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Abstract 

Background: Lignin is a crucial molecule for terrestrial plants, as it offers structural support and permits the trans‑
port of water over long distances. The hardness of lignin reduces plant digestibility by cattle and sheep; it also makes 
inedible plant materials recalcitrant toward the enzymatic fermentation of cellulose, which is a potentially valuable 
substrate for sustainable biofuels. Targeted attempts to change the amount or composition of lignin in relevant plant 
species have been hampered by the fact that the lignin biosynthetic pathway is difficult to understand, because it 
uses several enzymes for the same substrates, is regulated in an ill‑characterized manner, may operate in different 
locations within cells, and contains metabolic channels, which the plant may use to funnel initial substrates into spe‑
cific monolignols.

Results: We propose a dynamic mathematical model that integrates various datasets and other information regard‑
ing the lignin pathway in Brachypodium distachyon and permits explanations for some counterintuitive observations. 
The model predicts the lignin composition and label distribution in a BdPTAL knockdown strain, with results that are 
quite similar to experimental data.

Conclusion: Given the present scarcity of available data, the model resulting from our analysis is presumably not 
final. However, it offers proof of concept for how one may design integrative pathway models of this type, which are 
necessary tools for predicting the consequences of genomic or other alterations toward plants with lignin features 
that are more desirable than in their wild‑type counterparts.
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Background
Lignin is the world’s second most abundant organic poly-
mer after cellulose; it is estimated to constitute 30% of all 
organic carbon on earth. Lignin is essential for a plant’s 
structural stability and for its water transport. In suf-
ficient quantities, lignin makes plant materials, such as 
stems and roots, very hard. As a consequence, it poses a 
substantial challenge in terms of animal feed digestibil-
ity, because its irregular aromatic structure is difficult to 
decompose enzymatically. Indeed, if the total amount 

of lignin in feed for cattle and sheep could be reduced, 
millions of dollars could be saved [1], and genetically 
engineered reduced lignin alfalfa has recently been com-
mercialized [2, 3]. Lignin is similarly a grand challenge 
for the biofuel industry, because the heteropolymer is 
interwoven with cellulose and hemicellulose in plant cell 
walls, which impedes access of hydrolytic enzymes to 
these polysaccharides [4–6]. This so-called recalcitrance 
poses a critical obstacle to the US Department of Ener-
gy’s goal of replacing significant amounts of gasoline with 
ethanol [7], as biomass requires expensive pretreatment 
that drastically increases the cost of ethanol production. 
Given the potentially large returns on investment, recal-
citrance has become the target of investigation in many 
research labs.
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To address recalcitrance at its origin, a good under-
standing of lignin biosynthesis is obligatory. However, an 
intuitive understanding of this process is confounded by 
the grid-like structure of the pathway and the multiple 
use of the same enzymes for different substrates, which 
in combination lead to a complicated nonlinear flux dis-
tribution. For instance, it is difficult to predict how the 
pathway might respond to knockdowns of genes coding 
for enzymes that catalyze distinct reactions within the 
pathway. Further complicating these challenges is the 
observation that the lignin pathway is similar, but not 
exactly the same in structure and regulation across differ-
ent plant species. It was shown in recent years that com-
putational modeling can greatly assist in comprehending 
the functionality of the lignin pathway [8–12].

The first step of a computational metabolic pathway 
analysis is typically a stoichiometric representation that 
accounts in a binary manner for all known reactions lead-
ing from one or more precursors to the desired products. 
Such a stoichiometric model is very valuable, but not suf-
ficient for the important second goals of explaining coun-
terintuitive observations and of guiding experiments into 
targeted genetic alterations of the pathway toward par-
ticular biotechnological goals, such as favorable changes 
in lignin amount or composition. To achieve these types 
of goals, a dynamic model is needed that permits the 
evaluation of transitions from the original state of the 
pathway to the new, intended state, where the “state” is 
defined by metabolite concentrations and magnitudes of 
fluxes.

Previous computational studies demonstrated that 
mathematical modeling can assist with the quantitative 
characterization of structural and regulatory features 
of the lignin biosynthetic pathway. As a case in point, a 
counterintuitive observation in alfalfa demonstrated that 
knockdowns of genes early in the pathway, before the 
reactions toward S- and G-monolignols diverge, never-
theless lead to different proportions of S- and G-lignin. 
We ultimately resolved these discrepancies by develop-
ing stoichiometric and dynamic models for black cot-
tonwood (Populus trichocarpa) [10], alfalfa (Medicago 
sativa L.) [8], and switchgrass (Panicum virgatum) [11]. 
These purely computational analyses led to the postulate 
of metabolic channels, whose functionality was subse-
quently validated in alfalfa [8].

