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The current upper thermal limit for life as we know it is approximately 120�C.
Microorganisms that grow optimally at temperatures of 75�C and above are usu-
ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea.
For over a century, there has been great scientific curiosity in the basic tenets
that support life in thermal biotopes on earth and potentially on other solar
bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero-
trophs, or chemolithotrophs, and are found in diverse environments including
shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs—
basically, anywhere there is hot water. Initial efforts to study extreme thermo-
philes faced challenges with their isolation from difficult to access locales, pro-
blems with their cultivation in laboratories, and lack of molecular tools.
Fortunately, because of their relatively small genomes, many extreme thermo-
philes were among the first organisms to be sequenced, thereby opening up the
application of systems biology-based methods to probe their unique physiologi-
cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir-
uptor, Thermotoga and Thermus, and the archaea belonging to the orders
Thermococcales and Sulfolobales, are among the most studied extreme thermo-
philes to date. The recent emergence of genetic tools for many of these organ-
isms provides the opportunity to move beyond basic discovery and manipulation
to biotechnologically relevant applications of metabolic engineering. © 2017 Wiley

Periodicals, Inc.
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INTRODUCTION

Extreme thermophiles are distinct from other
organisms due to their ability to subsist optimally

at temperatures in excess of 75�C. Their survival in
these harsh environments piqued the interest of

curious microbiologists as far back as the turn of the
20th century. In fact, one of the earliest reports of
thermophiles occurred in 1903 describing bacterial
samples taken from pools in Yellowstone National
Park.1 Although this drew interest and debate about
the limits of life and our evolutionary history, the
study of thermophiles did not begin in earnest until
the 1960s. Around this time, extensive sampling pro-
jects in Yellowstone lead to the isolation of Thermus
aquaticus2 (an aerobic bacterium with optimal
growth between 70 and 75�C), known for its DNA
polymerase that revolutionized the field of molecular
biology through its use in the polymerase chain reac-
tion (PCR). This enzyme in particular represented
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one of the earliest uses of thermally stable enzymes
for a biotechnological application. The next few dec-
ades yielded the discovery of thermophiles around
the globe in extremely diverse environments, ranging
from volcanoes and calderas to deep sea smoker
vents to terrestrial mud pools.3–7

The apparent diversity and novelty of these
microbes likely drove early research in this field to
uncover the molecular machinery central to their sur-
vival. In fact, some of the earliest sequenced genomes
were extremophiles,8–10 furthering efforts to under-
stand the molecular and genetic basis for thermophily
and the evolution of life. However, a lack of genetics
tools has impeded the extensive study of these organ-
isms by traditional approaches (i.e., gene deletions to
understand the consequences of loss of function). In
lieu of more traditional methods, the availability of
genomic data for many extreme thermophiles sup-
ported ‘omics’-based approaches to ascertain the
function of specific genes and their roles in the
unique biochemistry of these organisms. As such,
the merger of systems biology (e.g., transcriptomics
and genomics), traditional microbiological studies,
and newly emerging genetic systems11 is opening the
door for metabolic engineering opportunities to bring
extreme thermophiles into the technological lime-
light. This will allow for these organisms to be utilized
as sources of uniquely functioning enzymes, optimized
niche industrial strains, and novel metabolic engineer-
ing platforms. Such opportunities for biotechnological
application are already being pursued for members of
the bacterial genera Caldicellulosiruptor and Thermo-
toga and for archaea belonging to the orders Thermo-
coccales and Sulfolobales. Here we present a brief
overview of these extremely thermophilic organisms,
with the intention of highlighting potential biotechno-
logical applications, which exploit their distinctive
metabolisms.

SULFOLOBALES

Perhaps the most distinctive subject matter for this
review focuses on the extreme thermoacidophiles
from order Sulfolobales. The Sulfolobales comprise
an order of archaea taxonomically defined within the
class Thermoprotei, within the phylum Crenarch-
aeota. These organisms inhabit environments charac-
terized by both extreme temperatures (65–90�C) and
low pH (1.0–3.5), such as terrestrial solfatara or
mud pools, often closely associated with volcanic
activity and laden with inorganic materials.12 In fact,
the first species of the order to be isolated, Sulfolobus
acidocaldarius (from Locomotive Spring in Yellow-
stone National Park), was reported to oxidize sulfur

to fuel autotrophic growth, leading to the name Sul-
folobales.7 However, this phenotype has not been
observed in the currently studied S. acidocaldarius
type strains, although many isolates from the genera
Sulfolobus, Metallosphaera and Acidianus utilize S0

as an electron donor.5,13–21 Thus, reports that
S. acidocaldarius strains from culture collections can-
not5 oxidize S� suggests that repeated passages on
rich media have led to the loss of this ability or that
inherent difficulties exist in isolating pure cultures
from environmental enrichments. Beyond sulfur oxi-
dation, several species, especially those from the
genus Acidianus, Sulfurisphaera, and Stygiolobus,
are capable of sulfur reduction, and often utilize
hydrogen to produce hydrogen sulfide as a metabolic
end-product.13,18,19,22–24

While many members of the order grow litho-
trophically, most known species exhibit modes of
either strict heterotrophy or mixotrophy. Most mem-
bers of the genera Sulfolobus and Metallosphaera are
capable of utilizing protein-rich substrates, such as
yeast extract or tryptone, under aerobic conditions.
Furthermore, several species, such as Sulfolobus sol-
fataricus, Sulfolobus shibitae,25 and Sulfolobus
islandicus,26 use a wide variety of sugars in catabolic
metabolism. In addition, members of the order, par-
ticularly in the genera Metallosphaera and Acidianus,
are capable of oxidizing metal sulfides: a trait that is
particularly useful for bioleaching of base, precious
and strategic metals from mineral ores.27–30 Finally,
some members of the genus Acidianus are capable of
using ferric iron as an electron acceptor under anaer-
obic conditions.21,31

