfortunately, this methodology has one significant drawback.
Since the gene calls in Refseq have not been experimentally
verified, it is likely some of them are incorrect. Error rates have
been shown to be greater in high-GC-content genomes (Angelova
et al., 2010). In addition, some translation initiation site
predictions are likely to be incorrect as well, which could have an
impact on gene predictions as fragment sizes become smaller.
Nonetheless, the chosen genomes represent a good cross section
across bacteria, Archaea, and all levels of GC content. Therefore
we decided to analyze the results of MetaProdigal on the 50-
genome set from the MetaGeneMark publication, according to the
same standards previously described (Zhu et al., 2010).

3.1 Gene Prediction Performance on an Errorless
Simulated Dataset

In the first analysis, we measured the performance of several

methods at locating genes in an errorless simulated dataset. In this
dataset, we did not consider the performance of programs on
identifying translation initiation sites, since the error rate of start
site predictions in the Genbank files is likely too high to make such
a test meaningful (we examine start site performance separately in
the next section). Each of the 50 sequences in the MetaGeneMark
set was randomly sampled to 5x coverage in 4 different fragment
sizes: 150bp, 300bp, 700bp, and 1200bp. Sequencing errors were
not considered for this analysis. In addition, one genome was
added to the 50 Refseq sequences, namely that of Mycoplasma
leachii. Since approximately 2% of the finished genomes in
GenBank are Mycoplasma (Benson et al., 2011), adding one
Mycoplasma to a set of 50 sequences seemed like a reasonable
addition. This genome was added to the set to demonstrate how
MetaProdigal can distinguish between genetic code 4 (used by
Mycoplasma) and genetic code 11 (the standard microbial code)
and achieve good performance on both types of genomes. Neither
MetaGeneMark nor MetaGene Annotator possesses this capability,
and both programs performed poorly on the M. leachii genome. A
complete list of the 51 sequences used to evaluate the algorithms
can be found in Supplementary Table 2.

As described above, genes less than 60bp, whether partial or
complete, were not considered. The programs were only evaluated

on their ability to predict genes 60bp or more in length.
Regardless of the amount of coding present in a fragment, only the
stop codon (or correct frame in the absence of a stop codon) and
60bp of shared coding were required; the start codon was not
required to match the predicted start in the Genbank file. For this
analysis, we created a special version of MetaProdigal in which we
excluded the 51 genomes in our test set from the clustering and
training process; however, for the release version, these genomes
were added back in to the training process. Table 2 shows the
results of four methods: finished genome Prodigal, MetaProdigal,
MetaGeneMark, and MetaGene Annotator. The finished genome
version of Prodigal (labeled as Prodigal_Finished in Table 3) was
run in order to observe how closely the metagenomic version could
match a version trained on the actual genome. In this analysis, the
sensitivity, precision, and F-score were calculated separately for
each of the 51 sequences, then averaged together to produce the
numbers in Table 2. We define sensitivity to be TP/(TP+FN),
precision to be TP/(TP+FP), and F-score to be the harmonic mean
of the precision and sensitivity, or 2pr/(p+r).

Table 2: Performance on 51 Genome Sequences from Refseq

Category
Meta
Prodigal

Meta
Gene
Mark

Meta
Gene
Annotator

Prodigal
Finished

Combined
(MP+MGmk)

1200bp Sens. 95.5% 95.2% 94.9% 95.9% 93.5%
1200bp Prec. 95.4% 94.0% 93.6% 95.8% 96.9%
1200bp F-Score 95.4% 94.6% 94.2% 95.8% 95.3%
700bp Sens. 95.1% 94.6% 94.7% 95.5% 93.1%
700bp Prec. 95.0% 94.1% 92.9% 95.9% 96.9%
700bp F-Score 95.0% 94.3% 93.8% 95.7% 95.0%
300bp Sens. 94.5% 93.6% 94.1% 95.0% 91.8%
300bp Prec. 93.5% 94.1% 91.1% 96.1% 96.5%
300bp F-Score 94.0% 93.8% 92.6% 95.5% 94.1%
150bp Sens. 92.5% 91.0% 91.7% 94.0% 88.4%
150bp Prec. 90.0% 92.6% 88.1% 94.9% 95.1%
150bp F-Score 91.2% 91.8% 89.9% 94.4% 91.6%