Here we employ similar computational tools to investi-
gate the pathway in the grass Brachypodium distachyon, 
which has become a model plant for lignin analyses in 
recent years. The modeling work is relevant for two spe-
cific reasons. The first is the need to explain a confusing 
observation resulting from labeled phenylalanine (Phe) 
and tyrosine (Tyr) feeding experiments. Namely, experi-
mental data revealed a differential incorporation of either 

Phe or Tyr into the various lignin units [11], even though 
the two amino acids enter the lignin pathway at almost 
the same source metabolite and quickly lead to the same 
precursors for the remainder of the pathway (Fig. 1). Spe-
cifically, the experiments demonstrate that upon sup-
plying labeled Phe, a higher incorporation of labeling is 
funneled into G-lignin, whereas a higher incorporation 
into S-lignin is observed for labeled Tyr feeding. Second, 
a future goal of this modeling effort is to make reliable 
predictions regarding the lignin amount and composition 
in the organism in response to single and double gene 
knockdowns.

To explain the differential responses to Phe or Tyr 
labeling, we started again with the strategy of stoichio-
metric modeling, using the putative structure of the 
pathway of lignin biosynthesis in Brachypodium (Fig. 1) 
as basis. While the resulting model represented much of 
the pathway appropriately, it turned out to be incapable 
of reproducing the observed differential S- and G-lignin 
production. In fact, intense further model exploration 
and analysis led to the conclusion that the assumed 
topology of the pathway is not consistent with distinct 
G and S preferential pathways from Phe and Tyr, respec-
tively. This inability to match observations persisted even 
if we took into account metabolic channels, as proposed 
to be present in alfalfa and switchgrass [8, 11]. To resolve 
the discrepancy, we analyzed the pathway structure fur-
ther and came to the following conclusions.

The paths initially starting from Phe and Tyr diverge 
into different effluxes at the p-coumaric acid branch point 
(Fig. 1), but the subsequent fluxes eventually merge at the 
feruloyl-CoA node thus leaving no direct opportunity for 
material to flow into a particular monolignol that would 
be specific to the initial source of Phe or Tyr. Exploring 
various biologically reasonable alternatives, the modeling 
analysis led to the conclusion that a single compartment 
is insufficient to explain the data and that it is necessary 
to take into account the spatial localization of the path-
way enzymes. To assume different locations for enzy-
matic activity actually seems very reasonable, because 
experimental observations report that three of the path-
way enzymes, namely C4H, C3′H and F5H, are bound to 
the outer surface of ER, whereas other enzymes are com-
monly assumed to be free in the cytosol. Accordingly, we 
developed a static model with two “compartments”, the 
cytosol and the outer ER surface, to examine the role of 
enzyme localization for the differential incorporation of 
Phe and Tyr into different monomer units. One should 
note that these compartments are not truly separated 
from each other but constitute localized centers of enzy-
matic activity with some material and information flow 
between them. A static two-compartment model of this 
type indeed allowed us to explain the labeling data [13].
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While this result is reassuring, the steady-state model is 
not sufficient for the quantitative exploration of responses 
to alterations, such as gene knockdowns. Thus, if one 
were to ask which enzyme activities should be changed 
to alter the total amount or the composition of lignin in 
a targeted manner, the static model would not be capable 
of offering an answer. Instead, such an answer requires a 
dynamic model that represents a sufficiently wide oper-
ating range with sufficient accuracy. We develop such a 
dynamic model in the work described here.

A dynamic model is necessary for a variety of analy-
ses, which include—but are not restricted to—time 
course simulations. Of particular interest for us is the 
predictability of responses to introduced gene modu-
lations, which cannot be accomplished reliably with a 
pure steady-state metabolite model. For instance, a 50% 
decrease in the abundance of an enzyme does not neces-
sarily correspond to a 50% decrease in the flux catalyzed 
by this enzyme, because such perturbations are often 
confounded by changes in metabolites (for a clear dem-
onstration of such compensation in a different context 

see [14]). Moreover, the new steady state can usually 
not be calculated due to the fact that metabolic path-
way systems are underdetermined and nonlinear. This is 
where the power of dynamic models comes to assist, as 
the dynamics of perturbations can be simulated conveni-
ently and reliably, if the model is adequate. In particular, 
if stable solutions exist, the simulations and mathemati-
cal analyses will reveal them. Furthermore, the dynamic 
model permits optimization methods that predict par-
ticularly useful gene modifications, as we have shown in 
the context of lignin synthesis elsewhere [15].

