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To improve the deconstruction of biomass, the most abundant

terrestrial source of carbon polymers, en route to renewable

fuels, chemicals, and materials more knowledge is needed into

the mechanistic interplay between thermochemical

pretreatment and enzymatic hydrolysis. In this review we

highlight recent progress in advanced imaging techniques that

have been used to elucidate the effects of thermochemical

pretreatment on plant cell walls across a range of spatial scales

and the relationship between the substrate structure and the

function of various glycoside hydrolase components. The

details of substrate and enzyme interactions are not yet fully

understood and the challenges of characterizing plant cell wall

architecture, how it dictates recalcitrance, and how it relates to

enzyme–substrate interactions is the focus for many research

groups in the field. Better understanding of how to match

pretreatments with improved enzyme mixtures will lead to

lower costs for industrial biorefining.
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Introduction
The most abundant form of terrestrial carbon is in the

form of plant biomass. Developing technologies to con-

vert plant cell wall carbohydrates and lignin to fuels and

chemicals will aid in reducing carbon dioxide in the

atmosphere, dependence on oil importation, and improve

energy independence. A deep understanding of the

effects of thermochemical pretreatment and saccharifica-

tion mechanisms will enable improvement of enzyme

saccharification of biomass essential to the development

of economically sustainable biorefineries.
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Enzymatic hydrolysis, in which lignocellulosic biomass is

converted into fermentable sugars may be the most

complex step in biomass conversion. At the molecular

scale, the hydrolysis mechanisms of glycoside hydrolases

have been extensively characterized and recently

reviewed by Payne et al. [1��]. However, the complex

nature of the plant cell wall presents many factors that

impede enzymes such as substrate accessibility, lignin

interference, cellulose crystallinity, and product inhibi-

tion. Nonetheless, enzymatic hydrolysis for biomass de-

construction offers the potential of high yields at mild

operating conditions and higher selectivity than those of

purely thermochemical processes. From the macromolec-

ular scale through the cellular scale, we are only begin-

ning to understand how a combination of enzymes, with

a range of specificities, work together to gain and maintain

access to complex lignocellulosic substrates. In this

review we highlight recent progress to elucidate the

enzymatic cell wall deconstruction mechanisms with

emphasis on visualization techniques to understand the

relationship between cell wall architecture and the

function of carbohydrate active enzyme (CAZyme) com-

ponents [2].

Direct substrate characterization
Determining what changes enzymes have made to lig-

nocellulosic substrates relies on a foundation of knowl-

edge about cell wall architecture that has benefited from

new developments in imaging technologies along with

careful consideration of sample preparation techniques

(Figure 1). The direct observation of partially digested

substrates has provided important new insights, across

a range of scales, into biomass deconstruction and can

be used elucidate cellulose mechanisms [3–7].

One of the most widely accessible techniques for sub-

strate visualization is fluorescence microscopy. In com-

parison to other techniques, fluorescence imaging is fast,

sensitive, and can be used for time-resolved imaging.

Possibly the most informative use of fluorescence micros-

copy is immuno-fluorescence imaging using monoclonal

antibodies to identify plant cell wall polysaccharides.

This has been shown to be effective in characterizing

plant cell walls before and after deconstruction [3,8].

Confocal microscopy was even used to guide the devel-

opment of kinetic models that could suggest improve-

ments in cellulase cocktails by revealing mechanisms and

rate-limiting steps during cellulose degradation [9]. The
www.sciencedirect.com
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Figure 1
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Multi-scale imaging of plant cell wall deconstruction by

thermochemical pretreatment and enzymatic hydrolysis. The range of

scales and typical microscopy modalities used are indicated.
results suggested that exposing new enzyme binding sites

is a crucial rate-limiting step.

