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Thermodesulfobacterium geofontis OPF15T (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone Na-
tional Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been
deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments.
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Sulfate-reducing microorganisms (SRM) are ubiquitous in an-
oxic environments and play a key role not only in the sulfur

cycle, but also in driving the decomposition of organic matter
through trophic interactions (1). Thermal environments, includ-
ing terrestrial hot springs, also support SRM from the bacterial
and archaeal domains. Currently, five type strains have been de-
scribed within the genus Thermodesulfobacterium: Thermodesul-
fobacterium commune YSRA-1, Thermodesulfobacterium hverag-
erdense JSP, Thermodesulfobacterium hydrogeniphilum SL6,
Thermodesulfobacterium thermophilum DSM1276 (2), and the re-
cently described Thermodesulfobacterium geofontis OPF15 (3).
Previously, no complete genome sequences from organisms
within the genus Thermodesulfobacterium have been released.
Thermodesulfatator indicus CIR29812T has the most closely related
genome representing a thermophilic sulfate-reducing bacterium (4).

Isolation attempts from Obsidian Pool enrichment cultures
(85°C) produced a strain with 99.7% 16S rRNA gene sequence
identity to the environmental clone OPB45 (accession no.
AF027096.1), originally deposited by Hugenholtz et al. (5). The
isolate utilizes hydrogen or formate as an electron donor while it
reduces sulfate, thiosulfate, or elemental sulfur to sulfide. Carbon
dioxide is required for its growth, while organic acids and alcohols
are not used as electron donors.

The draft genome sequence of T. geofontis OPF15T (originally
designated Thermodesulfobacterium sp. OPB45) was generated at
the U.S. Department of Energy (DOE) Joint Genome Institute
(JGI) using a combination of Illumina (6) and 454 DNA sequenc-
ing technologies (7). For this genome, we constructed an Illumina
GA II shotgun library that generated 80,058,940 reads and totaled
6,084.5 Mb, a 454 Titanium library that generated 272,891 reads,
and 1 paired-end 454 library with an average insert size of 7 kb that
generated 297,746 reads and totaled 140.6 Mb of 454 data. The

initial draft assembly contained 17 contigs in 1 scaffold. The 454
Titanium standard data and the 454 paired-end data were assem-
bled together with Newbler v2.3-PreRelease-6/30/2009. The New-
bler consensus sequences were computationally shredded into
2-kb overlapping fake reads (shreds). Illumina sequencing data
were assembled with Velvet v1.0.13 (8), and the consensus se-
quences were computationally shredded into 1.5-kb overlapping
fake reads (shreds). We integrated the 454 Newbler consensus
shreds, the Illumina Velvet consensus shreds, and the read pairs in
the 454 paired-end library using parallel Phrap vSPS 4.24 (High
Performance Software, LLC). The software Consed (9–11) was
used in the finishing process, as described previously (12). A total
of 75 additional PCRs were necessary to close all gaps. The final
assembly is based on 59.8 Mb of 454 draft data, which provides an
average of 37.4� coverage of the genome, and 5,985.5 Mb of Illu-
mina draft data, which provides an average of 3,740.9� coverage.

The circular contiguous chromosome contains 1,634,377 bp
and a G�C content of 30.59%. No extrachromosomal elements
were discovered. The genome was annotated using Prodigal at
Oak Ridge National Laboratory (13), which identified 1,635 can-
didate protein-encoding gene models. Further analysis of the ge-
nome should give new insights into the ecophysiology and
genomics of deep-branching SRM and their role in high-
temperature environments.

Nucleotide sequence accession number. The final annotated
genome sequence of T. geofontis OPF15T has been deposited in
GenBank under the accession no. CP002829.
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