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Caldicellulosiruptor obsidiansis OB47T (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaer-
obic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multi-
functional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and
provides further insight into lignocellulosic biomass hydrolysis at high temperatures.

Members of the genus Caldicellulosiruptor within the order
Clostridiales can solubilize cellulose at extremely thermophilic
growth temperatures (65 to 80°C). Caldicellulosiruptor obsid-
iansis OB47T was isolated from Obsidian Pool, Yellowstone
National Park, in enrichment cultures containing dilute acid-
pretreated switchgrass as the primary carbon and energy
source for cultivation (5). High-temperature saccharification
can promote higher hydrolysis rates while reducing cooling
costs following biomass pretreatment and suppressing contam-
ination in reactors (9). Given the organism’s rapid growth on
cellulosic substrates and ability to use a wide range of plant-
derived sugars, a complete genome sequence was determined
using a sequencing-by-synthesis approach.

The genome of C. obsidiansis OB47T was sequenced by the
U.S. Department of Energy (DOE) Joint Genome Institute
(JGI) using a combination of Illumina (1) and 454 technologies
(8). All of the general aspects of library construction and se-
quencing performed at the JGI can be found at http://www.jgi
.doe.gov/. Illumina sequencing data were assembled with
VELVET (10), and the consensus sequences were shredded
into 1.5-kbp overlapped fake reads and assembled together
with the 454 data. The initial Newbler assembly contained 64
contigs in two scaffolds. The initial 454 assembly was converted
into a Phrap assembly by making fake reads from the consen-
sus and collecting the read pairs in the 454 paired-end library.
The Phred/Phrap/Consed software package was used for se-
quence assembly and quality assessment (2–4) in the following
finishing process. Illumina data were used to correct potential

base errors and increase consensus quality using the Polisher
software developed at the JGI (Alla Lapidus, unpublished
data). After the shotgun stage, reads were assembled with
parallel Phrap (High Performance Software, LLC). Possible
misassemblies were corrected with gapResolution (Cliff Han,
unpublished data), Dupfinisher (6), or sequencing of cloned
bridging PCR fragments with subcloning. Gaps between contigs
were closed by editing in Consed, by PCR, and by Bubble PCR
primer walks. A total of 773 additional reactions and seven shat-
ter libraries were necessary to close gaps and to raise the quality
of the finished sequence. The genome was annotated at Oak
Ridge National Laboratory using the automated annotation pipe-
line, which is driven by the gene prediction algorithm Prodigal (7).
Annotation quality was verified by the JGI.

Although many well-characterized bacteria and fungi can
use cellulose, C. obsidiansis was selected and isolated specifi-
cally for its ability to deconstruct potential bioenergy feed-
stocks (e.g., pretreated switchgrass or Populus sp.). Through
high-throughput sequencing of novel strains relevant to differ-
ent aspects of renewable energy production, genome-enabled
technologies can be used to discover important cellular prop-
erties (such as the secretion of hydrolytic enzymes). Making
the genome sequence of C. obsidiansis OB47T available will
allow comprehensive comparisons with other members of the
genus and enable further investigation into the mechanisms
employed by microorganisms to solubilize lignocellulosic ma-
terials at elevated temperatures.

Nucleotide sequence accession number. The final anno-
tated genome of C. obsidiansis OB47T has been deposited in
GenBank under accession number CP002164.
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