The only real disadvantage of fluorescence microscopy for

addressing critical questions in biomass conversion is its

lateral resolution is diffraction limited to roughly 250 nm.
www.sciencedirect.com 
This is sufficient to visualize major cell wall layers and

detect enzymes, but insufficient to monitor single

enzymes or interrogate cell wall architecture. Super-reso-

lution techniques however, have been in development

over the past several years, achieve lateral resolution

down to tens of nanometers, are now becoming commer-

cially available and more widely used. These techniques

use specialized illumination schemes, non-linear fluoro-

phore responses, and image processing based localization

to achieve stunning results. Super-resolution was used to

measure the binding and movement of individual Cel7A

CBH enzymes on cellulose surfaces and document their

stop-and-go progression [7]. These new techniques are

only beginning to be applied to plant samples, like the

recent demonstration of super-resolution imaging to vi-

sualize cellulose bundles in onion epidermis cell walls

[10]. Fluorescence techniques benefit from the continual

development of fluorescent probes for investigating plant

cell wall architecture and deconstruction and were

reviewed recently by Paes [11]. Among the developments

highlighted is photoactivatable fluorescent-labeled pro-

teins fused to cellulase enzymes or CBMs to improve the

resolution of localization and dynamics studies down to

10–50 nm [12].

In another recent review of biomass imaging, Bubner et al.
point out the advantages that atomic force microscopy

(AFM) has in terms of high resolution and being able to

perform imaging on fully hydrated samples [13]. This is

clearly true for imaging cellulose model substrates; how-

ever imaging real plant cell wall substrates still requires

extensive and careful sample preparation that is some-

times discounted. Even for studies on model substrates,

attention to minimal modification, and immobilization

onto a surface are required for high-quality, interpretable

data [4]. A recent study developed a simple and gentle

protocol for cell wall preparation for AFM imaging of

microfibrils and cell wall matrix materials at the inner

surface of the epidermal cell walls in onion epidermis

[14�]. With these techniques, microfibrils were made

clearly visible in a near native state. A striking observation

was that no obvious cross-links were seen among micro-

fibrils. Instead, the microfibrils simply appear to come

into close proximity with one another over distances of

several tens of nanometers.

Another advanced imaging technique used to reveal the

complex 3D architecture of plant cell walls is electron

tomography [15�]. Sakar et al. compared tradition chemi-

cal fixation, high-pressure freezing followed by freeze

substitution and resin embedding (HPF-FS), and vitre-

ous sectioning methods to preserve plant tissues and

detect structural differences in plants with genetically

altered cell walls. Their study provides a novel view into

the complexity of the cell wall, and they conclude that

cryopreservation provides closest-to-native preservation.

Electron tomography was also used as the primary tool to
Current Opinion in Chemical Biology 2015, 29:100–107
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study the 3D nanoscale architecture of pretreated bio-

mass [16�]. This study went beyond traditional segmen-

tation of tomography data sets and extracted mathematical

representations for the nanoscale geometry of cellulose

microfibrils in the pretreated biomass. The models were

used to calculate microfibril curvature and suggested that

microfibrils twist to accommodate curvature. There

remains room to improve the quantitative image analysis

tools necessary to segment and model hemicelluloses and

lignin along with the cellulose microfibrils.

New insights into the impact of pretreatment
on plant cell wall architecture
A conceptual model of plant cell walls is that of a fiber

reinforced matrix composed of a meshwork of cellulose

microfibrils embedded in a matrix of hemicellulose and

lignin polymers. Plants have evolved to resist environ-

mental stressors such as microbial infection and drought,

which has naturally selected cell walls that are recalci-

trant. Thermochemical pretreatments typically increase

the accessibility of cellulose microfibrils to cellulase

enzymes by disruption and removal of either the hemi-

cellulose or the lignin component from the plant cell wall

matrix. However, pretreatment can go too far, and a

thorough study of the effect of remaining lignin content

on dilute acid pretreated poplar suggested that partial

(leaving up to 60% of the lignin in place) rather that

complete delignification may be better to maximize glu-

cose yields [17]. Similarly, the accessibility and digest-

ibility gains made during an initial alkali pretreatment can

be partially undone by a secondary acidic conditioning

step by causing precipitation of solubilized compounds on

cell wall surfaces [18]. These observations fit well with a

concept of lignin as both a linker and a spacer among

cellulose microfibrils. Water has also been shown to be a

crucial spacer between individual microfibrils within larger

macrofibrils. This entrained water can be driven out

during severe thermochemical pretreatment, leading to

an increase in microfibril crystallinity and diameter [19��].