Results
Review of features of the static model of lignin 
biosynthesis in Brachypodium
We described elsewhere the procedures for designing a 
stoichiometric model for the pathway of lignin biosyn-
thesis in Brachypodium [13] and it suffices here to review 
the main features, which are important for the following.

We began our modeling efforts with the design of a 
one-compartment model of the pathway (Fig. 1), but soon 

Fig. 1 Putative lignin biosynthesis pathway in Brachypodium distachyon. Inputs from phenylalanine and tyrosine appear to merge early in the 
pathway, at the pool of p‑coumaric acid. This early convergence renders the observation curious that feeding labeled phenylalanine or tyrosine 
results in distinctly different incorporations of label into different lignin monomers. The pathway through C3H (dashed) is tentative
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discovered that this structure was insufficient. As a posi-
tive upshot of this initially failed analysis, the systematic 
exploration of the model led us to the proposal of a two-
compartment model, which ultimately reproduced all data 
faithfully, and, in particular, captured the differential chan-
neling of 13C-labeled precursors. The two “compartments” 
in this model are the cytosol and the outer ER surface, as 
discussed before. The model is shown in Fig. 2. For simplic-
ity of notation and analysis, we rename all variables in the 
two compartments with subscripted X and Y (Fig. 3).

Simulation with the static model
Computational simulations with the static model suggest 
that coniferaldehyde, a common precursor of both G- and 
S-lignin, is the critical node where the ultimate lignin com-
position appears to be determined. At this branch point, 
located on the outer ER surface, the distinct funneling 
of Phe and Tyr toward different lignin units is achieved 
through metabolic channeling, as it apparently also occurs 
in alfalfa and switchgrass [8, 11]. One should note that 
this metabolic channel does not necessarily take the form 
of an enzyme complex. Moreover, the wrinkled environ-
ment of the outer ER surface could provide isolated centers 
of metabolic activity and some physical barrier to prevent 
portions of the metabolites from immediate dilution by 
diffusion in and out of the cytosol. Whatever the natural 
implementation of this separation might be, it is interesting 
that compartmentalization appears to be a key ingredient 
for the preferential incorporation of 13C-labeling.

Figure 4 exhibits simulation results representing ensem-
bles of steady-state flux distributions that were computed 
from the available data (see “Methods”). The box plots 
show the admissible range for each flux. Figure 5 details the 
labeled portions of the total fluxes shown in Fig. 4. The blue 
and red box plots compare the results for labeled Phe and 
Tyr supplies, respectively. It is interesting to note how dif-
ferent the magnitudes of the steady-state fluxes are.

A dynamic model of lignin biosynthesis in Brachypodium
With the two-compartment model scheme and the com-
puted steady-state flux distribution, we are now equipped 
to set up a dynamic kinetic model of the pathway, which 
can subsequently be used for assessing the consequences 
of knockdowns and other perturbations. In fact, such a 
model offers future opportunities for predicting responses 
to numerous types of alterations and, in particular, optimal 

genomic changes with respect to lignin content and com-
position (cf. [15]).

The formulation of a dynamic model is rather straight-
forward if one uses the modeling framework of Biochemi-
cal System Theory (BST), because every process in a BST 
model is represented as a product of power-law terms that 
reflects directly which variables are involved in this process 
[16–19]. Following the procedures described in Methods, 
we designed a fully dynamic model with 68 ordinary dif-
ferential equations (ODE); the number 68 corresponds to 
twice the number of metabolites, due to formulating the 
system for labeled and unlabeled metabolites. The equa-
tions are presented in Additional files 1 and 2.

In stark contrast to the ease of capturing the system 
structure with a BST model, the determination of param-
eter values is a true challenge. If kinetic data on enzymes 
and regulators or metabolic time series data were available, 
one could use one of the uncounted methods that have 
been developed for this purpose of parameter estimation 
(e.g., [20–26]). Unfortunately, the information needed for 
these methods is not available in our case.