Carbon Dioxide Fixation
Interestingly, the natural habitats of many Sulfolo-
bales (solfatara/calderas) are limited or devoid of
complex carbon sources, necessitating the process of
autotrophy. The ability of organisms to fix carbon
dioxide from the atmosphere is considered by many
to explain the early formation of the multi-carbon
molecules required to fuel life, explaining their
retention in species across all three domains of
life.32,33 As it stands, 6 major routes exist for the
fixation of carbon dioxide: the Calvin-Benson
cycle (present in most plants), the reductive citric
acid cycle (green sulfur bacteria), the reductive
acetyl-CoA cycle (acetogens/methanogens), the
hydroxypropionate bi-cycle (Chloroflexus), and the
3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB)
or dicarboxylate/4-hydroxybutyrate pathways (both
from the Crenarchaeota).34 The habitats from
which the Sulfolobales were isolated, unlike many
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other organisms, are characterized by copious oxy-
gen and inorganic electron donors.12 While the reac-
tions driving this cycle are some of the most energy-
demanding for autotrophic carbon assimilation, their
advantage may lie in their relative insensitivity to
oxygen, avoidance of side-reactions, direct utilization
of bicarbonate, and thermal stability.34,35

Briefly, the 3-HP/4-HB cycle has two major
products that enter into cellular metabolism. The first
portion involves the addition of two bicarbonate
molecules to acetyl-CoA to form succinyl-CoA,
which is subsequently reduced in the second half of
the cycle to 4-hydroxybutyrate and eventually disso-
ciated to two molecules of acetyl-CoA (Figure 1).36

The key enzyme in the cycle is a biotinylated acetyl-
CoA/propionyl-CoA carboxylase, that is, bi-
functional and efficient in substrate turnover.37

Metabolic analysis of the cycle has revealed that the
major product of the cycle is not acetyl-CoA
(as originally hypothesized), but rather succinyl-CoA
(roughly two-thirds of the carbon flux), yielding
malate and oxaloacetate in subsequent oxidation
reactions.38 This requires a turn and a half of the
cycle to maintain acetyl-CoA levels and generate
succinyl-CoA.

From an application-oriented point-of-view,
it may be possible to use this pathway to sustaina-
bly produce high-value specialty chemicals, such as
3-hydroxyproprionate (3-HP) or succinate. The
former is used industrially in polymer production
and the latter is used to produce solvents and poly-
mers.46 For this reason, several attempts have been
made to utilize these genes in metabolically engineered
hosts. For instance, the first three enzymes have been
expressed in P. furiosus to introduce a temperature-
shift-responsive metabolic mode for the production of
3-HP.47 Further work with this metabolically engi-
neered strain has demonstrated that the addition of a
biotin protein ligase can improve 3-HP titers more
than eight-fold.48 This dramatic improvement is likely
due to the presence of a biotinylated subunit on the
key acetyl-CoA carboxylase enzyme from the cycle.36

Thus, this well-studied pathway has opportunities to
be utilized and improved upon.

Sulfur Utilization
In contrast to carbon metabolism, sulfur metabolic
pathway discovery is hampered by the tendency of
elemental sulfur and its derivatives to react nonenzy-
matically, masking the true identity of an enzyme’s
substrate or products.49,50 Because S0 is sparingly
soluble in water under standard conditions, the true
substrate for microbial growth on sulfur is likely

soluble polysulfides and polythionates, introduced
by nonenzymatic reactions.51–53 However, these
solubilizing reactions only occur at near-neutral pH,
since under acidic conditions the equilibrium
strongly favors elemental sulfur.50 In order to over-
come these solubility issues, it has been proposed
that acidophiles may physically associate with sulfur
particles or that at elevated temperatures sulfur
becomes sufficiently soluble to support growth.53

Regardless, these organisms have a suite of proteins
capable of manipulating the initial elemental sulfur
from the environment, as well as many of its
derivatives.

The sulfur oxygenase reductase (SOR), first
identified in a member of the Sulfolobales, Acidia-
nus ambivalens,54 appears to be key to acidophilic
sulfur oxidation. This intracellular enzyme is active
on elemental sulfur, indicating transport of elemen-
tal sulfur or one of its derivatives to the cytoplasm
by some still unidentified mechanism. SOR appears
to be limited to the Sulfolobales and a few extre-
mophilic bacteria;55 this makes sense given that
other sulfur lithotrophs grow closer to neutral pH
where more soluble sulfur species are abundant.
SOR acts on elemental sulfur by disproportionat-
ing it equally between oxidized (sulfite; SO3

2−) and
reduced (hydrogen sulfide; H2S) products. Further,
the production of thiosulfate observed in early
studies of the SOR54 is now believed to be the
result of a nonenzymatic reaction.56 SOR requires
oxygen to function but uses no additional co-fac-
tors, suggesting its ability to conserve cellular
energy. Instead, it ‘activates’ long, unwieldy hydro-
phobic sulfur chains into smaller intermediates that
can be used by other enzymes to generate energy.

Acidianus ambivalens has served as the
model organism for sulfur metabolism studies in
the Sulfolobales, since measurements of sulfur-
active enzymes from cell extracts were used to
construct a conceptual model of its sulfur oxida-
tion pathways.57 While the SOR enzyme has been
the most thoroughly characterized enzyme with
respect to sulfur metabolism,54,55,58 studies of
enzymes purified or detected from A. ambivalens
cell extracts provide some insights into the com-
plete oxidation pathway. The A. ambivalens
genome remains unsequenced, so many of its
enzymes are identifiable only by their activity in
cell extracts. This presents a challenge for systems
biology-based efforts to understand the details of
sulfur oxidation in other Sulfolobales, or even
how this process contributes to A. ambivalens
energetics and metabolism. Regardless, there
appears to be two parallel processes by which
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A. ambivalens (and presumably the other sulfur-
oxidizing members of the Sulfolobales) gain energy
while oxidizing elemental sulfur to sulfate (SO4

2−).
One pathway uses the membrane-associated oxi-
doreductases, TQO and SAOR, to reduce an elec-
tron carrier (such as quinone),59 thereby
generating proton motive force via the terminal
oxidase,60,61 while the other pathway produces
one high-energy phosphate bond (ADP from AMP)
by direct substrate level phosphorylation via APSR

and APAT, generating sulfate in the process57

(Figure 2). While the sulfur metabolism has been
examined in bioleaching applications (see next sec-
tion), the ability of S. metallicus to remove toxic
H2S from high-temperature gas streams represents
a potentially important technological use of sulfur
oxidation.62