In the longer fragment lengths, it is clear that MetaProdigal

performs very closely to a version trained on the actual genomes
(0.4 difference in F-score at 1200bp, 0.7 at 700bp, 1.5 at 300bp,
3.2 at 150bp). The implication is that, for longer sequence lengths,
such as 2000bp, MetaProdigal identifies genes nearly as well as if
it had actually been trained on the full reference genome. At the
700bp and 1200bp sequence lengths, MetaProdigal outperforms
MetaGeneMark and MetaGene Annotator both in sensitivity and in
precision. At 300bp and 150bp, MetaProdigal still has better
sensitivity and precision than MetaGene Annotator, but
MetaGeneMark achieves a lower false positive rate, as well as
better overall accuracy at 150bp. Based on our results, it appears
that MetaProdigal performs better at sequence lengths 250-300bp
and above, while MetaGeneMark, due to a lower false positive
rate, achieves a better F-score at lengths <250bp.

We view the two programs (MetaProdigal and MetaGeneMark)
as quite complementary on smaller sequences, however, as
MetaProdigal seems to preserve sensitivity as sequence lengths
grow shorter, whereas MetaGeneMark sacrifices sensitivity to
preserve precision. At all four sequence lengths, overall accuracy

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

6

was within 1% between MetaProdigal and MetaGeneMark, which
may well lie in the margin of error based on incorrectly called
genes in the Refseq annotations. It is likely, however, that both
programs perform better than MetaGene Annotator at identifying
genes.

In the particular case of Mycoplasma leachii, the genome we
added to the MetaGeneMark set, the MetaProdigal achieved 95.3%
sensitivity and 94.3% precision even in the 150bp fragments,
whereas MetaGeneMark and MetaGene Annotator managed only
78.1% and 83.6% sensitivity, respectively. In 1200bp fragments,
MetaGeneMark and MetaGene locate most of the stop codons, but,
since Mycoplasma translates TGA, they often only find the 3’ end
of the gene and split the true gene into many smaller genes. The
precision in 1200bp fragments for MetaGeneMark and MetaGene,
therefore, was only 69% and 66%, respectively, whereas
MetaProdigal had 98% sensitivity and 97.3% sensitivity. That
MetaProdigal can distinguish anonymous coding sequences using
the Mycoplasma genetic code without sacrificing performance on
the sequences that use the standard genetic code is a novel
capability of the program compared to other methods.

Recent publications have considered combining gene prediction
methods for better results (Yok and Rosen, 2011). Although
examining more elaborate methods of combining MetaProdigal
and MetaGeneMark gene predictions is beyond the scope of this
paper, we did nonetheless benchmark the performance of the
intersection of the gene sets predicted by each program. This data
is presented in the “Combined” column in Table 2. Although
sensitivity dropped, the precision of the predictions improved
dramatically, exceeding even that of the finished genome version
of Prodigal. Even at 150bp, the precision of the set of genes
predicted by both MetaGeneMark and MetaProdigal remained
above 95%. This data highlights the advantages of using multiple
methods to obtain a set of high confidence gene models. Even
though MetaProdigal’s performance is similar to MetaGeneMark’s
individually, the inclusion of another method still provides
substantial value.

3.2 Translation Initiation Site Prediction
Performance on an Experimentally Verified Gene
Set

Start site identification in metagenomic sequences has not been

studied much in the literature, although programs such as
MetaTISA have been built to address this problem (Hu et al.,
2009). While the primary focus remains finding the genes
themselves, it is still desirable to locate as many translation
initiation sites correctly as possible. The problem is complicated
by the fact that some organisms use Shine-Dalgarno RBS motifs,
while others, such as Cyanobacteria and Chlorobi, do not appear to
use RBS motifs at all (Hyatt et al., 2010). Regardless of the
presence or absence of an RBS motif, one of the 50 training files
used in the metagenomic version of Prodigal will likely assign that
start site a positive score, since both SD and non-SD organisms are
included.