Several recent studies have shown that improvement in

hydrolysis rates where achieved when extensive mechan-

ical disruption complements chemical deconstruction

during pretreatment [20–23]. During enzymatic digestion

wide-angle X-ray diffraction (WAXD) analysis indicated

that non-crystalline cellulose was not preferentially de-

graded, consistent with a model of cellulose microfibrils

with widely distributed disorder and defects rather than

discreet amorphous cellulose domains. Thygesen et al.
use a model based on mechanical principles to account for

the interaction between the mechanical forces of mixing

and agitation within a reactor and the hydrolysis of

glycosidic bonds by enzymes to weaken cell walls [24].

These recent studies among others have identified lignin

removal and cellulose crystallinity as the major pretreat-

ment barriers to successively overcome to improve hy-

drolysis by cellulases [25–27].
Current Opinion in Chemical Biology 2015, 29:100–107 
The enigmatic inhibition of cellulases by lignin
The inhibitory effect of lignin on enzymatic hydrolysis

has been hypothesized to be the result of decreased

accessibility caused by steric hindrance, by nonspecific

binding, and small molecule inhibition (Figure 2) [28].

Some thermochemical pretreatments remove much of

the cell wall lignin while others simply cause lignin to

coalesce and migrate through the plant cell walls [3,29].

Not surprisingly, lignin droplets deposited on the sur-

face of otherwise lignin free model cellulose (Avicel)

retard enzymatic hydrolysis initially. However, that in-

hibition abates as the hydrolysis continues until it was

undetectable at high cellulose conversions [30]. The

authors concluded that nonspecific binding of enzymes

to lignin droplets was not the primary mechanism for the

cellulase inhibition. Instead, physical surface blockage

of cellulose by lignin droplets was proposed to be re-

sponsible.

Another recent investigation concluded that differences

in lignin properties dictated their enzyme adsorption

capacity [31]. They compared enzyme adsorptions onto

lignins from six different feedstocks. The lignins dis-

played decreasing enzyme adsorption capacity in the

order of pine lignin > corn stover lignin > aspen lig-

nin > kenaf lignin. The authors suggest that lignin

composition (S/G ratio) and structural features, such

as carboxylic acid, aliphatic hydroxyl, and phenolic

hydroxyl side groups dictate their capacity to bind

cellulases. The adsorption capacity of single component

enzymes onto lignin substrates decreased in the

order beta-glucosidases > endoglucanases > xylanases

> cellobiohydrolases, which may be correlated to pro-

tein surface hydrophobicity [32,33]. Still other studies

have demonstrated a temperature and pH dependence

on the impact of non-specific binding of cellulases to

lignin [34,35].

There have been several reports over the years of addi-

tives that could be used as blocking agents to lessen the

effect of non-productive enzyme binding including bo-

vine serum albumin and detergents [36]. A recent exam-

ple of this approach is the use of sodium lignosulfonate or

polyethylene glycol [37,38]. Lignosulfonates and linear

anionic aromatic polymers blocked non-productive cellu-

lase adsorption onto lignin, but also reduced cellulase

adsorption on cellulose. It is unclear if adding these

chemicals in an industrial setting would be cost effective.