A. ambivalens has also served as the model sys-
tem for anaerobic sulfur reduction among the Sulfo-
lobales.63 The enzyme pathway for sulfur reduction
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FIGURE 1 | 3-Hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle from Metallosphaera sedula. The cycle consists of two major portions:
carbon incorporation (via bicarbonate) occurs in the first half (blue) of the cycle and is followed by subsequent reduction and reformation of two
acetyl-CoA molecules in the second half (red). Enzymes listed and their references: acetyl-coA carboxylase37,39 (ACC), acetoacetyl-CoA
β-ketothiolase36 (ACCT), acryloyl-CoA reductase40 (ACR), crotonyl-CoA hydratase41 (CCH), 4-hydroxybutyrate-CoA dehydratase36 (HBCD), 4-
hydroxybutyrate-CoA synthase42 (HBCS), 3-hydroxypropionate-CoA dehydratase40 (HPCD), 3-hydroxypropionate-CoA synthase43 (HPCS),
methylmalonyl-CoA epimerase44 (MCE), methylmalonyl-CoA mutase44 (MCM), malonyl-CoA/succinyl-CoA reductase45 (MCR), malonate
semialdehyde reductase45 (MSR), and succinate semialdehyde reductase45 (SSR).
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in A. ambivalens appears to be much simpler than
for oxidation, possibly involving only two closely
associated membrane complexes. A membrane
hydrogenase passes electrons (via a quinone mole-
cule) from H2 to a sulfur reductase, where they are
used to reduce elemental sulfur to H2S.

63 The cycling
of quinones between the two enzymes—forming a
‘redox loop’ similar to the one used in Escherichia
coli during growth on nitrate66—is likely the way
protons are transported across the membrane, cou-
pling sulfur reduction to energy conservation
(Figure 2).

Metal Oxidation
Along with interest in sulfur metabolism, some of
the earliest work in determining the mechanism of
metal oxidation in the Sulfolobales (and acidophiles,
in general) involved the spectroscopic identification
of unique cytochromes from iron-oxidizing cul-
tures.67 This original research led to the intensive
study and eventual development of a model in the
mesoacidophile Acidithiobacillus ferroxidans, invol-
ving the shuttling of electrons from the outer mem-
brane of the cell to the inner membrane, driving a
terminal oxidase to maintain pH homeostasis and
the production of reducing power for intracellular
metabolic needs.68 Not surprisingly, the spectro-
scopic data from S. metallicus demonstrated early on
that key differences exist between bacterial and
archaeal metal oxidation, particularly in the presence
of cytochromes and the roles of various protein

complexes in transporting electrons.67,69 However,
some of the same systems-based approaches were uti-
lized to detect the transcriptomic response of known
iron-oxidizers, including S. metallicus,64

M. yellowstonensis70 and M. sedula,65 in the presence
of iron. Interestingly, these experiments suggest the
importance of merging several systems biology tech-
niques in order to ascertain new pathways and infor-
mation. While all three species contain the fox
stimulon (an assortment of ferrous-responsive genes
A–J) and key related genes (such as rusticyanin and
the cystathionin-β-synthase subunits A and B), their
regulation varies dramatically among the species with
both constitutive and inducible expression observed
during iron supplemented growth.64,65,70 Yet, the
merger of this transcriptomic data and genomics
analysis yielded a hypothesized pathway for metal
biooxidation in these organisms (Figure 2), which
relies on a cytochrome b (as opposed to a cytochrome
c), bifurcating rusticyanin(s), and two terminal com-
plexes: an NADH dehydrogenase (generating redu-
cing power) and a putative cytochrome c oxidase
(driving pH homeostasis). Although similarities exist
between the two systems in A. ferroxidans and Metal-
losphaera/Sulfolobus spp., distinctive co-factors and
apparent differences in organization suggest that
these systems are evolutionarily divergent modes of
biooxidation.71

These differences, as well as the major phenotypi-
cal differences between these two classes of metal
mobilizers, relates to their use in metal bioleaching
applications. For example, many mesophilic organisms

FIGURE 2 | Chemolithotrophic pathways in the Sulfolobales. The first half of the figure (blue) shows the hypothetical pathways for sulfur
utilization in the Sulfolobales, including both oxidizing and reducing pathways, beginning with elemental sulfur. Sulfur reducing complexes:
hydrogenase (Hyd), sulfur reductase (SR).63 Sulfur oxidizing enzymes: sulfur oxygenase reductase (SOR),54 thiosulfate:quinone oxidoreductase
(TQO),59 Sulfite:acceptor oxidoreductase (SAOR), adenylylsulfate reductase (APSR), adenylylsulfate:phosphate adenyltransferase (APAT).57 The
second panel shows a hypothetical pathway for the oxidation of ferrous iron using several fox stimulon proteins as well as some iron-responsive
respiratory proteins. Ferrous-oxidation (Fox), rusticyanin (Rus), cystathionine-β-synthase containing protein subunits A and B (CbsAB), sulfur
oxidation (Sox), NADH dehydrogenase (NAD).29,64,65
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are ill-suited to bioleaching of highly gangue (i.e., high
sulfur content) ores due to the extremely exothermic
nature of sulfur oxidation chemistry. The build-up of
heat can be problematic in large heap operations that
rely on mesophiles alone.72,73 This physiological trait
cannot be undervalued given that the removal of ele-
mental sulfur can improve cyanidation (a form of
chemically-driven solubilization), which is commonly
used in gold mining. Furthermore, extreme thermo-
philes appear to have some niche advantages over
mesophiles for bioleaching of several specific types of
copper ores, including the enhanced dissolution of cop-
per from recalcitrant primary ores (such as
chalcopyrite),74–76 selective mobilization of copper
over molybdenum in copper-bearing molybdenite,77,78

and the unassisted mineralization of arsenic in the form
of arsenate from enargite ores.79 Bioleaching opera-
tions targeting copper have increased dramatically and
currently account for more than 15% of the global
output.80 Thus organisms that present an inherent pro-
pensity for copper solubilisation such as A. brierleyi,
S. metallicus, or M. sedula deserve more investigation
for their potential industrial application.