Instead, we used a Monte Carlo sampling method, com-
bined with a sophisticated search algorithm, to param-
eterize the system such that the experimental results were 
satisfactorily matched (see “Methods”). The model criteria 
for a parameter set to be considered admissible were:

1. A good match with the observed lignin content and 
composition profile in control plants;

2. Consistency with the label incorporation profile in 
lignin monomers and in wall-bound p-coumaric and 
ferulic acid observed for labeled Phe feeding;

3. Consistency with the label incorporation profile in 
lignin monomers and in wall-bound p-coumaric and 
ferulic acid observed for labeled Tyr feeding;

4. A good match with the observed label incorporation 
profile in lignin monomers when unlabeled cinnamic 
acid was added to the medium.

 • In labeled Phe feeding experiments and;
  • In labeled Tyr feeding experiments;

5. A good match with the observed label incorporation 
profile in lignin monomers and wall-bound p-cou-
maric and ferulic acid when unlabeled p-coumaric 
acid was added to the medium.

Fig. 2 Compartmental model of the lignin pathway in Brachypodium. The two compartments cross‑talk through diffusion fluxes (red arrows). 
Enzymatic reactions are marked in blue. Green arrows represent monolignol transport into the cell wall. The yellow arrows are effluxes towards 
wall‑bound p‑coumaric acid and ferulic acid. The coefficient R in expressions like RD1 represents the ratio of volumes of the cytosol and ER 
compartments ( R = r

/

(1 − r) , where r  is the portion of cytosol volume and 1 − r is the portion of ER volume with respect to the total volume). R 
is a multiplier in the rates of diffusion fluxes associated with the ER that accounts for the difference in volumes

(See figure on next page.)
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Fig. 3 Compartmental model scheme with simplified notation. Xi and Yi are corresponding pools of the same metabolite i in the cytosol and at the 
outer ER surface, respectively

Fig. 4 Steady‑state distributions of all fluxes in the pathway, obtained from iterative simulations with the static model. The total fluxes include 
both labeled and unlabeled components of each flux and are independent of the labeling experiments. Each entry in these box plots shows 
the admissible range for each involved flux, with the center red line representing the median and the blue box containing the middle 50% of all 
admissible solutions. The partition coefficient R is factored out in this figure since it does not affect the flux profile at the steady state
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 • In labeled Phe feeding experiments and;
  • In labeled Tyr feeding experiments.

For implementing these criteria, a match was defined as 
“good” if the simulation result fell within a range bounded 
by the mean value plus/minus 25%. We set a slightly 
more relaxed admissible range for wall-bound phenolics, 
because their effluxes have not been characterized with a 
sufficient degree of precision and because they are used 
by the plant for other purposes outside lignin production. 
Beyond the steady-state ensemble of flux distributions, 
the analysis led to an ensemble of parameter sets that 
rendered dynamic model simulations consistent with the 
experimental results.

In a separate set of experiments, Barros et  al. [27] 
added unlabeled cinnamic acid or p-coumaric acid to 
the medium to elucidate further to what degree Phe and 
Tyr enter distinct reaction chains of lignin biosynthesis. 
Again, labeled Phe or Tyr was supplied, and the authors 
traced how the unlabeled cinnamic acid and p-coumaric 
acid dilute each labeling feed source. Figure 6 exhibits the 
parameterized dynamic model results in simulated con-
trol plants, as well as dilution experiments using labeled 
Phe and Tyr. As the figures indicate, the experimental 
data and simulations show a satisfactory match within 
our set criteria for acceptance.

Validation with results from BdPTAL knockdown 
experiments
The model can now be used for other predictions, e.g., 
regarding responses to single or double gene knock-
downs, as described in [11, 15] for switchgrass. To vali-
date the prediction accuracy of our earlier switchgrass 
model, we used a transgenic line whose data had not 
been used to construct the model, adjusted the model 
parameters for the measured enzyme profile in the so-
far not-used perturbation experiment and compared 
simulated and observed lignin compositions. The model 

was able to capture the corresponding measured lignin 
composition quite well [11]. We then used the validated 
model to simulate single, double and global enzyme alter-
ations and generated virtual transgenic plant libraries 
with altered lignin compositions. We pursued the same 
general strategy here, using the BdPTAL knockdown data 
(see Additional files 1 and 2), which had not been used 
to parameterize the model. The altered gene expression 
of pathway enzymes and the lignin composition were 
available. We used the expression changes as changes 
in enzyme activities and simulated the transgenic plant. 
Figure 7 shows the simulation results. As the figure dem-
onstrates, simulations and experimental data match 
quite well. We suspect that the slight underestimation 
in label incorporation might be due to the lack of data 
on Phe and Tyr label levels in these experiments, which 
required us to use the measured Phe and Tyr label lev-
els from the dilution experiments, which may be slightly 
different. Nonetheless, the data are matched at least 
semi-quantitatively.