To account for the phenomenon of declining reaction

rates Newman et al. developed a mathematical model of

the inhibitory effect of lignin on enzymatic hydrolysis

[39]. Using three parameters (blocked cellulose, enzyme

loading, and a mechanism index) and with cellulose

accessibility remaining constant during the enzymatic

conversion they concluded that declining reaction rates

are attributed to enzyme deactivation caused by non-

productive binding.
www.sciencedirect.com
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Figure 2
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Interference caused by lignin. Lignin (yellow bodies) has been hypothesized to inhibit cellulases (red) by physically decreasing accessibility to

cellulose (green), by attracting enzymes to bind, and by direct competitive or non-competitively inhibiting small molecule lignin deconstruction

products (i.e. vanillic acid, vanillin, catechol, coumeric acid, ferulic acid and caffeic acid). Recurrent evidence for each of these mechanisms

suggests they may all play a role.
Enzyme binding dynamics and the role of
CBMs
Understanding substrate recognition and binding speci-

ficity to enable cell wall deconstruction are essential to a

broader understanding of cellulase action. How cellulose

binding modules (CBMs) aid cellulases in penetrating the

bulk of biomass particles depends on their size, concen-

tration, and binding equilibrium. Computational simula-

tion of CBM binding dynamics demonstrates that the flat

surface of CBMs preferentially bind the hydrophobic face

of cellulose [40]. Theory and experimentation were re-

cently used to study the dynamic equilibrium of adsorp-

tion and desorption kinetics for the Hypocrea jecorina
cellulases Cel7A, Cel6A, and Cel7B to determine binding

reversibility [41]. The results suggested that for short

enzyme substrate contact times and at moderate enzyme

and substrate loadings, the systems are in dynamic equi-

librium and that simple equilibrium reaction kinetic

models are sufficient to describe the systems under these

conditions. However, how these results can be applied to

the high enzyme and substrate loadings in an industrial

setting is still unclear. A fluorescent model substrate was

used to determine that at low enzyme concentrations a

single binding site model fit the data well, even though at

higher enzyme loadings non-productive binding shifted

the results to favor a model with more than a one binding

site [42].
www.sciencedirect.com 
Adding or deleting a CBM has different effects when

paired with different catalytic domains and is highly

dependent on whether enzymatic activity is measured

on insoluble or soluble substrates. Fusing a CBM onto

Cel9A or Cel5A catalytic domains enhanced their activity

on insoluble lignocellulosic substrates by up to three fold

[43�]. Meanwhile, the opposite effect has been shown for

enzymes tested on soluble substrates. Post-translational

glycosylation of the CBM and linker region have been

shown to aid substrate binding, protein stability and

protease resistance [44,45], indicating crucial roles for

these protein modifications.

Synergy among cellulases and the role of
accessory enzymes
The free enzyme cocktail of carbohydrate active enzymes

(CAZymes) found in commercial preparations is based on

the H. jecorina secretome and consists of separate proteins

ranging in size from 20 to 100 kDa with individual catalytic

and binding specificities [2]. Synergistic activity among

different enzymes is required for efficient saccharification

of cellulose alone and becomes even more crucial for the

multiple complex polysaccharides in plant cell walls. Pos-

sibly the simplest and most common view of synergistic

cellulase mechanisms is the teamwork between endoglu-

canases (EGs) creating new cellulose chain ends along a

microfibil surface and cellobiohydrolases (CBHs) doing the
Current Opinion in Chemical Biology 2015, 29:100–107
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heavy lifting of cellulose depolymerization by chain end

specific processive hydrolysis [1��] (Figure 3). In a study of

bacterial cellulose hydrolysis by CBH Cel7A and EG Cel5A

from H. jecorina, Jalik et al. found that at optimal enzyme/

substrate ratios, the overall rate of hydrolysis was limited

by the rate of processivity [46]. From this, they proposed

a mechanism of endo-exo synergism where the primary

role of EG is to remove amorphous cellulose regions that

would otherwise cause the processive CBH to stall.

In a recent compelling study, the authors used in situ,

time-lapse AFM to monitor the degradation of bacterial

cellulose fibers by three cellulolytic enzymes, Cel6A,

Cel7A, and Cel7B, from H. jecorina [47]. Each of these

three enzymes is incapable of substantial cellulose hy-

drolysis alone, however, mixtures of any two of the

enzymes exhibit synergistic effects. A novel finding

was that the degree of synergism depended on order that

the enzymes were added to the substrate. For example,

adding Cel7A to cellulose that had been previously

digested by Cel7B enhanced reaction rates and increased

extent of hydrolysis, whereas adding enzymes in the

opposite order was not effective.