PYROCOCCUS FURIOSUS

Pyrococcus furiosus, the type strain of the genus, was
first isolated in 1986 from a hydrothermal vent off of
the coast of Vulcano Island (Italy) and has been one
of the most studied hyperthermophiles to date, due
to its intriguing phenotypical characteristics.81 Exhi-
biting optimal growth at 100�C and a pH near 7, it
was the second genus, after the autotrophic sulfur-
oxidizing Pyrodictium, capable of growth at tem-
peratures at or above 100�C.81 As a heterotrophic
organism, P. furiosus is capable of utilizing hexose
oligosaccharides such as cellobiose and laminarin,82

chitin,83,84 and peptides.85 Efforts over the past three
decades have elucidated many unique features of this
organism, including various novelties in metabolic
pathways, regulatory mechanisms and proteins and
enzymes.

Central Glycolytic Metabolism
P. furiosus grows well on disaccharides (maltose and
cellobiose) and glucans (laminarin and starch), but
not on monosaccharides nor pentoses.86 The reasons
for this anomaly are unknown but monosaccharides
may not be available externally in these high-
temperature environments as they are susceptible to
the Maillard reactions, in which sugars react with

available amino acids to form glycosylamines; this
problem is especially exacerbated in peptide-rich
media. Disaccharide and polysaccharide transport
may also be more efficient energetically.

P. furiosus derives no net substrate level phos-
phorylation from glucose to pyruvate conversion,
unlike the traditional Embden-Meyerhof
(EM) pathway that provides two ATP per glucose
and the Entner-Doudoroff (ED) pathway which
yields one ATP per glucose (see Figure 3). Thus, the
only net substrate level phosphorylation gains are a
result of ATP-forming hydrolysis of acetyl-CoA, pro-
duced from pyruvate via pyruvate oxidoreductase
and acetyl-CoA synthetase.87 P. furiosus contains a
nontraditional variation of EM glycolysis, in which
glucokinase and phosphofructokinase utilize ADP as
the phosphoryl group donor, generating AMP.86 In
the early 1990s, these were the first reported ADP-
dependent kinases.86,88

The absence of an energy-conserving step in the
glycolytic pathway is due to the absence of a 1,3-
biphosphoglycerate intermediate, which is found in
both the EM and ED pathways. As shown in
Figure 3, this direct conversion from glyceraldehyde-
3-phosphate (GAP) to 3-phosphoglycerate (3PG)
does result in production of a reducing equivalent in
the form of reduced ferredoxin, but does not result in
substrate level phosphorylation. The phosphate
group is released via hydrolysis without capture of
this high-energy bond. The enzyme responsible for
the conversion of GAP to 3PG, GAP ferredoxin oxi-
doreductase (GAPOR), is unusual in that it requires
tungsten, an element rarely found in biology.89 The
absence of other, more traditional glycolytic enzymes
makes GAPOR’s function critical to sugar utilization.
Thus, tungsten levels have a significant impact on the
growth of P. furiosus in the presence of maltose.89

Fermentation Pathways
P. furiosus produces reduced ferredoxin through cen-
tral glycolysis and, as an obligate anaerobe, must
have a route to dispose of any excess reducing
power. Two primary routes exist for this purpose
depending on hydrogen partial pressures, the availa-
bility of elemental sulfur and nitrogen, and other reg-
ulatory factors. The primary route of regenerating
oxidized ferredoxin is through a membrane-bound
hydrogenase (MBH) that produces an ion gradient
that allows ATP production via ATP synthase.90 The
hydrogenase is thought to exchange the proton gradi-
ent generated by hydrogen production for a Na+ gra-
dient and this is utilized by a Na+-dependent
ATP synthase.91 This energy-conserving hydrogenase
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therefore constitutes a single-step electron transport
chain, and has been proposed as an evolutionary pre-
cursor to the complicated, multi-step electron trans-
port chains that are common in present day
microbes.87 While the exact mechanism coupling
proton transfer and hydrogen production is
unknown, it is estimated that 0.3–0.4 molecules of
ATP are produced per two electrons transferred.87

Thus approximately 1.2 moles of ATP are produced

for every mole of glucose converted to acetate via
glycolytically produced reducing equivalents. Given
the low energy production resulting from glycolysis,
this fermentative process is particularly critical.87

When elemental sulfur is present, P. furiosus
produces hydrogen sulfide rather than hydrogen
gas.92 As with H2 production, a proton gradient is
formed by a membrane-bound oxidoreductase
(MBX).93 MBX is highly homologous to the MBH
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NADP oxidoreductase (FNOR), glutamate deaminase (GD), alanine aminotransferase (AT), and NADP:sulfur oxidoreductase (NSOR).
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and is thought to oxidize ferredoxin.93 However, it is
not known if MBX reduces sulfur directly or gener-
ates NADPH that is then used by a cytoplasmic
NADPH- and CoA-dependent enzyme.93 The reason
for the preference for sulfur over proton reduction is
not clear but it is strong since the switch from H2 to
H2S production begins only minutes after the addi-
tion of sulfur to a growing culture.94 The shift is
mediated by SurR, a redox-responsive transcriptional
regulator that has been well characterized.95,96

Another method for disposing of reductant dur-
ing fermentation involves the transformation of pyru-
vate to alanine with the addition of available
nitrogen.97 This results in a major energetic penalty,
however, as the pyruvate is not used to produce
acetyl-CoA, which is responsible for the majority of
ATP production. Thus, alanine pathway is only uti-
lized when sulfur is absent and the hydrogen partial
pressures are high.97