Methods
Static model
The construction of the compartmental model and meth-
ods for estimating the steady-state flux distribution for 
Brachypodium have been discussed elsewhere [13]. To 
estimate the cinnamic acid (CA) and p-coumaric acid 
(pCA) input that is actually taken up by the plants from 
the medium and enters the lignin pathway, we used the 
steady-state model and recorded all input values of CA 
and pCA that led to lignin and wall-bound phenolic pro-
files matching the experimental data. These data came 
from labeling experiments in wild-type lines and include 
labeled and unlabeled lignin monomer profiles, as well as 
the label incorporation level in wall-bound p-coumaric 
acid and ferulic acid [27]. We used the estimated flux dis-
tribution, as well as CA and pCA input values to param-
eterize the dynamic model.

Fig. 5 Simulated 13C9 incorporation into lignin monomers and cell wall phenolics in labeled Phe and Tyr feeding experiments. Similar to Fig. 4, 
this figure uses differently colored box plots to differentiate label incorporation for the two labeling experiments. The differences are quite subtle, 
but nevertheless collectively yield the observed incorporation preferences for Phe or Tyr substrates into different monolignols. The green asterisks 
represent measured 13C9 incorporation [27]
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Construction of the dynamic model
Model format
We designed our dynamic model as a system of ordinary 
differential equations (ODE), taking the metabolites as 
the states of the system. The enzymatic fluxes are mod-
eled under the tenets of biological systems theory (BST) 
in generalized mass action (GMA) format [16–19]. These 
base methods are explained in detail in our previous work 
on switchgrass [11]. The compartmental model proposed 
here additionally includes diffusion fluxes, which transfer 

mass between the compartments (Fig. 2). These net diffu-
sion fluxes are modeled in the format

where Xi and Yi are corresponding pools of the same 
metabolite in the cytosol and outer ER surface com-
partments, respectively, and dj is the rate constant of 
diffusion.

Due to the lack of specific literature on metabolite 
profiles, and similar to our approach for switchgrass, 

(1)Dj = dj(Xi − Yi),

Fig. 6 Simulated 13C9 incorporation in lignin monomers and cell wall phenolics in cinnamic acid and p‑coumaric acid dilution experiments with 
labeled Phe and Tyr feeding. The parameterized dynamic model results capture label incorporation in lignin monomers and cell wall phenolics for 
the control plants and the plants grown on cinnamic acid and p‑coumaric acid feeding. The green asterisks represent measured 13C9 incorporation 
[27]

Fig. 7 Predicted 13C9 incorporation in lignin monomers (G, S, H, and Total) and lignin composition in BdPTAL knockdown following labeled Phe 
and Tyr feeding. The left and center panels compare model predictions and measured levels of label incorporation in transgenic BdPTAL plants in 
response to labeled Phe or Tyr feeding. The right panel shows changes in lignin composition relative to wild type, and compares model predictions 
with measured results



Page 9 of 13Faraji et al. Biotechnol Biofuels  (2018) 11:253 

the concentrations are normalized with respect to the 
wild-type steady-state value, and the base value is set 
to 100:

where Zi,SS is the nominal total concentration of metabo-
lite i at steady state, and Zi,cyt and Zi,ER are local concen-
trations of metabolite i in the respective compartments. 
Expressed differently, Xi and Yi are the local, normalized 
concentrations of metabolite i in each compartment. At 
the steady state, the total concentration of each metabo-
lite is equal to 100,

where r is the portion of the cytosol compartment vol-
ume and 1 − r is the portion of the ER compartment 
volume with respect to total volume. Hence, r

/

(1 − r) 
is the ratio of volumes earlier introduced as R . We set r 
equal to 0.9, which corresponds to the cytosol compart-
ment accounting for 90% and the ER outer surface com-
partment to 10% of the cell volume within which the 
lignin pathway is active.