An important development in the field of cellulase re-

search in the past several years has been the discovery and
Figure 3
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understanding of the lytic polysaccharide monooxygen-

ase (LPMO) family of enzymes. LPMOs (AA9, formerly

GH61) utilize a copper cofactor, carry out oxidative

cleavage on cell wall polymers, and are synergistic with

glycoside hydrolases on several different lignocellulosic

substrates [48–50]. Although AA9 clearly acts synergisti-

cally with hydrolytic cellulases, increases cellulose de-

construction and have been shown to increase glucan

release by 5–25%, the degree of enhancement is depen-

dent on substrate properties. The benefit of AA9 synergy

was not seen with some substrates including amorphous

cellulose substrates or cellulose II and III polymorphs

[51].

Multi-domain enzymes and complexed
cellulosomes
In contrast to the free enzyme systems, cellulosomal

complexes are large extracellular enzyme complexes

composed of multiple enzymes with different binding

and substrate specificities all bound to a unifying scaf-

foldin protein [52]. Cellulosomes are produced by meso-

philic anaerobic bacteria members of Clostridium,

Acetivibrio, Bacteroides, and Ruminococcus. Examples from

both the free and complexed enzyme systems are among

the leading candidates for industrial-scale biochemical

deconstruction of lignocellulosic feedstocks [53�].
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Figure 4
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Illustration of how multiple enzymes employing different strategies can work synergistically to access biomass cell walls. Also, pretreatment that

removes lignin and hemicellulose enhances the enzymatic activity enabling the benefits of combining these deconstruction mechanisms.
Free enzymes operate by an ablative, surface limited

mechanism, while cellulosomes appear to be able to

physically parse cellulose microfibrils away from larger

bundles to increase accessibility as they work [5,54].

When the two enzyme systems are combined, these

compatible mechanisms are synergistic [5] (Figure 4).

Key differences in the deconstruction mechanisms be-

tween these two enzyme systems were demonstrated on

model cellulose and pretreated biomass substrates.

When free enzymes are combined with clean fraction-

ation pretreated biomass, they are able to gain access to

cell wall surfaces and digest loose exposed microfibrils.

In contrast, when clean fractionation pretreated biomass

was incubated with cellulosomes, the surface of the

cell walls displayed raised pockets of delamination.

Interestingly, combining these two deconstruction

mechanisms synergistically enhances the glucan and

xylan hydrolysis by a combination of ablated cell wall

surfaces and pocket-type delaminations, with channels

penetrating into the cell wall. Presumably, these mutu-

ally beneficial mechanisms aid in physical and chemical

deconstruction, where large complexed enzymes expose

more reactive surface area to allow for the processive

hydrolysis action by free fungal enzymes [26]. Insight

into the different mechanisms underlying these two

polysaccharide deconstruction paradigms should enable
www.sciencedirect.com 
new combined strategies for enzyme engineering to

overcome biomass recalcitrance.

Concluding remarks
With the motivation of producing fuels and chemicals

from biomass in a sustainable manner researchers have

advanced the understanding of complex enzyme and

substrate interactions. Hydrothermal pretreatment and

mechanical disruption of biomass aimed at removing or

at least redistributing lignin and perturbing cellulose

crystallinity has enabled more efficient enzymatic

hydrolysis. However, preserving the cell wall carbohy-

drates and maximizing carbon utilization is a strong

technoeconomic driver for an industrial process.

New advances and novel application of imaging techni-

ques combined with expanding labeling tools and careful

sample preparation has enabled direct visualization of

enzymatic deconstruction at relevant scales and provided

new insights into mechanisms employed by cellulose

systems. Improved understanding of the different and

often complementary cellulase mechanisms should en-

able new combined strategies for enzyme engineering to

overcome biomass recalcitrance. Once efficient sacchari-

fication has been established the conversion of sugars and
Current Opinion in Chemical Biology 2015, 29:100–107
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lignin into competitively priced fuels and higher value

chemicals will drive the commercial application.
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