Applied Biocatalysis and Metabolic
Engineering
Prior to detailed knowledge of the P. furiosus genome
and development of genetic manipulation methodol-
ogy, early work focused on characterizing its novel
enzymes, with an eye toward industrial applications.
While the DNA polymerase from Thermus aquaticus
(Taq) is the most widely known and utilized thermo-
stable polymerase in PCR reactions, the P. furiosus
DNA polymerase is considerably more thermostable
and of higher fidelity, yet two- to threefold lower pro-
cessivity. Owing to its 30 to 50 exonuclease proofread-
ing activity, the polymerase exhibits a 10-fold
reduction in error rate compared to the Taq polymer-
ase.98 Additionally, the NADP(H)-dependent hydrog-
enase (SH1) from P. furiosus is extremely
thermostable and has a temperature optimum of
95�C.90 It has been utilized in a renewable H2 pro-
duction in vitro system in which sugars are com-
pletely oxidized to CO2 and H2. A combination of
pure enzymes comprising the pentose phosphate
pathway (PPP) were used to convert sugars to CO2

and the NADPH that is then produced is oxidized
and H2 is produced by SH1.90 Many other enzymes
of interest from P. furiosus have been purified and
characterized,99 and include carbohydrate hydrolyzing
enzymes (e.g., α-amylase,100 amylopullulanase,100

endoglucanase,101 and β-glucosidase,102 and chiti-
nase83) and proteases.103,104

P. furiosus now has a facile genetic system
which has led to efforts directed at metabolic engi-
neering.105 Earlier work on a related extreme ther-
mophile, Thermococcus kodakarensis, a member of

the same order as P. furiosus, the Thermococcales,
paved the way for the P. furiosus genetic tools.106

For P. furiosus, its high growth temperature and tol-
erance to cold shock opens up its use for hosting
metabolic pathways from much less extreme
thermophiles.107–109 In fact, a novel temperature-shift
strategy has been demonstrated that minimizes
P. furiosus metabolism at sub-optima temperatures
to direct energy to heterologous product forma-
tion.110 As mentioned above, P. furiosus produces
soluble hydrogenases, which can regenerate reducing
equivalents from hydrogen gas.47 These hydroge-
nases could allow metabolically engineered
P. furiosus to use electrons from H2 to produce
highly reduced chemical products.47 The insertion of
three genes from the M. sedula 3-HP/4-HB carbon
fixation cycle into P. furiosus demonstrated produc-
tion of 3-HP utilizing sugars and sequestering carbon
dioxide for a portion of the molecule.47 Another het-
erologous pathway expressed in P. furious utilized
genes from three thermophilic organisms with opti-
mal temperatures ranging from 65 to 75�C for the
production of n-butanol.111 With this alcohol path-
way, significant diversion to ethanol was shown due
to promiscuity of the aldehyde dehydrogenase
enzymes.111 The use of less thermophilic enzymes in
heterologous biosynthetic pathways has provided
insights into P. furiosus native metabolism at lower
temperatures. For example, at 70–80�C, acetoin is
produced as a major metabolic product. Along these
lines, it was shown that the removal of acetolactate
synthase in P. furiosus generates small amounts of
ethanol as a metabolic end product, as pyruvate was
directed toward acetate and eventually ethanol rather
than acetoin.109 In addition to its native abilities to
utilize sugars, P. furiosus was engineered with a
16 gene cluster to oxidize carbon monoxide to car-
bon dioxide, producing H2 and energy in the proc-
ess.107 Overall, the ability to engineer utilization of
unique energy sources, manipulate temperatures to
optimize enzyme activities, and insert genes from a
variety of organisms with different optimal growth
temperature provide tools not typically available in
model mesophilic hosts.

CALDICELLULOSIRUPTOR SPP.

Caldicellulosiruptor is a bacterial genus containing
the most thermophilic, cellulolytic microorganisms
known to date. Isolated worldwide and having opti-
mal growth temperatures between 70 and 78�C, these
Gram-positive, asporogenic, obligate anaerobes have
the ability to degrade unpretreated lignocellulosic
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biomass, a highly sought after phenotype for consoli-
dated bioprocessing of fuels and chemicals. Many
well-studied cellulolytic microbes are known to either
secrete individual enzymes or large cellulolytic
enzyme complexes (e.g., the cellulosome112) into their
environment. In contrast, Caldicellulosiruptor species
instead use an array of multi-modular enzymes
to breakdown plant biomass.113–118 These
carbohydrate-active enzymes (CAZymes) are com-
posed of both catalytic [e.g., glycoside hydrolases
(GH)] and noncatalytic [e.g., carbohydrate binding
module (CBM)] domains. All Caldicellulosiruptor
species are able to utilize fructose, galactose, glucose,
xylose, and pectin via a classical EMP
pathway.119–121 However, arabinose, rhamnose, and
fucose utilization, is not conserved throughout all
species.119,121–124 Some of the sugars, such as xylose
and arabinose, are broken down via the nonoxidative
PPP and then piped into the EMP pathway as inter-
mediates.125 Although Caldicellulosiruptor species
lack the oxidative PPP, which generally is responsible
for NADPH production, they are still capable of gen-
erating NADPH; the exact enzymatic mechanism for
this process is currently unknown.121 Members of the
Caldicellulosiruptor genus also contain an incomplete
tricarboxylic acid (TCA) cycle, consisting of a reduc-
tive branch leading to fumarate and an oxidative
branch producing succinyl-CoA.

Carbohydrate Utilization
Caldicellulosiruptor spp. produce many highly versa-
tile and efficient multi-modular carbohydrate-
degrading enzymes, made up of combinations of GH
and CBM domains. For example, CelA, a lignocellu-
losic CAZyme, is composed of five carbohydrate-
specific domains: GH9-CBM3-CBM3-CBM3-GH48
connected by linker regions.126–128 These different
segments allow proteins to have multiple functions:
simultaneously binding to its substrate (via the
CBM3s), as well as cleavage of specific bonds (via
the GH9 and GH48 domains); these GH9 and GH48
domains are capable of endo- and exoglucanase
activity. CelA is present in only the most cellulolytic
species of the genus and its two GH domains provide
these species with a unique ‘drilling’ mode of action
during biomass deconstruction.126 While CBMs
allow the CAZyme complex to adhere to the bio-
mass, surface layer homology (SLH) domains are
also found in the Caldicellulosiruptor multi-modular
scheme.129,130 Instead of being freely transported out
of the cell, CAZymes with SLH domains are tethered
the cell’s S-layer. As such, the enzymes can break-
down and bind, if they contain CBMs, substrates in

close proximity to the microbe, providing better
access to available sugar moieties. It also has been
recently found that Caldicellulosiruptor species have
a novel method of attaching themselves to crystalline
cellulose. Structurally unique proteins, called t�apirins,
are expressed on the cell surface, and contain a bind-
ing domain specific to insoluble cellulose.131 Present
in every member of the genus and highly expressed,
t�apirins are thought to play an important role in how
plant matter is deconstructed by microbes this genus.