In order to assess start site performance, we took the data set
from the Prodigal publication, containing 2443 genes (Hyatt et al.,
2010) (Rudd, 2000) (Aivaliotis et al., 2009). The genomes were

randomly sampled in five fragment sizes: 150bp, 300bp, 700bp,
1200bp, and 3000bp, with the restriction that the fragment must
contain at least 60bp of one of the 2443 experimentally verified
genes. We added the longer fragment size to illustrate the
continuing increase in start site accuracy as more information
becomes available. Again, for this analysis, we used a special
version of MetaProdigal that had not been trained on any of the
genomes in this data set; however, we did include these genomes
in the training process for the final release version (resulting in
much higher performance on some of the Archaea). The
performance on this data set is given in Table 3. Results of the
regular version of Prodigal are again shown for comparison (in the
“Prodigal Finished” column) as a best achievable result for the
metagenomic program.

 Accuracy in start site prediction was defined to be the
percentage of start sites correctly identified from the successfully
located genes, i.e. we did not penalize a program for being less
sensitive at finding genes overall. For the start site accuracy, we
divided the start sites into two categories: those where the start site
was present in the fragment (“Internal”), and those where the
correct start site lay beyond the edge of the fragment (“External”).
The “% Total” column indicates the percentage of the total start
sites that belong to that category. At shorter sequence lengths, the
vast majority of start sites are not present in the contig (external),
making it most important not to incorrectly predict a start site near
the edge of the sequence. At longer sequence lengths, many more
start sites are contained within the fragment (internal), and the
RBS motifs, etc., become more important.

Table 3: Performance on 2,443 Experimentally Verified Genes and Start
Sites

Length Type % Total
Prodigal
Meta

Meta
GeneMark

Meta
Gene
Annot.

MGA+
Meta
TISA

Prodigal
Finished

3000bp Internal 77.4% 93.5% 86.3% 87.6% 93.3% 96.3%
3000bp External 23.6% 99.8% 98.3% 94.2% 83.4% 99.8%
1200bp Internal 56.9% 91.6% 85.3% 86.7% 90.5% 95.0%
1200bp External 43.1% 99.8% 98.8% 94.1% 82.9% 99.8%
700bp Internal 42.4% 89.5% 83.5% 85.6% 86.7% 93.7%
700bp External 57.6% 99.8% 99.2% 94.0% 82.8% 99.8%
300bp Internal 21.7% 82.1% 77.1% 80.1% 71.0% 88.2%
300bp External 78.3% 99.7% 99.0% 93.8% 81.3% 99.8%
150bp Internal 9.4% 66.0% 60.4% 66.5% 26.9% 75.2%
150bp External 90.6% 99.6% 98.9% 94.0% 80.0% 99.8%

Prodigal outperformed its nearest competitor, MetaGene

Annotator, on internal starts by 5.9% in 3000bp fragments, 4.9% in
1200bp fragments, and 3.9% in 700bp fragments. The gap shrinks
at the smaller fragment lengths due to less likelihood of upstream
information to aid in start prediction, and due to the fact MetaGene
calls many more internal starts than the other programs. On start
sites external to the contig, Prodigal achieved near perfect results,
falsely calling a start site within the fragment only 0.2-0.4% of the
time, regardless of fragment length. MetaGene Annotator
outperformed MetaGenemark on internal starts, perhaps due to the
specific RBS routines added in the annotator version (Noguchi et
al., 2008). However, MetaGene Annotator, regardless of fragment
length, incorrectly truncated many genes (5-6%) prematurely,

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

7

calling an internal start site instead of allowing the gene correctly
to run off the edge. MetaGeneMark does not experience this
problem, although, interestingly, at longer sequence lengths, it
begins to truncate more genes prematurely as well (1.7% at
3000bp).