Equations for labeled and unlabeled substrates
We extended the dynamic base model to a system 
accounting for labeled and unlabeled metabolites, 
which doubled the number of ODEs. Each enzymatic 
flux Vj is calculated using the total metabolite pool 
whether labeled or unlabeled; in other words, the 
enzymes are assumed to be blind to labels:

where aj is the rate constant, Xi,L and Xi,UL ( 1 < i < n ) 
are labeled and unlabeled metabolites, respectively, and 
gi,j ’s are kinetic orders. For n + 1 < i < n + m , each 
variable Xi represents the amount of an enzyme involved 
in the reaction. It is customary to assign enzyme kinetic 
orders, hi,j , equal to 1 if the enzyme is involved in the 
reaction and 0 if it is not. Xi is replaced by Yi if the reac-
tion is taking place in the ER compartment. The labeled 
and unlabeled flux portions are calculated based on how 
rich in labels the substrate pool of the flux is (Eq. 5).

(2)
Xi =

100

Zi,SS
· Zi,cyt,

Yi =

100

Zi,SS
· Zi,ER,

(3)r · Xi + (1 − r) · Yi = 100,

(4)Vj = aj

n
∏

i=1

(

Xi,L + Xi,UL

)gi,j
n+m
∏

i=n+1

X
hi,j
i .

where Xs is the substrate of the reaction Vj . To compute 
the rate of change in each metabolite, the labeled fluxes 
are used to establish the ODEs for labeled metabolites, 
and the unlabeled fluxes are used to formulate the dif-
ferential equations of the unlabeled metabolites. As an 
example, the equations for labeled and unlabeled p-cou-
maroyl-CoA in the ER compartment are written as

Unknowns of the system and parameterization
The values of the kinetic orders, gi,j , rate constants,aj , dj , 
and steady-state values of the parallel metabolite pools, 
Xi,SS and Yi,SS , are unknown and need to be estimated. To 
estimate the unknowns, we used Monte Carlo sampling, 
generating a random set sampled from the space Rp, and 
within the biologically reasonable ranges, where p is the 
number of unknowns.

Most of the metabolite steady-state values can be alge-
braically computed as follows. We can rewrite Eq. 1 for 
the labeled portion of diffusion flux as

where LXi and LYi are label incorporation levels in Xi 
and Yi pools, which are known from the labeled flux dis-
tributions [13]. From Eqs. 1, 3 and 7 together, the three 
unknowns dj,Xi and Yi can be algebraically computed for 
each diffusion flux. Due to the stoichiometry of the path-
way, four of the metabolites, namely cinnamic acid ( X2

,Y2 ), caffeoyl shikimate ( X9 , Y9 ), 5-OH-coniferaldehyde 
( X16 , Y16 ), and 5-OH-coniferyl alcohol ( X17 , Y17 ), have the 
same level of label incorporation in both of their cytosol 
and ER compartments. That leads to a degenerate case 
where Eqs.  1 and 7 are linearly dependent ( LXi = LYi ), 
and steady-state values cannot be computed algebraically. 
Hence, the steady-state values of these metabolite pools, 
(

X2,SS,Y2,SS
)

 , 
(

X9,SS,Y9,SS
)

 , 
(

X16,SS,Y16,SS
)

 , 
(

X17,SS,Y17,SS
)

 , 

(5)

Vj,L =

Xs,L

Xs
· Vj ,

Vj,UL =

Xs,UL

Xs
· Vj ,

(6)

dY5,L

dt
=

Y4,L

Y4
· V25 −

Y5,L

Y5
· V26

−

Y5,L

Y5
· V31 −

r

1 − r
d9

(

Y5,L − X5,L

)

,

dY5,UL

dt
=

Y4,UL

Y4
· V25 −

Y5,UL

Y5
· V26

−

Y5,UL

Y5
· V31 −

r

1− r
d9

(

Y5,UL − X5,UL

)

.

(7)Dj,L = dj
(

LXi · Xi − LYi · Yi
)

,
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need to be estimated. Since the total concentrations of 
each pair of metabolites ( r · Xi + (1 − r) · Yi ) are equal 
to 100 at the steady state, it suffices to estimate either 
Xi,SS or Yi,SS for parallel metabolite pools, and use Eq. 3 to 
compute the other. Given the steady-state flux distribu-
tion, the diffusion rate constants, dj , are then computed 
using Eq. 1. To sample the steady-state metabolite values, 
we considered the direction of diffusion between Xi,SS 
and Yi,SS . As Eq.  3 shows, the weighted average of Xi,SS 
and Yi,SS is equal to 100 at the steady state, which implies 
that one of the pools is greater than or equal to 100, and 
the other smaller than or equal to 100. The direction of 
diffusion determines the pool smaller than 100 since the 
diffusion flux pours into that pool at the steady state. This 
way, we obtain an interval for sampling bounded between 
zero and 100. Therefore, we sampled the array

within [0,100] and computed the corresponding parallel 
pools, [X2,SS,Y9,SS,Y16,SS,Y17,SS] , using Eq. 3. In fact, the 
pools of metabolites in Eq. 8 are the pools into which the 
diffusion fluxes pour at the steady state (Fig. 2).