Both methods of attachment, along with the large
inventory of glycolytic enzymes, give this genus its
impressive ability to degrade a wide variety of lignocel-
lulosic substrates.112 Caldicellulosiruptor species are
capable of breaking down cellulose and hemicellulose
(hexoses and pentoses), both as simple monosacchar-
ides and complex biomasses.114–116,122,132–136 Unlike
many cellulolytic organisms, they do not exhibit car-
bon catabolite repression, a process by which certain
sugars are preferentially metabolized, while excluding
the usage of others.112,117,120 This is especially advan-
tageous in an industrial process involving lignocellu-
lose conversion to fuels and chemicals, as these
microbes can utilize multiple sugars simultaneously,
with numerous points of entry to central carbon
metabolism (see Figure 4). Although Caldicellulosirup-
tor saccharolyticus was shown to grow well on a vari-
ety of sugars (arabinose, fructose, galactose, glucose,
mannose, and xylose) simultaneously, the extent of
which each monosaccharide was digested varied, with
fructose being the most utilized.117 In the absence of an
apparent carbon utilization regulatory system, varia-
tion in sugar utilization among Caldicellulosiruptor
species is likely due to presence or absence of certain
metabolic pathways, for example, the oxidative PPP,
and/or essential transporters; the latter has only
recently been better understood for a few Caldicellulo-
siruptor species with transcriptomics analysis of
growth on substrates, such as simple sugars, crystalline
cellulose (Avicel), and complex biomasses like
switchgrass.113,114,117,121,137

One option to improve degradation of lignocellu-
lose is to increase the CAZyme inventory of a microbe.
While generally highly conserved in the Caldicellulosir-
uptor genus, the SLH domain xylanase from Caldicel-
lulosiruptor kronotskyensis, Calkro_0402, is not
present in C. bescii and, thus, was inserted into the
genome to improve its ability to utilize xylan.130 The
manipulated strain successfully expressed the protein
on the S-layer of the cell and improved xylan utiliza-
tion significantly by doubling xylose release into the
supernatant from oat spelt xylan. Growth on washed
and unwashed birch xylan was improved, while dilute
acid-pretreated switchgrass solubilization remained
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unaffected; this indicated that there are still other hur-
dles to lignocellulosic degradation that must be over-
come. However, on substrates with high xylan
content, the engineered strain showed improved
solubilisation, possibly due to increased substrate
attachment.

Fermentation
The major fermentation products of the Caldicellulo-
siruptor genus are hydrogen, carbon dioxide, and ace-
tate.122,138,139 Lactate production has also been
measured, but only a trace amount of ethanol has been
detected in wild-type cultures.119,123,124,140 By far, the
most studied product of all of these is molecular hydro-
gen, especially with C. saccharolyticus.120,121,141–154

H2 generation is completed via hydrogenases utilizing
reducing equivalents (Fdred and NADH) from central
carbon metabolism (see Figure 4). C. saccharolyticus,
along with several other extreme thermophiles, is

considered to be an ideal ‘biohydrogen factory’, as
reported yields are close to the so-called ‘Thauer limit’
of 4 moles H2 per mol glucose.120,122,155 Decreased H2

production results in the accumulation of NADH and
Fdred, while increased H2 can instead push metabolic
flux toward lactate production. At high levels of molec-
ular hydrogen, product inhibition occurs via increased
dissolved H2 levels.

156 NADH and Fdred are simultane-
ously oxidized by a bifurcating [FeFe]-hydrogenase,
which uses both electron donors at the same time,157

while Fdred is also oxidized by a membrane-bound
[NiFe]-hydrogenase that is related to that found in
P. furiosus.91

With the recent development of a genetic engi-
neering system in Caldicellulosiruptor bescii, based
on auxotrophic selection-targeted manipulations of
the Caldicellulosiruptor genome and consequently
metabolism are now possible.158–161 The first direc-
ted demonstration of these methods actually involved
the deletion of the single lactase dehydrogenase
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(ldh—Athe_1918) present in C. bescii to halt lactate
production.162 While the wild type and parent strains
produced less hydrogen than the well-studied
C. saccharolyticus (1.8 and 1.7 versus 2.5 mol H2/
mol of glucose, respectively), the ldh knockout pro-
duced significantly more H2 on switchgrass, closer to
the theoretical goal (3.4 mol H2/mol of glucose). As
lactate formation ceased, acetate production
increased by 38–40% over the wild type and parent
strains.

More recently, ethanol production was demon-
strated in C. bescii through the addition of an
NADH-dependent alcohol dehydrogenase gene from
Clostridium thermocellum (adhE—Cthe_0423) into
the strain lacking lactate formation163; C. bescii does
not possess a native alcohol or acetaldehyde dehy-
drogenase, and thus a representative gene was
recruited from another thermophilic Firmicute.
Owing to the lower thermostability of the
C. thermocellum protein, growth of the engineered
strain was done at a maximum of 65�C. Strain
growth on cellobiose, Avicel and switchgrass, and
resulted in 14.8 mM, 14 mM, and 12.8 mM ethanol,
respectively. Acetate production was also lowered,
ranging from ~4 to 5 mM compared to the wild type
(~6 mM) and parent (~8–9 mM) on all tested sub-
strates. Another attempt at ethanol production was
completed by individually inserting two bi-functional
alcohol dehydrogenase genes from Thermoanaero-
bacter pseudethanolicus 39E, adhB (Teth39_0218)
and adhE (Teth39_0206), into the C. bescii lactase
dehydrogenase knockout.164 Growing the modified
strain at 75�C with cellobiose, ethanol was produced
at reported levels of 1.4 mM and 2.9 mM, acetate at
15.5 mM and 14.1 mM, and H2 at 23.2 mM and
22.5 mM for the AdhB and AdhE knock-in strains,
respectively; similar ethanol levels were also meas-
ured on Avicel and switchgrass.