We also compared MetaProdigal to the start-correction program
MetaTISA (Hu et al., 2009), which was run as a post-processing
step to MetaGene Annotator. Although MetaTISA accurately
binned most of the fragments and scored starts with the requisite
amount of upstream bases (50nt) about the same as well as
MetaProdigal, it moved many starts away from the edges of
contigs to incorrect starts farther downstream in the contigs. In
addition, rather than correcting MetaGene’s truncation problem,
MetaTISA exacerbated it by taking many more genes that ran off
the edges of the contigs and instead predicting false starts for these
genes internal to the contigs. A modification to MetaTISA to leave
starts near the edge of fragments unchanged, as well as not to
truncate genes that run off edges of contigs, would result in a
dramatic improvement in its performance.

These results suggest that the simplest change programs could
make to improve their start site predictions is to implement large
penalties for calling a start site near the edge of a fragment when it
is possible that the true start site lies beyond the edge. It is worth
noting that starts are not present in the contig 90% of the time at
150bp fragments. Even in 3000bp fragments, the correct start was
not present in the contig in 23.6% of the cases. This highlights the
importance of not prematurely truncating genes by calling starts
near the edges of contigs, especially in smaller fragment sizes.

3.3 Evaluating Confidence Measures for Gene
Predictions

 Using the confidence measures described in the Methods

section, we can subdivide our results into confidence intervals and
examine how sensitivity and precision change if we only consider
high confidence genes, medium confidence genes, etc. Table 4
shows the results of this analysis for 300bp and 700bp fragments
based on the MetaGeneMark data set described in section 3.1. In
this table, the sensitivity (Sn), precision (Pr), and F-score
correspond to the performance of the algorithm if only genes of
that confidence level or higher were accepted. For example,
Prodigal could achieve a 99.2% precision by accepting only genes
with 100% confidence in 700bp fragments, but it would fail to
identify 40% of real genes with this stringent a restriction.

At the longer sequence lengths, Prodigal’s confidence score
corresponds very well to the actual performance. For example, at
700bp, 99.2% of genes with a 100% confidence score were true
positives, and 95% of genes with a confidence score of 90-99.99%
were true positives. At the smaller sequence lengths (150bp and
300bp), however, the comparison worsens, and only 38.7% of
genes in the 50-59% confidence interval were actually true
positives, according to the Refseq annotations of our data set. This
suggests further room for improvement in the scoring function of
the algorithm, particularly in our Bonferroni modifications to the
scores (Bonferroni, 1935). Perhaps the algorithm should eliminate
more of the lower scoring genes or add more rules to penalize our
score based on fragment or gene length. However, we were

reluctant to make changes based on a single data set, since that
could be considered to be fitting to the test set data. Examining
these lower scoring genes on a larger data set to see if they should
be kept is a worthwhile goal for future versions. Regardless of the
actual performance, the confidence estimation gives researchers a
valuable tool for deciding whether to retain or eliminate a given
gene model. We believe this % confidence measure to be a
significant improvement over a numerical score, the meaning of
which can often be difficult to understand or apply to practical
problems.

Table 4: Prodigal Confidence Estimations for 51 Genome Sequences from
Refseq
Frag.
Length

Conf-
idence

Real
Genes

False
Genes

% Real % False Sn Pr F-
score

700bp 100% 854622 6727 99.2 0.8 60.0 99.2 79.6
700bp 90-99% 441336 23011 95.0 5.0 90.9 97.8 94.3
700bp 80-89% 35547 10648 76.9 23.1 93.4 97.1 95.2
700bp 70-79% 19307 9512 67.0 33.0 94.8 96.4 95.6
700bp 60-69% 10200 7311 58.2 41.8 95.5 96.0 95.8
700bp 50-59% 5796 6212 48.3 51.7 95.9 95.6 95.8
300bp 100% 772854 5061 99.3 0.7 29.7 99.3 64.5
300bp 90-99% 1552693 73289 95.5 4.5 89.4 96.7 93.1
300bp 80-89% 78026 33410 70.0 30.0 92.4 95.6 94.0
300bp 70-79% 41307 32911 55.7 44.3 94.0 94.4 94.2
300bp 60-69% 15789 17670 47.2 52.8 94.6 93.8 94.2
300bp 50-59% 7373 11673 38.7 61.3 94.8 93.4 94.1