Kinetic orders gi,j were sampled from the interval [0,1] 
if metabolite i was a substrate or activator of flux j (except 
for effluxes E1, E2, E3 and E4 for which we used the inter-
val [0, 4]), and [− 4,0] if they acted as inhibitors of flux 
j [28]. Using the steady-state flux and metabolite values 
and the randomly generated kinetic orders, gi,j, the rate 
constants, aj, of the enzymatic reactions are then com-
puted via Eq. 4.

Due to the high number of unknown parameters, dilu-
tion experiments were parameterized one at a time. The 
thus obtained working parameters from one experiment 
were used to regenerate new parameters in the reduced 
parameter space, employing random Monte Carlo sam-
pling. Therefore, hundreds of thousands of parameter 
combinations were simulated to satisfy all model criteria.

Specifically, we used a variation of an explore-and-
exploit algorithm [29–31], starting with an initial, 
randomly generated parameter set. This algorithm is 
designed to target those areas of the parameter space that 
are in the vicinity of an admissible solution once such a 
solution is found; it exploits these neighborhoods rather 
than randomly exploring the parameter space at large. In 
other words, the algorithm benefits from the search his-
tory and performs a more effective optimization within 
promising, localized domains of the parameter space. 
Details of our implementation of the algorithm are dis-
cussed in Additional files 1 and 2.

For the dynamic model, the criteria of admissibility 
were the same as the criteria in the static model. Thus, 
parameter values were deemed admissible if they met the 
model criteria presented in “Results” section. Namely, 

(8)[Y2,SS,X9,SS,X16,SS,X17,SS]

they had to yield a good representation of the observed 
lignin monomer composition and total lignin amount, 
and match the label incorporation profiles in lignin mon-
omers, as well as in wall-bound p-coumaric acid and fer-
ulic acid to a satisfactory degree.

Dynamic model validation
Enzyme activity estimation from changes in gene expression
Ideally, it would be possible to determine the concen-
trations and activities of all enzymes involved in the 
pathway. However, in situ measurements of protein con-
centrations of the magnitudes available in lignin biosyn-
thesis are extremely difficult to obtain, and as of yet no 
reliable information is available. It, therefore, appears 
that reliable and rather precise transcripts of genes cod-
ing for the enzymes of interest are our best option.

It is known that changes in gene expression are not 
necessarily translated one-to-one measure into the cor-
responding enzyme activity, and it is in fact likely that 
a p% change in transcript results in a change in enzyme 
activity that is much lower than p%. To account for this 
uncertainty, we used the measured transcript profile of 
BdPTAL transgenics as an upper bound for the corre-
sponding enzyme activity levels. Thus, we randomly gen-
erated 20,000 altered enzyme activity profiles bounded 
between the wild type and BdPTAL transcript level, 
simulated all these profiles with the dynamic model, and 
retained those close enough to the BdPTAL observations 
of lignin amounts and labeling levels. Figure 8 shows the 
altered enzyme activity profiles that yielded admissible 
lignin composition profiles. In addition to the enzyme 
transcripts, the right panel depicts the changes in car-
bon influx relative to wild type in the admissible solu-
tions. Although the enzyme transcripts of the upstream 
pathway are not measured in this study, we included this 
extra measure in our model to examine the necessity of 
an orchestrated decrease in carbon influx into the path-
way by the plant. The results indicate that the median of 
the change is at 90%, which leads to the conclusion that 
the influx is not strongly redirected before entering the 
pathway.

Discussion
Lignin is a fascinating organic compound that is essential 
to the life of terrestrial plants. Its molecular composition 
and structural toughness are critical ingredients for the 
roles of lignin in plants and they are also increasingly val-
ued by industry, which has begun to use lignin as a start-
ing substrate for a variety of products [32].