With a genetic system now in place, gene
‘knockouts’ in C. bescii can be strategies to under-
stand Caldicellulosiruptor metabolism and physiol-
ogy. For instance, an uncharacterized [Ni-Fe]
hydrogenase maturation gene cluster
(hypABFCDE—Athe_1088-Athe_1093) was deleted
from the aforementioned, modified ethanol-
producing C. bescii strain containing adhE from
C. thermocellum.165 The resulting strain produced
20% less H2 than its parent, yet its H2 yield per mol
of cellobiose increased 63% (3.58 versus 2.19 mol
H2/mol cellobiose). Fermentation patterns on Avicel,
cellobiose, and switchgrass showed that the engi-
neered strain also produced acetate (1.6–5.7 mM—

34% less than parent) and ethanol (1.9–2.7 mM—

73% less than parent). Additionally, the knockout

had reduced growth and a longer lag phase, which
could result from the deleted gene acting as an ATP-
generating protein pump. Other genetic manipula-
tions with C. bescii include the deletion of CelA
(Athe_1867),128 a predicted pectin lysase, and a
putative AraC family transcriptional regulator genes
(pecABCR—Athe_1853–1856).166 Continued efforts
with the newly established genetics tools in C. bescii,
and eventually other Caldicellulosiruptor species, will
help reveal the basis for its ability to grow on ligno-
cellulosic substrates.

THERMOTOGA SPP.

The bacterial genus Thermotoga contains nine
named species that are obligate anaerobes capable of
growth at optimal temperatures between 65 and
80�C, mostly isolated from submarine geothermal
features.167–169 These rod-shaped, Gram-negative,
eubacteria were originally identifiable by their dis-
tinctive ‘toga’-like outer sheath and absence of an
outer membrane. Beyond their unique appearance,
the species in the genus Thermotoga share a remark-
ably large number of homologs (roughly 24% of the
genome) with sequenced archaea.170 This curious
result has led some research into the evolutionary
divergence/convergence of this bacterial lineage, sug-
gesting the genomic features that may be critical in
defining thermophily, such as the discovery of genes
associated with biosynthesis of di-myo-inositol-
phosphate, which may serve as a critical thermopro-
tectant compatible solute.171 Further phylogenetic
analysis has even suggested that mesophily may have
developed from thermophily (within the order Ther-
motogales), given the ancestral sequence reconstruc-
tion of more thermally stable myo-inositol-phosphate
synthase (MIPS)172 and emergence of ‘mesotoga’ spe-
cies.173 Also of interest is the presence of a system for
catabolizing myo-inositol that provides utilization of
compatible solutes but cannot provide a complete
source for carbon utilization.174 Within the genus,
Thermotoga maritima has served as a model species
for studying evolution, biomass deconstruction, and
biohydrogen production.175

Carbohydrate Utilization
All Thermotoga species are chemoheterotrophs,
although the range of substrate usage varies and
includes numerous pentoses, hexoses, disaccharides,
and polysaccharides, as well as yeast extract, acetate,
methanol, and pectin.168,169,176–180 This ability to
utilize a broad array of carbohydrates appears to be
supported by bioinformatics and transcriptomics
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suggesting a substrate-specific regulation and func-
tion of large numbers of ABC-transporters,181 as well
as many α- and β-GH.118 Intriguingly, T. maritima
grows faster on complex carbohydrates than on
monosaccharides, suggesting an adaptation to the
breakdown of biomass in their natural environ-
ments.182 The metabolism of carbohydrates by these
organisms results not only in the formation of some
typical fermentation products, such as acetate, car-
bon dioxide, and lactate, but also the generation of
molecular hydrogen, and small amounts of ethanol,
butanol, and butyrate.183 It is worth noting that
Thermotoga species utilize the traditional EMP and
ED pathways184,185 for carbon utilization. However,
they also contain, in some cases, unique enzymes that
are adapted to optimizing the use of reducing power
and energy generated from biomass deconstruction
for the synthesis of fermentation products.

The initial genome annotation of T. maritima
suggested a prevalence of mono- and polysaccharide
utilization proteins (as much as 7% of identified
genes).170 In contrast to organisms that produce large
complexes for carbohydrate degradation
(i.e., cellulosomes), T. maritima utilizes a broad array
of both extra- and intra-cellular GH, which have
been detailed in previous reviews.118 More recent
examination of the pan genome, as well as transcrip-
tomic data, suggests that Thermotoga species vary
with respect to specific ABC sugar transporters and
GH.186 Overall, the preponderance of thermally sta-
ble, polysaccharide-degrading enzymes makes mem-
bers of the genus and their enzymes intriguing
candidates for the deconstruction of complex carbo-
hydrates in industrial applications.187 However, one
of the limiting factors is the absence of any apparent
capacity for growth on crystalline cellulose, suggest-
ing a lack of cellulolytic enzymes in Thermotoga spe-
cies.188 In fact, to address this issue, efforts were
directed at the ectopic expression of cellulases from
C. saccharolyticus fused with T. maritima signal pep-
tides. The resulting plasmids were used for Thermo-
toga sp. strain RQ2 transformations, where
enhanced exoglucanase activity was observed, but
eventually was lost due to poor plasmid mainte-
nance.189 However, a stable genetic system for
T. maritima and T. sp. RQ7 was recently reported,
based around a cryptic plasmid isolated from the
latter.190

Fermentation
Of the major fermentation products from Thermo-
toga spp., H2 production is particularly interesting
from a biotechnological perspective. High yields