4 CONCLUSION

We built an open source heuristic ab initio algorithm for
metagenomic gene prediction using Prodigal. The program can
analyze fragments independently and thereby achieve full speedup
through utilization of multiple processors. Although we
understand the problems posed by sequencing errors, we chose to
focus instead on other problems that have received less attention,
such as translation initiation site identification, handling of
alternate genetic codes, and providing filtering mechanisms for
scores based on confidence. In future versions, we hope to address
sequencing errors in more detail, as well as provide further
improvements to the program’s performance at smaller fragment
lengths.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Michael D. Galloway for
help with the AMD Opteron cluster. We would also like to
acknowledge Dr. Jillian Banfield and Brian C. Thomas for helpful
discussions and feedback on the metagenomic version of Prodigal.

Funding: This work was supported by the Genomic Science
Program, US Department of Energy, Office of Science, Biological
and Environmental Research, as part of the Plant Microbial
Interfaces Scientific Focus Area (http://pmi.ornl.gov/), as well as
by the BioEnergy Science Center, which is a US Department of
Energy Bioenergy Research Center supported by the Office of
Biological and Environmental Research in the DOE Office of

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

8

Science. Oak Ridge National Laboratory is managed by UT
Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725.

REFERENCES

Aivaliotis,M. et al. (2007) Large-scale identification of N-terminal peptides in the

halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. J.
Proteome Res., 6, 2195–2204.

Angelova,M. et al. (2010) Computational Methods for Gene Finding in Prokaryotes.
ICT Innovations, 11–20.

Benson,D.A. et al. (2011) GenBank. Nucleic Acids Res., 39, D32–37.
Bonferroni,C.E. (1935) Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore

del Professore Salvatore Ortu Carboni, 13 – 60.
Hoff,K. et al. (2008) Gene prediction in metagenomic fragments: A large scale

machine learning approach. BMC Bioinformatics, 9, 217.
Hoff,K. (2009) The effect of sequencing errors on metagenomic gene prediction. BMC

Genomics, 10, 520.
Hu,G.-Q. et al. (2009) MetaTISA: Metagenomic Translation Initiation Site Annotator

for improving gene start prediction. Bioinformatics, 25, 1843 –1845.
Hyatt,D. et al. (2010) Prodigal: prokaryotic gene recognition and translation initiation

site identification. BMC Bioinformatics, 11, 119.
de Jong,A. et al. (2010) BAGEL2: mining for bacteriocins in genomic data. Nucleic

Acids Research, 38, W647–W651.
Kawarabayasi,Y. et al. (1999) Complete genome sequence of an aerobic hyper-

thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res., 6, 83–101, 145–
152.

Massaro, J. (2005) Clustering, Complete Linkage. Enc. Biostatistics.
Noguchi,H. et al. (2008) MetaGeneAnnotator: Detecting Species-Specific Patterns of

Ribosomal Binding Site for Precise Gene Prediction in Anonymous Prokaryotic
and Phage Genomes. DNA Research, 15, 387 –396.

Noguchi,H. et al. (2006) MetaGene: prokaryotic gene finding from environmental
genome shotgun sequences. Nucleic Acids Research, 34, 5623 –5630.

Pruitt,K.D. et al. (2009) NCBI Reference Sequences: current status, policy and new
initiatives. Nucleic Acids Res, 37, D32–D36.

Rho,M. et al. (2010) FragGeneScan: predicting genes in short and error-prone reads.
Nucleic Acids Research.

Rudd,K.E. (2000) EcoGene: a genome sequence database for Escherichia coli K-12.
Nucleic Acids Res., 28, 60–64.

Shine,J. and Dalgarno,L. (1975) Determinant of cistron specificity in bacterial
ribosomes. Nature, 254, 34–38.

Yamao,F. et al. (1985) UGA is read as tryptophan in Mycoplasma capricolum. Proc
Natl Acad Sci U S A, 82, 2306–2309.

Yok,N. and Rosen G. (2011) Combining gene prediction methods to improve
metagenomic gene annotation. BMC Bioinformatics, 12, 20.

Zhu,W. et al. (2010) Ab initio gene identification in metagenomic sequences. Nucleic
Acids Research, 38, e132.

 at O
ak R

idge N
ational Laboratory on July 24, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