Both targeted reductions and increases in lignin, as 
well as any changes in its molecular composition, require 
a detailed understanding of how lignin is synthesized 
in  vivo. This understanding is difficult to gain from wet 
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experiments alone, as the biosynthetic lignin pathway is 
complex and reuses the same enzymes several times for 
different substrates. This multiple use makes intuitive 
predictions regarding introduced alterations in these 
enzymes difficult and unreliable. Not surprisingly, the 
pathway also contains regulation, as well as functional 
channels, which permit some control over the flux into 
specific monolignols, and these nonlinear features con-
found explanation and prediction capabilities. In addition 
to these features, we have suggested here and elsewhere 
[13] that the pathway in Brachypodium appears to be 
functionally separated into two locations, namely the 
cytosol and the outer surface of the ER. Otherwise, the 
Brachypodium pathway seems similar—although not 
entirely identical—to the corresponding pathways in 
alfalfa and switchgrass. The assumption of different loca-
tions for enzymatic activity actually seems very reason-
able, because experimental observations report that three 
of the pathway enzymes, namely C4H, C3′H and F5H, are 
bound to the outer surface of ER, whereas other enzymes 
are commonly assumed to be free in the cytosol. This has 
been reported in Brachypodium [27], tobacco [33], and 
Arabidopsis [34]. Whether a similar compartmentaliza-
tion exists in most or all terrestrial plant species is not 
known and will require targeted experimentation.

In terms of different species and their own peculiarities 
with respect to the lignin pathway, experimental work 
suggests that there are indeed distinctions with respect 
to the presence or absence of some metabolites and 

reactions. For instance, alfalfa converts caffeoyl-CoA into 
caffeoyl aldehyde by means of CCR, and COMT catalyzes 
the subsequent reaction converting caffeoyl aldehyde into 
coniferaldehyde [35]. These two reactions are apparently 
absent in switchgrass, black cottonwood, and Brachy-
podium. Also, in switchgrass and Medicago truncatula, 
caffeoyl shikimate esterase (CSE) converts caffeoyl shi-
kimate into caffeic acid [36], while this reaction seems 
not to be functional in either Brachypodium or black 
cottonwood. Specifically for Brachypodium, it was, fur-
thermore, shown that phenylalanine (Phe) is not the only 
substrate for the lignin pathway, but that this organism 
can also use tyrosine (Tyr) in almost equal amounts. It is 
unknown whether this secondary pathway is a matter of 
redundancy, whether there are specific internal or envi-
ronmental reasons for this organism needing this alter-
native, or whether the organism uses these pathways to 
control its S/G ratio.

Over the past decade, we have developed models of 
lignin biosynthesis in different plant species [8–11, 13]. 
These models not only contain similar features, such as a 
common reaction “skeleton” and certain metabolic chan-
nels, but also exhibit differences. For instance, the model 
for switchgrass requires feedback inhibition by reaction 
products, whereas the model for Brachypodium is only 
consistent with the available data if it is distributed over 
two compartments. While the similarities are encourag-
ing toward a streamlined understanding of lignin biosyn-
thesis, the differences should not be overinterpreted. It is 

Fig. 8 BdPTAL transcript profile and simulated admissible enzyme activity profile. In the left panel red circles represent measured transcript levels 
in BdPTAL relative to wild type. Blue box plots are the simulated admissible ranges of enzyme activity levels in BdPTAL relative to wild type. The 
gray dashed line marks no change with respect to wild type. Note that the plot in some sense compares apples (observed transcript changes) and 
oranges (enzyme activity changes that are admissible according to the model analysis). The right panel depicts the change in carbon influx into the 
system relative to wild type
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quite possible that the pathways in alfalfa and switchgrass 
might be compartmentalized as well, and that products 
inhibit reactions in Brachypodium, but our modeling 
efforts, adhering to the simplicity of Ockham’s razor, 
do not require these features, possibly only because the 
same types of data are not available for the various spe-
cies. Thus, much further exploration and analysis will be 
needed to determine whether all models designed so far 
are special cases of one common model that simultane-
ously contains all these features or whether evolution has 
led to distinct implementations of a basic model struc-
ture with species-specific variations that respond to dif-
ferent environmental demands.

While it will be interesting to explore similarities and 
true differences among a variety of species further, it is 
becoming clear that, even in the face of scarce data and 
substantial information gaps, dynamic models are gain-
ing in relevance and importance. They not only integrate 
different datasets and other auxiliary information, but 
they are in the process of becoming obligatory tools for 
making reliable predictions regarding natural and intro-
duced alterations in the metabolic pathway systems that 
generate lignin in different organisms.
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