(3.8 mol H2/mol glucose) reported by Thermotoga
neapolitana under anaerobic and microaerobic
growth conditions191–193 approach the Thauer
limit.155 The production of H2 is most efficient when
the balance of fermentation products is skewed
toward acetate production as compared to lactate
production, given that the enzymes identified in ace-
tate production, phosphate acetyl-transferase and
acetate kinase, avoid the re-oxidation of NADH and
instead produce Fdred and ATP, respectively. In con-
trast, the production of lactate is driven by a lactate
dehydrogenase that uses reducing equivalents
(NADH) generated in the glycolytic process. Another
possible key to efficient hydrogen production in these
organisms, as in the Caldicellulosiruptor, is the cou-
pling of Fdred and NADH oxidation by a bifurcating,
[FeFe] hydrogenase,194 in which Fdred likely drives
the less favorable oxidation of NADH and improves
the overall thermodynamics for producing hydrogen.
This enzyme complex, first identified in T. maritima,
appears to have a homolog in T. neapolitana, which
has the highest reported H2 yields within the genus.
There is also evidence that the build-up of molecular
hydrogen and a possible inhibition mechanism can
be alleviated through the co-culturing of T. maritima
with Methanococcus jannaschii; the latter oxidizes
H2 and generates methane.195 This results in signifi-
cant upregulation of CAZymes and growth-phase
enzymes, as well as denser cultures196 (see Figure 5).

Besides molecular hydrogen, several species
have been reported to produce ethanol as a fermenta-
tion product.177,197 This result was not expected
given the lack of detectable pyruvate decarboxylase
activity. However, more recent work has identified
the presence of both an alcohol dehydrogenase
(from Thermotoga hypogea)198 and a bi-functional

FIGURE 5 | Co-culture of Thermotoga maritima yellow/green
rods) and Methanocaldococcus jannaschii (red cocci)196—permission
pending.
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pyruvate ferredoxin oxidoreductase-pyruvate
decarboxylase enzyme.199 Additionally, butyrate
(an odiferous organic used primarily as a perfume or
food additive) production has been linked with
hydrogen biosynthesis in studies involving
T. neapolitana200; however, the mechanism of butyr-
ate synthesis is still unknown in these organisms.

THERMUS SPP.

The genus Thermus was among the first bacteria to
be studied with respect to thermophily,201 and the
DNA polymerase from Thermus aquaticus2 was
used in early efforts with the PCR. While not all
Thermus species (at least 11 have been named and
characterized) grow optimally at 70�C and above
(extremely thermophilic), there are some that meet
this thermal threshold. Thermus species are typically
nonmotile, nonsporulating, and are not naturally
capable of fermentation. Efforts directed at under-
standing T. thermophilus metabolism revealed that
this bacterium uses glycolysis and the TCA cycle to
drive carbon flux and bioenergetics.202,203 Molecu-
lar genetics tools were developed for Thermus
thermophilus,204 based on its natural competence,
which opened up opportunities for it to be exam-
ined as a model thermophile. In fact, the relative sta-
bility of thermophilic enzymes and early interest in
the genus sparked the undertaking of crystallization
projects aimed at characterizing recombinant ver-
sions of all the identified coding ORFs from Ther-
mus thermophilus.205–209 The overall goal of such
projects was to provide a comprehensive database
of structural characteristics that aid in the determi-
nation of protein function and domain architecture
representing all of the major classes of proteins
identified to date.

Enzyme and Metabolic Engineering Efforts
with Thermus
Although more thermophilic microorganisms have
become available, Thermus species can be sources of
thermostable enzymes for biotechnological applica-
tions. For example, enzymes from Thermus were
included in an in vitro pathway that converted glu-
cose into n-butanol210 and a xylose isomerse from
this species was used to enable a recombinant Sac-
charomyces cerevisiae strain to grow on xylose.211

Although genetics are relatively facile for these
organisms, metabolic engineering pursuits have been
limited. One of the earliest examples of metabolic
engineering of the organism involved the transfer of
nitrification genes among two members of the genus,

allowing an aerobic Thermus species to grow anaero-
bically.212 Additionally, a few attempts have been
made at overexpression of native genes for the pur-
pose of biotechnological applications involving spe-
cific enzymes such as DNA polymerase and Mn-
dependent catalases.213,214 More recently, a strain of
T. thermophilus HB8 was generated that could co-
utilize xylose and glucose at temperatures up to
81�C, with a view towards processing lignocellulose,
although this strain could not deconstruct biomass
nor ferment the C5/C6 sugars.215

CONCLUSION

Although the study of extreme thermophiles has only
gained traction in the past few decades, there are
numerous metabolic and physiological features that
distinguish these organisms from the other major
groups of life and justify continued research endea-
vors. Much of this information has been ascertained
via the use of genomics, transcriptomics, and prote-
omics in conjunction with traditional microbiologi-
cal/biochemical techniques. Furthermore, this
synthesis has led to the development of metabolic
and physiological models in extreme thermophiles
that are beginning to rival better characterized meso-
philic systems. With the advent of next-generation
sequencing technologies, it seems likely that previous
work will be furthered by large-scale comparative
genomics and metagenomics projects; this should fur-
ther the discovery of novel metabolic features
(i.e., enzymes and native biological pathways) with
vital importance to our fundamental understanding
of biology.

Beyond the scientific merit of studying extreme
thermophiles, numerous opportunities exist to utilize
these organisms for biotechnological advancement.
As previously emphasized, the extreme conditions
under which these organisms subsist has led to evolu-
tionarily distinct metabolic and physiological fea-
tures. In general, thermally stable proteins and heat-
tolerant metabolic hosts could provide a major eco-
nomic benefit to industrial processes. In the case of
upstream processes, it may be possible to eliminate
or minimize the energy costs associated with cooling
or sterilizing bioreactors; while downstream pro-
cesses may benefit from simple techniques—such as
heat pre-treatment—to select for thermophilic
enzymes produced recombinantly in mesophilic
hosts, eliminating costly purification steps. Addition-
ally, the increase in available genetic systems in these
organisms will open many avenues for metabolic
engineering. In fact, these organisms could have vital
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roles in the future of bioprocessing ranging from sus-
tainable biochemical engineering to specialty chemi-
cal production to the deconstruction of inorganic

and organic raw materials and even the recovery of
base, precious and strategic metals.
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